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The existence regimes and dynamics of soliton molecules in dispersion-managed (DM) optical fibers have been
studied. Initially we develop a variational approximation to describe the periodic dynamics of a soliton molecule
within each unit cell of the dispersion map. The obtained system of coupled equations for the pulse width and
chirp allows to find the parameters of DM soliton molecules for the given dispersion map and pulse energy. Then
by means of a scaling transformation and averaging procedure we reduce the original nonlinear Schrödinger
equation (NLSE) with piecewise-constant periodic dispersion to its counterpart with constant coefficients and
additional parabolic potential. The obtained averaged NLSE with expulsive potential can explain the essential
features of solitons and soliton molecules in DM fibers related to their energy loss during propagation. Also,
the model of averaged NLSE predicts the instability of the temporal position of the soliton, which may lead to
difficulty in holding the pulse in the middle of its time slot. All numerical simulations are performed using the
parameters of the existing DM fiber setup and illustrated via pertinent examples.
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I. INTRODUCTION

During the past two decades the amount of information
transmitted via optical fiber communication systems has
increased enormously. The high performance of modern
communication lines is provided by an optical fiber [1], where
the information is encoded and transmitted as a sequence of
light pulses. Despite the very high data rate achieved today
(∼50 TB/s over single fiber), there is urgent demand for even
more capacity of the fiber line, originating from the needs
of telecommunications and the Internet. Different approaches
are being pursued to address the capacity problem, such as im-
proving the transmission properties of the optical fiber, laying
additional parallel cables, and using the information coding
schemes going beyond the binary format, which is currently
employed. Among the above-mentioned approaches, using the
extended alphabet, where a bound state of two or more optical
solitons called a soliton molecule serves as a new carrier
of information units [2], seems to be particularly appealing
because it employs already existing optical fiber lines, and also
the soliton format takes care of the nonlinearity of the fiber,
which is the subject of concern in all other competing formats.

It is appropriate to recall that solitons are self-localized
wave packets that can propagate along waveguides, preserving
their shape and velocity, and exhibit particlelike collisions
with each other. Bright solitons emerge from the fine balance
between the dispersive broadening and the nonlinear self-
focusing of the wave packet. When the optical soliton was
theoretically predicted [3] and experimentally observed [4],
there was a promising idea that it can be used as an information
carrier in optical fiber communication systems [5] due to its
exceptional robustness against perturbations. In addition, the
nonlinearity of the optical fiber, considered to be a nuisance in
linear systems, has been used as an advantage in this case as
it provides the soliton’s self-healing property. However, some
other detrimental effects like four-wave mixing and Gordon-
Haus timing jitter [6] have imposed difficulties for progress
in this direction. Later the concept of dispersion management
(DM) and DM solitons was put forward (for a recent review see

Ref. [7]), which allowed to suppress these adverse effects, and
eventually led to the realization of several commercial soliton-
based optical fiber communication systems. An interesting
chronicle of the growth of the telecommunications industry,
including fiber optic systems, is given in Ref. [1].

Recent progress in using solitons for information transfer
is linked to the observation that solitons in DM fibers can
form stable bound states called soliton molecules and to
the realization of their potential for enhancing the capacity
of the communication system via extension of the coding
alphabet [2]. The binding mechanism of solitons in the
molecule was proposed in Ref. [8]. The proof-of-principle
demonstration of the data transmission via optical fiber using
the extended alphabet [logical zero, one (single soliton), two
(two-soliton molecule), and three (three-soliton molecule)]
was recently reported in Refs. [9,10]. The quaternary coding
scheme doubles the rate of information transfer compared to
the binary case according to the law ∼log2 M , where M is
the number of “letters” in the alphabet. The practical imple-
mentation of this novel approach requires extensive research
on the existence regimes, stability, mutual interactions, and
propagation dynamics of soliton molecules in DM fibers.

Soliton molecules must not be confused with higher-
order soliton solutions of the standard nonlinear Schrödinger
equation (NLSE) u(τ ) = Nsech(τ ), which also propagate
along the fiber by periodically changing their shape without
emitting any radiation for integer N . The higher-order soliton
is a superposition of several solitons bound together at the
same temporal position, e.g., τ = 0, whereas in the molecule
solitons are separated by some temporal distance. In contrast to
soliton molecules, which normally possess significant binding
energy and are therefore quite robust, higher-order solitons can
easily disintegrate into constituent solitons, moving away from
each other under weak perturbations. Such perturbations may
originate from imperfections of the fiber, mutual interaction
of pulses, etc. Due to their low tolerance toward perturba-
tions the higher-order solitons are not preferred for optical
communications.

1050-2947/2014/89(5)/053817(9) 053817-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.89.053817


S. M. ALAMOUDI, U. AL KHAWAJA, AND B. B. BAIZAKOV PHYSICAL REVIEW A 89, 053817 (2014)

The binding mechanism of temporal soliton molecules
allows to calculate the potential of interaction as a function
of the separation between solitons using the perturbation
theory [8,10]. The position of the minimum and the depth
of the potential correspond, respectively, to the equilibrium
separation and the binding energy of the molecule. To break
the molecule into separate stable solitons one has to apply
a strong enough perturbation, for instance by setting the
solitons into motion in opposite directions with sufficient
kinetic energy. Similarly, when two solitons form a stable
molecule, the energy released is equal to the molecule’s
binding energy. We estimate the potential of interaction and
binding energy of soliton molecules by means of variational
approximation.

A recent interesting discovery was the observation of
higher-order equilibrium states of soliton molecules in numer-
ical experiments [11]. In addition to the stable ground state of
the molecule, characterized by a minimal separation between
opposite-phase solitons, where attractive and repulsive forces
acting on solitons are balanced out, a multitude of larger
separations are found to exist, where forces acting on solitons
again cancel each other. Solitons placed at these temporal
separations also stay together as a molecule, while propagating
along the fiber. The binding energy of the molecule is
found to be lower for higher-order equilibrium states. These
equilibrium states come in a sequence, alternatingly stable and
unstable [11]. In order to observe higher-order equilibria of
soliton molecules one has to prepare the molecule’s waveform
with sufficiently high precision by means of special numerical
techniques. In reality, the continuous emission of linear waves
from the soliton during its propagation along the fiber and some
inevitable perturbations make the experimental observation
of the higher-order equilibria of soliton molecules rather
challenging. Thus far, only the stable ground state for the
opposite-phase soliton pairs [2,9–11] and the unstable ground
state for the in-phase soliton pairs [11] were experimentally
observed. We employ the Gauss-Hermite trial functions, which
are good for analytic calculations but insufficiently accurate for
detecting the higher-order equilibria of soliton molecules. The
theory of averaged dynamics of soliton molecules, developed
in subsequent sections, allows to reveal a fundamental mech-
anism of energy emission from propagating solitons. Such
energy loss contributes to the destruction of the higher-order
equilibria of soliton molecules.

In this work we study the existence regimes and dynamics
of soliton molecules in DM fibers by analytical and numerical
means. First we develop a variational approach (VA) to find the
stationary shape of the molecule and equilibrium separation
between solitons in the molecule. At this stage we obtain
two coupled ordinary differential equations (ODEs) for the
temporal separation between solitons and the chirp parameter,
which describes the fast dynamics of the molecule within a
unit cell of the DM fiber. Although the derived ODE system
is capable of describing the propagation of the molecule
for arbitrary distance, long-haul transmission of DM solitons
and molecules is convenient to explore using the averaged
NLSE. The averaged NLSE can help to specify the existence
regimes of solitons and molecules, and to elucidate the
physical mechanism by which they lose energy and eventually
disintegrate in conservative DM fibers.

The paper is organized as follows. In Sec. II we introduce
the NLSE which governs the pulse propagation in DM fibers.
Here we also present the parameters of the DM fiber used
in our calculations. In Sec. III we develop the VA for the
fast dynamics of solitons and molecules and compare its
predictions with the results of partial differential equation
simulations. Then we derive in Sec. IV the averaged NLSE
and determine its coefficients using the VA. Here we also
perform the analysis of the pulse propagation in the NLSE
with inverted parabolic potential. In Sec. V we summarize our
findings.

II. THE GOVERNING EQUATION

The propagation of optical pulses in fibers with inhomo-
geneous parameters is described by the following nonlinear
Schrödinger equation:

i
∂E

∂z
− β(z)

2

∂2E

∂t2
+ �(z)|E|2E = ig(z)E, (1)

where E(z,t) [|E|2 (W)], z [m], and t [s] are, respectively,
the complex envelope of the electric field, the propagation
distance, and the retarded time. The coefficients β(z) (s2/m),
�(z) [1/(W m)], and g(z) [1/m] represent the fiber’s group
velocity dispersion (GVD), nonlinearity, and gain or loss
parameter, respectively. Here and below in square brackets
we show the physical unit of the corresponding variable.

For qualitative analysis and numerical simulations it is
convenient to reduce Eq. (1) to dimensionless form. At first
we eliminate the gain or loss term via a new variable u(z,t)
[|u|2 (W)], following Ref. [12]:

E(z,t) = a(z)u(z,t), a(z) = a0 exp

[ ∫ z

0
g(ξ )dξ

]
, (2)

where a0 is a dimensionless constant. The new complex
function u(z,t) satisfies the equation

i
∂u

∂z
− β(z)

2

∂2u

∂t2
+ γ (z)|u|2u = 0, (3)

where γ (z) = a2(z)�(z) is the fiber’s effective nonlinearity.
Now we convert Eq. (3) into standard form with constant
nonlinearity by introducing the new coordinate z′ [1/W]
defined by z′(z) = ∫ z

0 γ (ξ )dξ :

i
∂u

∂z′ − β ′(z′)
2

∂2u

∂t2
+ |u|2u = 0, (4)

where β ′(z′) = β(z′)/γ (z′) [W s2] is the fiber’s effective
dispersion, characterizing both the fiber’s GVD and its
nonlinearity. The original parameters β(z), �(z), and g(z) in
Eq. (1) are periodic functions of propagation distance with
common period L, while the effective dispersion β ′(z′) in
Eq. (4) is a periodic function with period defined by

L′ =
∫ L

0
γ (ξ )dξ = L+γ + + L−γ − [1/W]. (5)

To obtain the final equation we introduce dimensionless
variables

q(Z,T ) = u(z′,t)
√

L′, Z = z′/L′, T = t/τm, (6)
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FIG. 1. (Color online) Dispersion profile for one period of the DM map. The solid (red) line represents the piecewise-constant dispersion,
and the dashed (blue) line is the parameter of nonlinearity. Left: Profile for the original Eq. (3), where the dispersion β(z) and nonlinearity γ (z)
are given in units of ps2/km and 1/(W km), respectively. Right: Profile for the reduced Eq. (7), where all quantities are dimensionless. Note
that here the coefficient of nonlinearity is equal to 1 and is not shown in Eq. (7) or figure.

where τm is the characteristic time scale equal to the pulse
duration of the laser source τFWHM. In terms of these variables
the dimensionless governing equation acquires the form

i
∂q

∂Z
− D(Z)

2

∂2q

∂T 2
+ |q|2q = 0, (7)

where D(Z) = β ′(Z)L′/τ 2
m represents the fiber’s dimension-

less effective dispersion. To show the results in dimensional
variables we solve the equation∫ z

0
γ (ξ )dξ = ZL′ (8)

with respect to z [m], for given dimensionless propagation
distance Z, the period L′ [1/W], and known nonlinear map
function γ (z) [1/(W m) ]. The original time t [s] and field
amplitude u [

√
W] are restored via Eq. (6). Note that z = L

corresponds to Z = 1, in accordance with Eq. (5).
In the absence of a gain or loss term in Eq. (1), i.e., g(z) = 0,

a(z) ≡ a0, a0 =
(

L∫ L

0 exp
[
2
∫ z

0 g(ξ )dξ
]
dz

)1/2

= 1. (9)

The dimensionless pulse energy is

E0 =
∫ ∞

−∞
|q|2dT = L′

τm

∫ ∞

−∞
|u|2dt = L′

τm

E0, (10)

where E0 [J] is the original pulse energy.

A. Parameters of the dispersion map

In the following sections we employ the DM map param-
eters, corresponding to the setup of Refs. [9,10], for laser
wavelength λ = 1540 nm:

β+
2 = +4.259 [ps2/km], γ + = 1.7 [1/(W/km)], and

L+ = 22 [m] (positive GVD fiber),

and

β−
2 = −5.159 [ps2/km], γ − = 1.7 [1/(W/km)], and

L− = 24 [m] (negative GVD fiber).

The period of the original DM map is L = L+ + L− =
46 [m]. For the effective dispersion in Eq. (4) the period is

L′ = γ +L+ + γ −L− = 0.078 [1/W]. The path averaged dis-
persion and nonlinearity are equal to

β̄2 = (β+
2 L+ + β−

2 L−)/L = −0.655 [ps2/km],

γ̄ = (γ +L+ + γ −L−)/L = 1.7 [1/(W km)].

The characteristic time, length, and energy scales are given
below:

τFWHM = 0.25 [ps],

T0 = τFWHM/1.67 = 0.15 [ps] (pulse duration),

LD = T 2
0 /|β̄2| = 0.034 [km]

(dispersion length), and

S = (|β+
2 − β̄2|L+ + |β−

2 − β̄2|L−)/τ 2
FWHM

= 3.459 (strength of the map).

From the above-presented data we get the dimensionless
map parameters:

D1 = (β−
2 /γ −)

(
L′/τ 2

FWHM

) = −3.796,

L1 = L−γ −/L′ = 0.522,

D2 = (β+
2 /γ +)

(
L′/τ 2

FWHM

) = +3.135,

L2 = L+γ +/L′ = 0.478,

	D = (D1L1 + D2L2)/(L1 + L2) = −0.482,

L1 + L2 = 1.

Figure 1 shows the dispersion profiles for the original and
reduced governing equations.

III. THE VARIATIONAL APPROACH FOR FAST
DYNAMICS OF SOLITON MOLECULES

Propagation of a DM soliton is characterized by fast
variation of the pulse shape within each period of the DM
map and slow variations on longer distances when observed
stroboscopically, i.e., once per dispersion period. The periodic
dynamics is compromised by different imperfections of the
fiber, continuous emission of linear waves by the soliton, and
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the nonperfect initial shape of the DM soliton injected into the
fiber. To compensate for the power loss and other distortions,
in practice the pulses are regenerated by amplifiers which are
equidistantly installed along the fiber line.

The variational approach, initially developed to describe
optical soliton propagation in homogeneous fibers [13], later
was successfully applied to DM solitons [14] and antisym-
metric solitons in DM fibers [15,16]. The advantages and
disadvantages of the VA as compared to other methods of
exploring DM solitons are discussed in Refs. [17,18]. Below
we elaborate the VA for two- and three-soliton molecules in
DM fibers, based on the reduced NLSE (7).

Equation (7) can be obtained from the following Lagrangian
density (for tidier notations we again use small letters instead
of capitals):

L = i

2
(qq∗

z − q∗qz) − d(z)

2
|qt |2 − 1

2
|q|4. (11)

To derive the VA equations we consider the shape of the soliton
molecule in general form [14,19],

q(z,t) = 1

τ 1/2
f (t/τ )eiαt2+iσ , (12)

where α(z) and σ (z) are the chirp parameter and phase, τ (z)
is the pulse duration (proportional to the separation between
solitons in the molecule), and f (x) is the real function which
represents the stationary shape of the soliton molecule. The
energy of the pulse is [subscript zero in Eq. (10) is dropped]

E =
∫ ∞

−∞
|q|2dt =

∫ ∞

−∞
f 2(x)dx, x = t/τ. (13)

Substitution of the trial function (12) into Eq. (11) yields the
Lagrangian density

L=ταzx
2f 2 + σz

τ
f 2 − 1

2

d(z)

τ 3
f 2

x − 2 d(z)τα2x2f 2 − 1

2τ 2
f 4.

(14)

The averaged Lagrangian is obtained by integrating the last
expression over the reduced time variable,

L = αzτ
2
∫ ∞

−∞
x2f 2dx + σz

∫ ∞

−∞
f 2dx − d(z)

2τ 2

∫ ∞

−∞
f 2

x dx

− 2d(z)α2τ 2
∫ ∞

−∞
x2f 2dx − 1

2τ

∫ ∞

−∞
f 4dx, (15)

with a few integral constants, determined solely by the pulse
shape f (x). The Euler-Lagrange equations with respect to
variational parameters τ , α, and σ give rise to a coupled set of
ODEs:

τz = −2 d(z)ατ, (16)

αz = −2 d(z)

(
c1

4τ 4
− α2

)
− c2

4 τ 3
, (17)

where

c1 =
∫ ∞

−∞
f 2

x dx

/ ∫ ∞

−∞
x2 f 2dx,

(18)

c2 =
∫ ∞

−∞
f 4dx

/ ∫ ∞

−∞
x2 f 2dx.

We adopt the following trial functions f (x) to specify the
shapes of the pulses and define the corresponding parameters:

single soliton, f (x) = Ae−x2
, E = A2

√
π

2
,

(19)

c1 = 4, c2 = 4E√
π

;

two-soliton molecule, f (x) = Ax e−x2
, E = A2

4

√
π

2
,

c1 = 4, c2 = E√
π

; (20)

three-soliton molecule, f (x) = A (4x2 − 1) e−x2
,

E = A2
√

2π, c1 = 4, (21)

c2 = 41 E

80
√

π
.
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FIG. 2. (Color online) Pulse shapes of the two-soliton molecule (left) and three-soliton molecule (right) in logarithmic scale. Solid (red)
lines correspond to waveforms found by Nijhof’s method [20] applied to the original NLSE (7), while dashed (blue) lines are the prediction
of VA Eqs. (16) and (17). Appreciable deviations of the two waveforms are seen only in far tails, where the pulse amplitude is less than a
percent of the maximum value. The parameters for the two-soliton molecule are E0 = 10.448 (in original units E0 = 20 pJ), τ0 = 1.1828, and

A0 = 2
τ0

√
E0
τ0

√
2/π = 4.489. For the three-soliton molecule, E0 = 15.672 (E0 = 30 pJ), τ0 = 1.333, and A0 =

√
E0

τ0
√

2π
= 2.166. The pulse

power |q|2 is shown in dimensionless units according to Eq. (6).
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FIG. 3. (Color online) Left: Closed phase trajectory indicates that the fixed point τ (0) = 1.1828, α(0) = 0 corresponds to the periodic
solution of the system (16) and (17) for a two-soliton molecule with energy E = 10.448, shown in Fig. 2. Right: The solution of the NLSE (7)
with the initial pulse shape predicted by the VA shows that solitons in the two-soliton molecule perform oscillatory motion periodically reducing
and increasing the temporal separation between their center-of-mass positions (top and bottom curves). The evolution of the chirp parameter
(middle curve) shows qualitative agreement with the VA.

The fixed point (τ0,α0) of the coupled system (16) and (17),
which can be found using the Nijhof method for VA mod-
els [20], defines the stationary shapes of the pulses with given
energy E and DM map function d(z). In Fig. 2 we illustrate
the shapes of the two-soliton and three-soliton molecules,
which are found by solving the VA system (16) and (17)
and compare with the corresponding results of the Nijhof
method applied to the original Eq. (7). In Fig. 3 we show
the phase trajectory for the periodic solution of the VA
system (16) and (17) and temporal center-of-mass positions
of solitons in the two-soliton molecule while it propagates
along the fiber. The center-of-mass position of the right/left
soliton is calculated from the solution of the VA system (16)
and (17) as τc.m.(z) = ±τ (z)

√
2/π , while for the NLSE (7) the

corresponding formula is

τc.m.(z) = ± 2

E0

∫ ∞

0
t |q(z,t)|2dt, (22)

where in actual calculations we use the temporal domain’s
half length as the upper limit of the integration. For evaluation
of the pulse width and chirp parameter from the solution of
Eq. (7) we employ the following expressions [20]:

τ (z) =
(

4

3E

∫ ∞

−∞
t2|q(z,t)|2dt

)1/2

,

(23)

α(z) =
∫ ∞
−∞ Im[q2(z,t)q∗

t (z,t)]dt∫ ∞
−∞ |q(z,t)|4dt

.

As can be seen from Fig. 3 the dynamics of the pulse width
is described by the VA equations quite accurately, while for
the chirp parameter the agreement is only qualitative. It should
be noted that although the chirp parameter shows complicated
behavior within the map period, the “zero chirp” condition in
the middle of each anomalous GVD fiber is well satisfied.

IV. AVERAGED EQUATION FOR SOLITON MOLECULES
IN DM FIBERS

Long-haul propagation of soliton molecules in DM fibers is
convenient to study using the averaged NLSE. The averaging
procedure was developed in Refs. [14,19]. Below we use the
approach based on the scaling arguments proposed in Ref. [21]
and look for the solution of Eq. (7) in the form (capital letters
changed to lower case)

q(z,t) = w(z,t) ei α(z) t2
, (24)

where α(z) is the chirp parameter. Inserting this into the
governing Eq. (7) we obtain

i(wz − 2dαtwt ) − d

2
wtt + (2dα2 − αz) t2w + |w|2w

= idαw. (25)

By introducing the new time (x) and amplitude (b) functions

x = t/τ (z), w(z,t) = b(z) v(z,x), (26)

the last equation can be reduced to the form

i

(
bvz + bzv − btτz

τ 2
vx − 2bdαt

τ
vx

)
− bd

2τ 2
vxx

− (αz − 2dα2)t2bv + b3|v|2v = idαbv. (27)

When the following relations are satisfied,

bz = d α b, τz = −2 d α τ, (28)

the NLSE with a parabolic potential results from Eq. (27):

ivz − d

2τ 2
vxx + b2|v|2v − (αz − 2dα2)τ 2x2v = 0. (29)

The amplitude function is linked to the pulse width as b(z) =
β/

√
τ (z), which can be readily verified from Eq. (28). The

constant β is specified by the selected trial function. Now
applying the averaging procedure to Eq. (29) we obtain in
leading order

iψz + d0ψxx + b0|ψ |2ψ + k0x
2ψ = 0, (30)
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where ψ(z,x) is the slowly varying core of the DM soliton.
The quantities averaged over one dispersion period are
defined as d0 = − 1

2 〈d(z)/τ 2(z)〉, b0 = β2〈1/τ (z)〉, and k0 =
〈[2d(z) α2(z) − αz(z)] τ 2(z)〉. The averaging is performed
as 〈φ(z)〉 = ∫ 1

0 φ(z)τ (z)dz/
∫ 1

0 τ (z)dz (for the reduced map
period L = 1). In numerical implementation of the aver-
aging procedure we employ the periodic solution of VA
Eqs. (16) and (17). In particular from Eq. (17) it follows
that k0 = (c1/2)〈d(z)/τ 2(z)〉 + (c2/4)〈1/τ (z)〉, with constants
c1,c2 given by Eq. (18). For the DM map parameters specified
in Sec. II all coefficients of Eq. (30) appear to be positive
(d0 > 0, b0 > 0, k0 > 0); therefore, we have gotten the NLSE
with anomalous dispersion, focusing nonlinearity, and inverted
parabolic potential. This equation is formally similar to the
quantum-mechanical equation for a wave packet, evolving
under the effective potential

U (z,x) = −b0 |ψ(z,x)|2 − k0 x2. (31)

The stationary solution ψ(z,x) = ϕ(x)eiλz can be found from
the initial value problem with respect to variable x,

d0 ϕxx + b0 ϕ3 + k0 x2 ϕ − λ ϕ = 0, (32)

and suitable initial conditions ϕ(0) and ϕx(0).
It is appropriate to mention that Eq. (30) with an additional

gain or loss term was previously considered also in other
contexts, such as the nonlinear compression of chirped optical
solitary waves [22], and with regard to integrability issues
[23–26].

A. The variational approach for averaged NLSE

To study the evolution of pulses governed by Eq. (30) we
develop the VA. The corresponding Lagrangian density is

L = i

2
(ψψ∗

z − ψ∗ψz) + d0|ψx |2 − k0x
2|ψ |2 − b0

2
|ψ |4.

(33)
The trial function is of the form

ψ(x,t) = Aη(x) e−(x−ξ )2/τ 2+iα(x−ξ )2+iv(x−ξ )+iϕ, (34)

where A(z), τ (z), ξ (z), v(z), α(z), and ϕ(z) are variational
parameters, designating the pulse amplitude, width, center-of-
mass position, velocity, chirp, and phase, respectively. The
auxiliary function η(x) is introduced for convenience and
defines the type of the pulse. Specifically for a single soliton
η(x) = 1, for a two-soliton molecule η(x) = x, and for a
three-soliton molecule η(x) = 4x2 − 1.

It is instructive to start by considering the existence
and dynamics of a single soliton on top of an inverted
parabolic potential. The integration L = ∫ ∞

−∞ L dx using the
trial function (34) with η(x) = 1 gives rise to the following
effective Lagrangian:

L

E
= 1

4
τ 2αz − ξ 2

z + ϕz + d0

τ 2
+ d0τ

2α2 + d0ξ
2
z − k0

4
τ 2

− k0ξ
2 − b0E

2
√

πτ
, (35)

where the pulse energy E = A2τ
√

π/2 is conserved. Now
applying the Euler-Lagrange equations with respect to the

variational parameters, we get the ODE system for the pulse
width and its center-of-mass position,

τzz = 16d2
0

τ 3
+ 4d0k0τ − 4d0b0E√

πτ 2
, (36)

ξzz = −k0/(d0 − 1)ξ. (37)

The system for the two-soliton and three-soliton molecules will
be similar, with only the rescaled energy coefficient, E → E/4
for the former case and E → (41/320)E for the latter case [see
the coefficient c2 in Eqs. (20) and (21)]. As can be seen from
this system, the center of mass and internal dynamics of the
soliton are decoupled. This is due to the property of a parabolic
potential and is the manifestation of the Ehrenfest theorem.
(Its validity for the nonlinear Schrödinger equation with linear
and parabolic potentials was proved in Ref. [27].) In other
types of potentials these two degrees of freedom are coupled.
In fact the equation for the center of mass is the harmonic
oscillator equation with a purely imaginary frequency ω2 =
k0/(d0 − 1) < 0, since in practical situations k0 > 0 and
d0 < 1. Therefore, the center of mass of the soliton is unstable
against sliding down an inverted parabola with exponentially
increasing distance from the origin

ξ (z) = ξ (0) eKz, where K =
√

k0/|d0 − 1| > 0. (38)

The equation for the pulse width, Eq. (36), is similar to the
equation of motion for a unit mass particle in the anharmonic
potential

τzz = −dU

dτ
, U (τ ) = 8d2

0

τ 2
− 2d0k0τ

2 − 4d0b0E√
πτ

, (39)

which is depicted in Fig. 4. The minimum of this potential is
found from the solution of the quartic equation

τ 4 − mτ + n = 0, m = b0E√
π k0

, n = 4d0

k0
, (40)

and corresponds to the stationary width of the soliton. For
a given pulse energy E this defines the shape of the soliton
according to the ansatz (34). At some critical energy Ecr the
local minimum in this potential disappears, which means that
Eq. (30) does not support solitons and molecules with energy
below Ecr. The value of the critical energy can be found from
the condition that Eq. (40) has a real solution, which takes
place if m > 4(n/3)3/4 or, in terms of energy,

E > Ecr = 27/2 π1/2

33/4

d
3/4
0 k

1/4
0

b0
� 8.8

d
3/4
0 k

1/4
0

b0
. (41)

In fact the shape of the potential U (τ ) gives the evidence that
solitons and molecules in the system are metastable. In the
same figure (Fig. 4) we compare the pulse profiles obtained
by solution of the stationary state Eq. (32) with the prediction
of VA. The parameter λ for Eq. (32) is obtained using the
shooting method, where the pulse energy E = ∫ |ϕ(x)|2dx

is minimized and initial conditions ϕ(0) = A, ϕx(0) = 0 are
used. As can be seen from this figure, the deviation between
the two wave profiles is notable at far tails of the pulse, where
the field intensity significantly decreases. The wavy tails on
the numerically exact pulse profile, found from the solution
of Eq. (32), indicate the existence of waves reflected from
(and partially transmitted through) the borders of the effective
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FIG. 4. (Color online) Left: The potential (39) in the effective particle model of VA for two values of the pulse energy. The pulse with greater
energy forms a deeper potential well. The stationary amplitude and width of the soliton for E = 1.7193, according to VA, are A = 1.6227
and τ = 0.521, respectively. The existence of a local maximum and decay at large τ is the evidence of metastability of the stationary state.
Right: Comparison between the pulse shapes (in logarithmic scale) obtained by solving the stationary state problem (32) for λ = 4.6132 and
prediction of VA for the same pulse energy. The wavy tails are due to the interference of waves reflecting from the borders of the effective
potential (31). Parameters d0 = 0.3782, b0 = 3.0917, and k0 = 0.6734 are obtained using the VA Eqs. (16) and (17) for a single DM soliton
with energy E0 = 5.224 (in original units E0 = 10 pJ) and fiber data of Sec. II.

potential (31). The waves escaping the effective potential
contribute to the continuous outflow of energy from the soliton
propagating along the fiber, and that is the fundamental source
of its instability in conservative DM fibers.

The “pulse in the effective potential” picture, shown in
Fig. 5, is helpful for the analysis of instability issues. The
first aspect to be noted is that the height and width of the
effective potential barrier in both directions from the pulse
are finite and depend on the intensity of the pulse itself.
Therefore, a continuous and nonlinearly progressing energy
outflow from the soliton takes place via the tunneling effect,
whose rate can be estimated by means of the semiclassical
WKB method as was done for the matter-wave analog of this
problem in Ref. [28]. These authors also have shown that the
rate of energy outflow (number of particles for condensates)
nonlinearly increases, eventually leading to disintegration
of the soliton. The second aspect is the instability of the
center-of-mass position of the soliton against sliding down an
inverted parabola. According to Eq. (38) any small departure
of the center-of-mass position from the origin (the top of
the inverted parabola) in either direction will exponentially
grow.

To verify the above conclusions following from our model,
we performed numerical simulations of the pulse propagation
governed by Eq. (30). When we introduce the wave profile
predicted by VA, which slightly differs from the solution
of Eq. (32), as an initial condition to Eq. (30), the pulse
quickly adjusts itself by performing damped oscillations of its
amplitude, and then continuously decays both in energy and
amplitude, as shown in Fig. 6. The frequency of oscillations of
the amplitude well agrees with the prediction of VA, when we
expand the potential (39) near its minimum τ0 and estimate the
corresponding frequency and period ω0 = √

d2U/dτ 2|τ=τ0 �
5.12, T0 = 2π/ω0 = 1.22. However, the VA does not take into
account the dissipative effects. In numerical simulations we
use the absorbing boundary technique [29] to prevent the
interference of the soliton with the linear waves, which are
otherwise reflected from the integration domain boundaries. To
calculate the energy outflow from the soliton, we monitor the
amount of energy in the central part of the domain (x ∈ [−2,2]
in Fig. 6) where the bulk of the pulse is confined. The energy
loss rate dE/dz is characteristic for the fiber parameters
and initial pulse power, which define the coefficients of the
averaged NLSE (30). The instability of the center-of-mass

FIG. 5. (Color online) Single soliton (left) and two-soliton molecule (right) of the averaged NLSE (30) are shown by solid (red) lines. The
corresponding effective potentials according to Eq. (31) are shown by dashed (blue) lines. The parameters for the single soliton are the same
as in Fig. 4, while for the two-soliton molecule the parameters are d0 = 0.1978, b0 = 6.7274, k0 = 0.209, and E0 = 10.448 (in original units
E0 = 20 pJ).
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FIG. 6. (Color online) Left: The amplitude and energy of the soliton decay as it propagates along the fiber due to the wave tunneling effect.
The inset shows the nonlinear character of the energy loss at longer distances and abrupt disintegration of the pulse at some critical energy. The
data are obtained by numerical simulation of Eq. (30) with absorbing boundary conditions. The initial wave is a Gaussian pulse with amplitude
A = 1.6227 and width τ = 0.521, as predicted by VA. Middle: The soliton slightly displaced from the top of the inverted parabola (by an
amount 	x ∼ ±10−3) slides down with increasing velocity in the corresponding direction. This instability develops even due to a numerical
noise, when the soliton is placed exactly at the origin, x = 0. Right: When the calculation is performed with centering of the pulse, a complete
disintegration can be observed at sufficiently long propagation distance.

position of the soliton is demonstrated in the middle panel of
Fig. 6. If the calculation is performed with centering of the
soliton, when at each step its center of mass is held at the
origin, we observe complete disintegration of the pulse due to
the energy loss, as shown in the right panel of Fig. 6. It should
be pointed out that the pulse disintegrates after propagation
of a rather long distance of ∼80 DM map periods. For the
parameters of the setup [9,10], which is a scale model of a
typical fiber line with 40 Gbit/s bit rate using τFWHM = 7.5 ps
pulses, 80 dispersion periods corresponds to a distance of
3200 km. The critical energy at which the pulse disintegrates,
according to the inset of the left panel, is Ecr � 1.2. This
numerical finding is in good agreement with the prediction of
VA Eq. (41), Ecr = 1.24.

In fact the above-mentioned mechanism of energy loss sets
the limit to attainable robustness of DM solitons and molecules
in the given setup. The instability of the center of mass of the
soliton will make it difficult to hold the pulse in the middle of
its time slot. In Fig. 7 we demonstrate the propagation of two
solitons governed by Eq. (30). When two in-phase solitons are
initially placed at a separation exceeding some critical value,

they move apart with increasing velocity under the effect of
the expulsive parabolic potential. If the solitons are placed at a
smaller temporal distance, they collide a few times and merge
together, and later the combined pulse develops an instability,
analogous to the single-soliton case, and slides down the
inverted parabola. Similar behavior of two-soliton states was
reported in the dissipative counterpart of Eq. (30) in Ref. [26].
An additional fact relevant to coupled soliton propagation
in this system is that the out-of-phase solitons always repel
each other and diverge from the origin in an accelerated
manner.

The main result of our study of pulse propagation governed
by the averaged NLSE (30) is that it does not support truly
stable solitons and molecules as the original DM Eq. (7) does.
Rather it shows that solitons and molecules in the conservative
DM fiber are metastable, in terms of both energy and temporal
position. For the fiber parameters that we have used, the energy
loss amounts to ∼5 % of the initial value at pulse propagation
over 10 dispersion periods, which in a typical fiber system
using 7.5-ps pulses corresponds to a distance of 400 km.
In addition, the model of averaged NLSE allows to find the

FIG. 7. (Color online) Left: Two in-phase solitons placed sufficiently far from each other (	x = 0.72) move apart. Middle: When solitons
are placed at a distance (	x = 0.65) which is less than some critical value, they collide a few times and merge. Right: Long-distance behavior
of the coalescent pulse (of the middle panel) is similar to the single-soliton case, as its center of mass develops instability and slides down the
inverted parabola.
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existence regimes and identify the limits of stability of solitons
and molecules in DM fibers. The inclusion of dissipation and
gain into the model may change the results to some degree.
This will be a subject for separate study.

V. CONCLUSIONS

We have developed a variational approximation which
successfully describes the propagation of soliton molecules
in DM fibers. The pulse shapes for a two-soliton molecule
and three-soliton molecule, predicted by VA, are shown to
be sufficiently close to the numerically exact shapes found
by solution of the original DM NLSE. Then we studied the
dynamics of solitons and molecules in the averaged NLSE
corresponding to the selected DM fiber system. The approach
of the averaged NLSE allows to identify the regimes of the
existence of solitons and molecules in the original DM system
and to reveal the fundamental source of the instability of
soliton propagation in DM fibers, which is linked to continuous

outflow of energy from the pulse due to the wave tunneling
phenomenon. Although the corresponding energy loss rate
is rather small, initially amounting to ∼0.5% of the input
energy per DM map period, it increases nonlinearly and
gives rise to disintegration of the pulse at long distances.
The model also predicts the instability of the temporal
position of the pulse within its time slot. All calculations
are performed using the parameters of the existing DM
fiber setup [9,10]. The model may provide guidance in
further studies of the properties of soliton molecules in DM
fibers.
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[8] A. Hause, H. Hartwig, M. Böhm, and F. Mitschke, Phys. Rev. A

78, 063817 (2008).
[9] P. Rohrmann, A. Hause, and F. Mitschke, Sci. Rep. 2, 866 (2012).

[10] P. Rohrmann, A. Hause, and F. Mitschke, Phys. Rev. A 87,
043834 (2013).

[11] A. Hause and F. Mitschke, Phys. Rev. A 88, 063843 (2013).
[12] A. Maruta, T. Inoue, Y. Nonaka, and Y. Yoshika, IEEE J. Sel.

Top. Quantum Electron. 8, 640 (2002).
[13] D. Anderson, Phys. Rev. A 27, 3135 (1983).
[14] S. K. Turitsyn, I. Gabitov, E. W. Laedke, V. K. Mezentsev, S. L.

Musher, E. G. Shapiro, T. Schafer, and K. H. Spatschek, Opt.
Commun. 151, 117 (1998).

[15] C. Pare and P.-A. Belanger, Opt. Commun. 168, 103 (1999).
[16] B.-F. Feng and B. A. Malomed, Opt. Commun. 229, 173

(2004).
[17] V. Cautaerts, A. Maruta, and Y. Kodama, Chaos 10, 515

(2000).
[18] B. A. Malomed, Soliton Management in Periodic Systems

(Springer, New York, 2006).
[19] S. K. Turitsyn, JETP Lett. 65, 845 (1997); S. K. Turitsyn,
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