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Stereographical visualization of a polarization state using weak measurements
with an optical-vortex beam
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We propose a stereographical-visualization scheme for a polarization state by two-dimensional imaging of
a weak value with a single setup. The key idea is to employ Laguerre-Gaussian modes or an optical vortex
beam for a probe state in weak measurement. Our scheme has the advantage that we can extract information
on the polarization state from the single image in which the zero-intensity point of the optical vortex beam
corresponds to a stereographic projection point of the Poincaré sphere. We experimentally perform single-setup
weak measurement to validate the stereographical relationship between the polarization state on the Poincaré
sphere and the location of the zero-intensity point.
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I. INTRODUCTION

Weak measurement was originally proposed by Aharonov
et al. [1] as an extension to the standard von Neumann
model of quantum measurement, inspired by the two-state
vector formalism of quantum-mechanical measurement [2].
This formalism is characterized by the pre- and postselected
states of the measured system. In contrast to an ideal (strong)
measurement, weak measurement extracts very little informa-
tion about the measured system from a single outcome, but the
measured state does not collapse. Although each outcome of
weak measurement includes a large uncertainty, the averaged
value in multiple trials can build up a significant value, called
a weak value, without state collapse. This feature makes weak
measurement an ideal tool for examining the fundamentals of
quantum physics, such as quantum correlation and quantum
dynamics; for instance, see the reviews [3–7].

On the basis of the above property, recent works have
theoretically shown that weak measurement can be used for
observing the quantum wave function [8–12]. In contrast
to conventional quantum-state tomography [13], this scheme
records the complex-valued weak values describing the wave
function of the quantum state and requires less postprocessing.
Recently, Lundeen and his colleagues demonstrated weak
measurement of the one-dimensional transverse wave func-
tion [14]. Since then, state tomography via weak measurement
has been applied to several physical systems, such as an
average photon trajectory [15,16], a polarization state [17], and
an orbital angular momentum state [18]. All of these demon-
strations, however, require the experimental configuration to
measure two noncommutative operators, such as a position
operator X̂ and its momentum operator P̂x , onto the probe
state of the weak measurement.

In this paper, we propose a stereographical-visualization
scheme for a polarization state by two-dimensional imaging
of the weak value with two commutative position operators.
The key idea is to employ Laguerre-Gaussian (LG) modes
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for a probe state in weak measurement, and it weakly
interacts with the measured polarization state, as proposed
in Refs. [19,20]. The LG mode has a zero-intensity point
(ZIP) in the center, which is generally called an optical
vortex [21], and several generation methods have been pro-
posed and demonstrated [22–30]. Note that the relationship
between the optical vortex beam and the weak value has been
pointed out from different viewpoints [31–35]. According to
Refs. [19,20], we can extract information on the polarization
state from a single image as the two-dimensional location of
the ZIP, which corresponds to the stereographic projection
point of the polarization state on the Poincaré sphere. We also
experimentally verify the stereographical relationship between
the polarization state and the location of the ZIP. Furthermore,
this is a practical demonstration of weak measurement using
an optical vortex beam as the probe state.

The remainder of this paper is organized as follows. In
Sec. II, we show the stereographical relationship between
a polarization state on the Poincaré sphere and a weak
value of a polarization state and propose a stereographical-
visualization scheme for the polarization state by using the
weak measurement with an optical vortex beam. In Sec. III, we
experimentally implement our scheme by using a polarizing
Sagnac interferometer including a specialized half-wave plate,
called q plate. We demonstrate our proposed scheme and
evaluate its accuracy from the fidelity of the measurement
results. Summary and discussion are presented in Sec. IV.

II. STEREOGRAPHICAL VISUALIZATION
OF A QUBIT STATE

Let us consider the geometrical relationship between a weak
value and a two-dimensional quantum (qubit) state. Let any
qubit state |ψ〉 spanned by orthonormal basis states |0〉 and |1〉
be denoted as

|ψ〉 = cos θ |0〉 + eiφ sin θ |1〉, (1)

where 0 � θ � π
2 and 0 � φ < 2π . Here, the parameters φ

and θ uniquely specify a point on the unit sphere S2, called
the Bloch sphere, which is the same as the Poincaré sphere in
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FIG. 1. (Color online) Stereographic projection of qubit state |ψ〉
on Bloch sphere to the ZIP, Gψ = G(Re〈σ̂x〉w, Im〈σ̂x〉w). As an
example, the l = 1 case is illustrated.

optics, in which the states |0〉 and |1〉 correspond to the north
and south poles, respectively. We consider the weak value of
the observable σ̂x ≡ |0〉〈1| + |1〉〈0|, which is the x component
of the Pauli matrices, with the postselected state |1〉:

〈σ̂x〉w ≡ 〈1|σ̂x |ψ〉
〈1|ψ〉 = 〈0|ψ〉

〈1|ψ〉 = e−iφ cot θ, (2)

which is generally a complex value. This weak value gives a
geometrical mapping of the qubit state on the Bloch sphere,
namely, the stereographic projection, as shown in Fig. 1.

The stereographic projection is one way to make a flat map
of a spherical surface. Let P (|0〉) denote the north pole on the
Bloch sphere. Given a point P (|ψ〉) related to the qubit state
|ψ〉, other than P (|0〉), the line connecting P (|0〉) and P (|ψ〉)
intersects a certain flat complex (two-dimensional real) plane
orthogonal to the line connecting P (|0〉) and P (|1〉) at exactly
one point, Gψ ≡ G(Re〈σ̂x〉w, Im〈σ̂x〉w). Thus, the stereo-
graphic projection can be taken as the map π : S2 − P (|0〉) →
C � R2 : P (|ψ〉) → Gψ . From a geometrical viewpoint, it is
easily understood that the stereographically projected point
corresponding to the weak value can become far from the
origin of the complex plane. The south pole P (|1〉) appears
at the origin of the complex plane. Lines of latitude appear
as circles around this origin. The southern hemisphere of the
Bloch sphere is not stretched very much in the map, but the
northern hemisphere is stretched quite a bit, and the north pole
is at infinity.

To extract the real and imaginary parts of the weak value
from a single image, we can use the LG mode as the probe
state [19,20]. The LG mode is one of the natural solutions of
the paraxial wave equation and is characterized by a radial
index p and an azimuthal index l. The modes have an annular
intensity distribution around the ZIP. The wave front of the
LG modes is composed of |l| intertwined helical wave fronts,
with a handedness given by the sign of l. In what follows,
we consider the optical vortex beam with p = 0 and l > 0 for
simplicity.

The amplitude distribution of the LG mode is given as

φi(x,y) = 〈x,y|φi〉 (3)

∝ fl(x,y) exp

(
−x2 + y2

4W 2
0

)
, (4)

where W0 corresponds to the beamwidth, and fl(x,y) ≡ (x +
iy)l determines the ZIP as the origin. Unlike a fundamental
Gaussian mode (l = 0), the LG mode is no longer factorable
in two directions, x and y, and this is a key factor for retrieving
the real and imaginary parts of the weak value from a single
image. To apply the weak-measurement scheme, we use the
von Neumann interaction Hamiltonian,

Ĥ = gδ(t − t0)σ̂x ⊗ P̂x, (5)

where the coupling constant g is sufficiently small, and P̂x

is the momentum observable on the probe system conjugate
to the commuting position observable X̂. For simplicity, we
assume the interaction to be impulsive at time t = t0. After
the interaction between the system state and the LG mode
probe states, we postselect the system in |1〉, resulting in the
probe state described as

|φf 〉 = 〈1|e−iGσ̂x⊗P̂x |ψi〉|φi〉
� 〈1|ψi〉 exp(−iG〈σ̂x〉wP̂x)|φi〉, (6)

with G ≡ g/�. Note that this approximation is justified under
the condition

W0

G
	 max (1,|〈σ̂x〉w|) . (7)

Without this condition, the exact calculation can be described
(see Appendix A). From Eq. (6), the spatial intensity distri-
bution of the probe state after postselection can be calculated
as

|φf (x,y)|2 ∝ |φi(x − G〈σ̂x〉w,y)|2

∝ |fl(x − G Re〈σ̂x〉w,y − G Im〈σ̂x〉w)|2

× exp

[
− (x − G Re〈σ̂x〉w)2 + y2

2W 2
0

]
. (8)

Therefore, the ZIP is shifted by the real and imaginary
parts of the weak value 〈σ̂x〉w in the two-dimensional image.
Consequently, we can determine the qubit state on the Bloch
sphere from the ZIP related to the stereographic projection, as
shown in Fig. 1.

It is remarkable that our scheme can be generalized to the
mixed state case, in which the qubit state is inside the Bloch
sphere. The above procedure is applied to different postse-
lected states, e.g., |0〉, (|0〉 + i|1〉)/√2, and (|0〉 − i|1〉)/√2.
Then, we can always choose at least two imaging planes to
satisfy the approximation condition (7). From the two ZIPs,
we can find the crossing point on the stereographic projection,
which is the qubit state in the mixed state case. According to
Refs. [36,37], we need to prepare at least four imaging planes
for any unknown qubit state.

III. EXPERIMENT BY WEAK MEASUREMENT WITH
LAGUERRE-GAUSSIAN MODES

Figure 2 shows our experimental setup for demonstrating
direct mapping of the polarization state onto the ZIP. We
use a fiber-pigtailed continuous-wave laser with a wavelength
of 785 nm, a power of 5 mW, and a beam-waist radius of
1 mm. First, we prepare the fundamental Gaussian beam
(l = 0) with an arbitrary polarization state using half-wave
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FIG. 2. (Color online) Experimental setup with the polarizing
Sagnac interferometer.

plates and quarter-wave plates in the state preparation stage.
Next, we convert the spatial mode to the LG mode using
a specially fabricated wave plate called a q plate [27]. The
q plate has a suitably patterned transverse optical axis to
couple the photon spin (polarization) with its orbital angular
momentum [27]. Here, we use a q plate (Altechna, RPC-800-6)
with a singularity charge q = 1/2 and uniform birefringent
retardation δ = π . This q plate can modify the mode number
l to l ± 1, the sign of which depends on the input polariza-
tion. The helicity of the output circular polarization is also
inverted.

To implement the above mode conversion without changing
the output polarization, we propose a mode conversion
setup based on a polarizing Sagnac interferometer (PSI)

including the q plate. This setup ideally is 100% efficient
for mode conversion and has good stability because of self-
compensation of the optical paths inside the interferometer.
The incident polarization remains unchanged because of the
same optical path in the right-circulating and left-circulating
paths inside the interferometer. A single polarizing beam
splitter (PBS) is used as the entry and exit gates of the
device. The PBS splits the incident beam into its horizontal
component |H〉 ≡ (|0〉 + |1〉)/√2 and its vertical component
|V〉 ≡ (|0〉 − |1〉)/√2, which circulate inside the interferome-
ter along the same path, but in opposite directions. The spatial
mode of each polarization component is converted to the
LG mode with l = 1 by using quarter-wave plates with an
angle of 45◦ and the q plate. After being reflected by the
mirrors, they recombine again and exit the interferometer
from the other side of the PBS. After passing through
the interferometer, the two counterpropagating orthogonal
polarizations |H〉 and |V〉 gain the same optical length. In this
way, our setup can convert the incident fundamental Gaussian
mode (l = 0) to the LG mode (l = 1) without a polarization
change.

Inside the PSI, the weak interaction is obtained by slightly
tilting the mirror of the PSI as expressed in Eq. (5). After it
passes through the PSI, we postselect the polarization state
into the right circular polarization basis |R〉 ≡ |1〉 and observe
the spatial intensity distribution using a CCD image sensor
with a pixel size of 6.45 μm. Recall that our setup differs
from the measurement interaction of the optical paths in
the Sagnac interferometer [38]. Note also that this extends
previous experimental studies on weak measurement of the
polarization [39,40].

Figure 3 shows our experimental results. Figures 3(a)
and 3(c) show experimental setups to prepare the polarization

FIG. 3. (Color online) Experimental observation of ZIP related to the stereographic projection of the polarization states around (a),(b) the
equator and (c),(d) the ∞-shaped path of the southern hemisphere on the Poincaré sphere. (a),(c) Experimental setup for state preparation.
(b),(d) Theoretical path of prepared polarization states (blue dashed line) and experimentally obtained polarization states from the weak
measurement (red points) [45]. Inset figures show false-color plots of observed intensity distribution, in which the two-dimensional location of
ZIP (white cross mark) is determined from the weighted-averaged position within 1% of the maximum intensity.
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FIG. 4. (Color online) Calculated fidelities of estimated states
from the weak measurement with prepared states on the equator
(red circles) and on the ∞-shaped path (blue diamonds). Averaged
fidelity is calculated as 0.994.

states. Figures 3(b) and 3(d) depict the observed intensity
distribution (inset figures), estimated polarization states from
the weak measurement (red points), and the theoretical path
of prepared polarization states (blue dashed line). First, we
observed the linear polarization states around the equator on
the Poincaré sphere, as shown in Figs. 3(a) and 3(b). We
can confirm that the ZIP represented by the white cross in
Fig. 3(b) moves along the circle corresponding to the equator
on the Poincaré sphere. Next, we observed the polarization
states along the more complex path, namely, the ∞-shaped
path on the southern hemisphere of the Poincaré sphere. The
∞-shaped path is realized by using two quarter-wave plates,
one of which is rotated and the other of which is fixed at an
angle of 45◦ with respect to the direction of the input linear
polarization [see Fig. 3(c)]. We can see that the experimentally
obtained ZIP moves along the ∞-shaped path, as shown
in Fig. 3(d). These experimental results indicate that the
polarization states can be directly determined by the ZIP from
a single image of the intensity distribution. Figure 4 shows
calculated fidelities between estimated polarization states from
the weak measurement and prepared states determined by
the angle θ [see Figs. 3(a) and 3(c)]. The averaged fidelity
is calculated as 0.994. The measurement error is mainly
attributed to the imperfection of the PSI setup and the mode
conversion.

IV. SUMMARY AND DISCUSSION

In summary, we proposed a stereographical-visualization
scheme for the qubit state by two-dimensional imaging of the
weak value. We experimentally performed a single-setup weak
measurement to evaluate the polarization state of photons using
the LG mode. We also estimated the accuracy of our scheme
from the fidelity of measurement results. Our approach to po-
larization measurement has the advantage in optics that we may
extract information on the polarization from a single image, in
cases of very small photon number, and in the characterization
of polarization-entangled quantum states. By inferring the
probability density of the polarization conditioned on a priori
information, we can explore the implications of polarization

measurements at very low light levels. For a very small number
of independent photons, our formalism suggests that each
photon represents an individual stochastic event described
by a spatial probability density function. However, the angle
between the ZIP and our stereographic projection onto the
complex projective plane CP(1) of the quantum state is related
to the fidelity via the Fubini-Study metric [41]. Further, the
fidelity of the mixed state case [42] can be generalized via the
Bures metric [43]. Therefore, the ZIP may directly visualize
the geometrical structure of the quantum state, the Kähler
manifold [44].
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APPENDIX: EXACT CALCULATION OF WEAK
MEASUREMENT

In the main text, we use the weak-measurement scheme
under the approximation condition (weak condition),

W0

G
	 max (1,|〈σ̂x〉w|) . (A1)

In what follows, the probe state is calculated without the weak
condition under the same setup in the main text. The initial
state of the probe state is set with the LG beam with l = 1,

φi(x,y) := N (x + iy) exp

(
−x2 + y2

4W 2
0

)
, (A2)

where N is the normalization constant. The probe state after
the measurement interaction with taking the postselection is

φf (x,y) = 〈1|ψ〉
2

{(1 − 〈σ̂x〉w) φi(x + G,y)

+ (1 + 〈σ̂x〉w) φi(x − G,y)}. (A3)

The above equation can be approximated under the weak
condition as

φf (x,y) � 〈1|ψ〉φi(x − G〈σ̂x〉w,y). (A4)

Without the approximation, the average position of the
intensity distribution is calculated as

〈X̂〉f = G Re〈σ̂x〉w
1
2 {1 + |〈σ̂x〉w|2 + η(1 − |〈σ̂x〉w|2)}

= G cos φ sin θ

1 − η cos θ

weak condition−−−−−−−→ G Re〈σ̂x〉w, (A5)
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〈Ŷ 〉f = Ge−G2/2W 2
0 Im〈σ̂x〉w

1
2 {1 + |〈σ̂x〉w|2 + η(1 − |〈σ̂x〉w|2)}

= Ge−G2/2W 2
0 sin φ sin θ

1 − η cos θ

weak condition−−−−−−−→ G Im〈σ̂x〉w, (A6)

where

|ψ〉 ≡ cos θ |0〉 + eiφ sin θ |1〉,

η ≡
(

1 − G2

2W 2
0

)
e−G2/2W 2

0 . (A7)

The results under the weak condition [(A5), (A6)] are the same
as those in Refs. [19,20].
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