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Previous numerical work on the spatiotemporal distributions of the atomic polarization and of the difference
in levels population of a one-dimensional system of two-level atoms initially inverted strongly suggested that the
dynamics of the slab atomic ensemble in the linear regime of superradiance may best be treated by an eigenmode
analysis. This method proved effective in obtaining both the time dependence of the atomic polarization and
the spectral distribution of the emitted radiation from the slab in a number of physically interesting problems in
the linear regime. In the present paper, I use the eigenfunction expansion technique to reduce the Maxwell-Bloch
system of partial differential equations into a system of coupled first-order ordinary differential equations whose
solutions clearly detail the contributions of the different modes to the system dynamics in the nonlinear regime
of superradiant emission. I compute also the delay in time of the peak of the superradiant burst and its magnitude
as functions of the ratio of the longitudinal decay rate to the transverse decay rate of the system.
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I. INTRODUCTION

The seminal work of Dicke [1] on superradiance marked the
beginning of the study of cooperative phenomena in a system
of two-level atoms. A large number of theoretical publications
on the shortening of the lifetime of the atomic system followed
including the work of Rehler and Eberly [2], Bonifacio et al.
[3], Sokolov and Trifonov [4], Bonifacio and Lugiato [5],
Haake et al. [6,7], and others. Review papers and books that
reported on the advances in the field include those of Gross
and Haroche [8], Andreev et al. [9], Zheleznyakov et al. [10],
and Benedict ef al. [11]. More recently, a number of papers
on superradiance in spin systems and magnets were as well
published, including Chudnovsky and Garanin [12], Vanacken
etal. [13], Benedict et al. [14], Yukalov and Yukolova [15], and
others. Verification of superradiance was established in many
experiments reported in papers by Skribano et al. [16], Gibbs
et al. [17], Flusberg et al. [18], Florian et al. [19,20], Zinov’ev
et al. [21], and others. The shortening of the atomic decay
rate of the atomic system as compared to that of the isolated
atom due to the presence of similar atoms, also referred to
as cooperative decay rate (CDR), continues to be a subject of
both theoretical and experimental interests.

Friedberg, Hartmann, and the author [22-24] extended the
understanding of the cooperative quantum electrodynamics
phenomenon beyond CDR. They predicted the existence of
a parallel and simultaneous effect which they called the
cooperative Lamb shift (CLS). This effect was observed
experimentally only recently by the Roehlsberger group at
DESY [25] and the C. S. Adams group at Durham [26].

Different mathematical tools were used in the theoretical
analysis of superradiance; however, in a series of papers by
the author and collaborators [27-29] investigating numerically
the spatiotemporal dependence of the polarization in one-
dimensional (1D) geometry during superradiance, it became
clear that the eigenfunctions of the Liénard-Wiechert Green’s
function would be the mathematical functions best suited for
analyzing the dynamics of this problem. These eigenfunctions,
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referred to as the “pressure induced cavity modes,” were also
independently discussed in [30,31]. It is within the context
of the eigenfunction analysis that I consider the problem
of superradiance here. This analysis was not carried out
previously.

A key result of our early numerical calculations was that in
the neighborhood of uy = kozo = (m + 1/4) the dominant
mode governing the dynamics of the system in the linear
regime is always an even function, while for ug = kozo =
(m — 1/4)x, the dominant mode is an odd function, where
m is an integer and 2z is the thickness of the slab. Only
in very narrow strips centered at uy = kozo = mm or ug =
kozo = (m — 1/2)m, the spatial dependence of the polarization
had no definite parity. In Fig. 1, I show the loci of the system
eigenvalues in the complex plane for representative examples
for each of the two well-defined parity families. As can be
noted, the dominant mode (i.e., that with the largest real value)
for uy = 57 /4 corresponds to an even mode, while that for
uo = 77 /4 corresponds to an odd mode.

More recently [32,33] Friedberg and the author analyzed
the mathematical structure of these eigenfunctions and derived
the pseudo-orthogonality relation and the Parseval identity
for these functions. This permitted the use of these func-
tions in the analysis of many essentially linear problems of
two-level atoms electrodynamics. Through the eigenfunction
expansion technique, we calculated for the slab geometry (i)
the dynamical Lorentz shift [34]; (ii) the pumping rate and
the cw lasing frequency for a stationary state of N two-level
atoms near threshold [35]; (iii) the spectral distribution of
the emission from a slab prepared by a weak delta pulse
[36], a problem initially suggested by Burnham and Chiao
[37]; and (iv) the Purcell-Dicke effect [38], which predicts
manyfold enhancement in the CDR of a collection of N
two-level identical atoms between two metals when the
plasmon frequency in the metal and that of the polariton in the
two-level medium are in resonance. The eigenfunction method
proved useful, as well, in solving many three-dimensional (3D)
problems.

In this paper I show how the eigenfunction expansion can
be used as well to analyze more transparently the nonlinear
regime of emission. This method shows clearly the role of the
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FIG. 1. (Color online) The values of the odd (0) and even (e)
normalized eigenvalues for a slab of thickness 2zy. (a) ug = kozo =
571’/4, (b) uy = koZo = 7.7'[/4

different modes in the dynamics of the system. In particular,
I show that the system of coupled Maxwell-Bloch equations,
a nonlinear system of coupled partial differential equations,
can be reduced to a system of coupled first-order nonlinear
ordinary differential equations for the expansion coefficients
of the dynamical variables in eigenfunctions.

Specifically, I compute the time dependence of the different
expansion coefficients for two configurations, one where
the dominant mode is an even function while in the other
the dominant mode is an odd function. The onset of the
nonlinearity is shown to follow the same structural patterns
in both cases.

Furthermore, I compute the dependence of the normalized
Rabi frequency maximum magnitude and its time delay at
the exit plane of the slab as a function of the ratio of the
longitudinal decay rate to the transverse decay rate of the
system.

The paper is organized as follows: In Sec. II, the ex-
pressions for the Maxwell-Bloch equations in normalized
coordinates are given; in Sec. III, the system of coupled
ordinary differential equations describing the dynamics of
the expansion coefficients are derived; in Sec. IV, the time-
dependent solutions for the expansion coefficients are given;
and in Sec. V, I make some concluding remarks.

II. MAXWELL-BLOCH EQUATIONS IN
NORMALIZED COORDINATES

In this section, I summarize the form of the Maxwell-Bloch
equations when written in normalized form.

Define the normalized variables for a slab of thickness 2 z
as

ZZZ/Z() T =Ct F1=)/1/C F2=V2/C u():kOZO

Q0,1 = @c0,./C,

where 2. are, respectively, the normalized electric field
carrier frequency, the atomic transition frequency, and the
Lorentz shift. In this system of units, all quantities are
normalized to the parameter of interatomic cooperativity
C = 4”,;\‘],&’ 2, where N is the number of particles, V is the
slab volume, and g is the reduced dipole moment of the
atomic transition (its normalization is uniquely determined
when given as a function of the isolated atom decay rate; see
below). In these units, the transverse decay rate I';, due to
the instantaneous dipole-dipole interaction between atoms, is
equal to 2.33/4, and the normalized Lorentz shift is equal to
1/3. The isolated atom decay rate y; = §p2kg/h specifies the
longitudinal decay rate of the system.
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The Maxwell-Bloch equations in 1D are given in these units
by

ax(Z,T) : .
a—T = —[i(Q2 — Q) +T'r —iQn(Z,T)Ix(Z,T)
I TWET), (1)

+ i1 —n(Z,T)), 2

1
w(Z, T) = iu()/ dZ'x(Z',T —&E|Z — 7))
-1
x exp(iug|Z — Z')), 3)

where I'r = I', +T1/2, x (complex) and n (real) describe,
respectively, the atomic polarization density and the degree of
excitation of the two-level atoms (n = 1 if all atoms are in the
ground state and n = —1 if all atoms are excited); i represents
the normalized Rabi frequency of the complex electric field
envelope; and & = C z9/c, where c is the speed of light in
vacuum.

The Markov approximation consists of neglecting the
retardation effects in Eq. (3). This reduces to approximating
Eq. (3) by

1
w(Z,T)= in/ dZ' x(Z',T)exp(iuglZ — Z')). (4)
-1

In the following I shall consider cases where this approxi-
mation is valid.

III. EIGENFUNCTION DECOMPOSITION

I shall solve the system described by Egs. (1), (2), (4) by
expanding each of the quantities ¥ (Z,T), n(Z,T), x(Z,T) in
the basis formed by the eigenfunctions of the integral equation:

1
u ! . ! A
Asps(Z2) = ?0/ dZ exp(iug|Z — Z')es(Z').  (5)
-1

This integral equation admits two families of solutions,
where the superscript refers, respectively, to (odd, even) parity
in space, given, respectively, by

¢(Z) = sin (va), (6)
@(Z) = cos (v{Z), (7)

where the complex wave vectors (vy, vy) are solutions of the
transcendental equations,

cot (v0) =i =2, (8)
ve
tan (vf) = i == ©)

where s, a positive integer, is the index of the solution.
These eigenfunctions form a complete set of basis functions
for all functions over the interval —1 < Z < 1.
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The eigenvalues associated with these eigenfunctions are
given by

2
Uy

2 0,e\2"°
g — (v)
Given that the kernel of Eq. (5) is non-Hermitian, its
eigenfunctions do not obey the usual orthogonality relations of
Hermitian operators (familiar from quantum mechanics); in-

stead the eigenfunctions obey the following pseudo-orthogonal
relations:

AV =i (10)

1
/ sin (1/Z) sin (10 2)dZ = N5, (11)
-1
where
2 (,0
o =1 - o) (12)
LUugy
and
I
/ cos (vZ) cos (V5 Z)dZ = N¢Ss.y, 13)
-1
where

{ sin? (vf)

iuo

N¢ =

s

(14)

The Parseval identity for each of the above basis functions can
be easily derived.

PHYSICAL REVIEW A 89, 053815 (2014)

We decompose the dynamical variables in the eigenfunc-
tions basis as

Y(Z.T) =Y (DFT)+ Y e(D@T),  (15)
n(Z,T) =Y ndT@AT)+ Y _ ni(TH)@(T),  (16)
X(Z.T)=Y " pAT)@AT)+ Y piT)@(T). (17

where the tilde over the eigenfunction is used to indicate that
I am using the normalized eigenfunctions in the expansions.
From Eq. (5), one can directly deduce that

ey(T) =i2A°p2e(T). (18)

Through a rotation of the polarization coefficients, the term
i(2, — ) can be eliminated; I shall not, however, modify
the notation used here for the rotated quantity but remember to
measure frequency from the resonant frequency, if and when
computing the spectral distribution. The coupled ordinary
differential equations determining p¢-¢ and ¢ can be directly
obtained by combining Egs. (1), (2), (15), (16), and (18) and
using the pseudo-orthogonality conditions (11) and (13), to
give the following set of ordinary differential equations in
time:

dp*(T
IZ;; ) _ —Trp{(T) + zm:Xn:A(s,m,n)nfn(T)pﬁ(T)[iQL —AL]+ Xm:zn: B(s,m,mn(Tpl(D[i — A2],  (19)
dps(T
Z; ) rptTy+ ;;C(s,m,n)nfn(T)pZ(T)[iQL —A]+ ;;D(s,m,n)nfn(T)pZ(T)[iQL — Al o)
dn® (T _
n;; ) _ —Fm?(T)Jrz;Xn: [E1(s,m,n)p%, (T) pe (T) A + Ea(s,m,n)pS (T) pe (T) A¢]
+2) S [Fisamam)ps, (T) pl (T) AS + Fa(s.m,n)p, (T) i (T) R2) 21
dne (T
n;}; ) _ Ty (T) + Ty IE + 2%22 [Gi(s,m,m)p5, (T) p2(T) A% + Gals,m,n) i, (T) pé (T) AY]
+2> 3 [Hi(s.m.n)py, (T) py (T) A + Ha(s.m.n)pt, (T) ps (T) AL, (22)
where |
~0 _ : 0 1
¢,(2) = o sin (v, Z), (23a) B(s,m.,n) :/ dZ g (2)§, (Z) @ (Z) = A(s.n.m),  (26)
—1
e 1 . |
n(2) = Ne (v42), @30 o mam) = f 232, D) F(2) = Awms), @7)
. b 2 sin(vf) "
h= /_ldz“’s D= T @4 D(s,m,n) = / dZg (D3, (D@ (2),  (29)
s K 1
1 | i
A(s,m.n) =/ dZg ()¢, () §,(2) (25) Ei(s,m,n) =f dZ¢2 (205 (2)dE(Z),  (29)

053815-3



JAMAL T. MANASSAH

1 —
Ex(s.m,n) = / AZF 2F D F2).  (G0)
—1

I )
Fi(s.m,m) = / 4237 (2)3(2) 3 (Z) = Ex(s.n.m),
—1

31)
1 _
Fa(s.m,m) = / 423 ()6, (2)F0 (Z) = Er(s.n,m),
-1
32)
1 ~ = ~
G (s.mon) = / 4238 (2)F, (2) 8 (Z) = Ei(nm.s),
—1
(33)
1 _
Galsm,n) = / 425 (DF, (D¢ (2). (34
—1

1 _
Hi(s.m,m) = / dZ3 (2)F, (2) 3 (Z) = Ei(m.n.s),
-1

(35)

1 _
H(s.m.n) = / AZ§ (2)8 (2) 3 (Z) = Galsn.m).
—1
(36)

As noted above, of the 12 overlap integrals only five are
independent. The closed form expressions for the five primitive
overlap integrals (A,D,E;,E,,G;) can be easily obtained
using the standard techniques for the product of three sine
or cosine functions; for example,
sin (vg — v9, — v?)

m

A(s,m,n) =

e _ 10 _ 4o
U}’l Um US

1
2/NZN; N [_
sin (v¢ + v), — v?)

e 0 _ o
vy + v vy

m

sin (v¢ — v, +v?)

e _ 10 o
Uil UWL + US

sin (ve + v, + vf):| (252)

e 0 o
Uy + Ui + Uy

In the next section, I shall report the results for solving the
system of Egs. (19)—(22) for the slab having uy = 57/4 and
the slab having uy = 77/4 (the first having an even mode as
the dominant mode, while an odd mode is the dominant mode
in the second case). I shall include in the computation, for each
case a total of 40 modes (20 even modes and 20 odd modes).
The initial value for each of the p{;¢ is chosen to be equal to
10~*. This ensures that the normalized Rabi frequency at the
exit plane is equal, at 7 = 0, to the square root of the mean
square electric field resulting from the quantum fluctuations.
At the end of the next section, I shall also investigate the
effects of introducing a random phase in the values of the initial
conditions to model the conditions of complete incoherence in
the polarization at initial time.
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FIG. 2. (Color online) The magnitude of the odd coefficients of
the eigenfunctions expansion of the polarization are plotted as a
function of the normalized time for a system initially inverted.
uy = kozo = Sm/4, % =0.05. (@ m=1, (b)y m=2, (c) m=3,
(d)ym = 4.

IV. RESULTS

Combining Eq. (18) with Eq. (1), one notes that in the linear
regime of superradiance, i.e.,n = —1, the time development of
p2¢ (T) is given by the ordinary differential equation (ODE):

dp>* (T
—pde( )~ [i2, + Ty — A%] p2. (37)

This implies that each of the polarization components grows
initially at the rate equal to Re(AJ**) — I'r. This confirms the
known results [27-29] that in the linear regime of superra-
diance, the polarization spatial distribution is approximately
given by that of the dominant eigenmode [that with the largest
value of Re(A?¢)], when only one of these exists.

It is further noted that the coefficients of all modes with
Re(A2¢) < I'r damp out initially. An examination of Figs. 2
and 3, pertaining to the case ug = 57 /4 at small T verifies

1pSl Pl
a (b)
0.02 (@) 0.12
0.015 0.09
001 0.06
0.005 0.03
T T
5 10 15 20 25 5 10 15 20 25
p5l |pal
(©) (Y]
0.024 0.008
0.018 0.006
0.012 0.004
0.006 0.002
T | T
5 10 15 20 25 5 10 15 20 25

FIG. 3. (Color online) The magnitude of the even coefficients
of the eigenfunctions’ expansion of the polarization are plotted as
a function of the normalized time for a two-level system initially
inverted. ug = kozo = S /4, % =0.05. (ad m=1, (b) m=2,
(cym=3,(d)ym =4.
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FIG. 4. (Color online) The normalized Rabi frequency at the
outgoing plane is plotted as a function of the normalized time for

a two-level system initially inverted. uy = kozo = 571/4 l = 0.05.

the above results. Having established the small T behavior for
each of the expansion coefficients, I note the general pattern
observed at later times: Essentially, the dominant mode and
other leading modes, of the same parity, increase successively
to different maximum values, then decay. One notes that the
dominant mode maximum value is larger than any of the other
maxima and occurs at an earlier time than that of the others:
The values of the magnitude of the maxima of the different
expansion coefficients and their time delay for the dominant
and leading modes (all even) are given, respectively, by the
following (m,|p;, (T,;*)|, T,7*): (2, 0.135, 9.034), (3, 0.028,
11.09), (1, 0.024, 11.22), (4, 0.0096, 11.07).

The value of the normalized Rabi frequency as a function
of time at the outgoing plane can be obtained by combining
Egs. (15) and (18). It is given by

v(Z=1,T)

[Z A, m<T>

sin (v;,)
Z A pe (T) 2] \/W .
(38)

The magnitude of this quantity is plotted as a function of
the normalized time in Fig. 4.

The values of the maximum of this curve and its location
are given forug = Sn/4by ¢ (Z = 1,T™) = 0.621, T™* =
9.129.

In Fig. 5, I plot the magnitude of the polarization as a
function of the normalized distance inside the slab at 7™ — 2
and at 7™, (The peak of the superradiant burst is at 7™%*.)

[ (T™*=2)]

L (7™
0.15

-1.0 -05 0.5 1.0 -1 -0.5 0.5 1

FIG. 5. (Color online) The magnitude of the normalized polar-
ization is plotted as a function of the normalized distance for a

two-level system initially inverted. uy = kozo = 57”, % = 0.05 (a)
at T =T™ —2, (b) at T = T™*. Solid curve: contribution from

all 40 modes are included; dashed curve: contribution from the even
m = 1,2,3 are only included.
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FIG. 6. (Color online) The negative of the population difference
is plotted as a function of the normalized time and normalized
distance for a two-level system initially inverted. uy = kozo = 57 /4,
L =005
T .05.

One notes that in the linear regime of superradiance, this curve
is uniquely determined by the dominant mode, while at 7™#*, it
takes the contribution from the dominant mode and the leading
modes to reproduce the polarization spatial profile.

In Fig. 6, I plot the spatiotemporal distribution of the
difference of population. One notes that the upper state
population starts depleting shortly before 7™#*, thus validating
the results shown in Fig. 5, showing that the system is already
well in the nonlinear regime at the superradiant burst peak.

In order to validate the general features observed in
Figs. 2-6, I recompute and plot in Figs. 7-11 for the slab with
u, = 7m /4 the same quantities as in Figs. 2—6 for the slab with

o = 5w /4. In this case, the dominant mode is odd.

One notes that all the general patterns for the on-
set and buildup of the superradiant burst, previously ob-
served, are reproduced in this case as well. The respective
(m,| po, (T2, T,7*) for the dominant and leading modes
(all odd) are (2, 0.2097, 5.764), (3, 0.0797, 6.953), (1, 0.0825,
7.083), (4, 0.0212, 8.079). In this instance ¥ (Z = 1,7™) =
1.426, T™ = 5.857.

In Fig. 12, I plot the dependence of the magnitude of the
peak of the normalized Rabi frequency at the exit plane and
its location as a function of the ratio of the longitudinal decay
rate to the transverse decay rate. One obtains the physically

Ipil Ipal
0.08 (a) 0.20 .
0.06 0.15
0.04 0.10
0.02 0.05
510 15 20 250 510 15 20 25¢
15l 1Pl
0.08 (©) 0.020 @
0.06 0.015
0.04 0.010
0.02 0.005
s 10 15 20 25! s 10 15 20 250

FIG. 7. (Color online) Same as Fig. 2 except that uy = kozop =
T /4.
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FIG. 8. (Color online) Same as Fig. 3 except that uy = kozp =
T /4.

W (Z=1,T|

1.2¢
0.9
0.6f
0.3f

‘ T
5 10 15 20 25

FIG. 9. (Color online) Same as Fig. 4 except that uy = kozp =
T /4.

[ (T

[x (T™*=2)|

V4

-1.0 =05 0.5 1.0 -1 -0.5 0.5 1

FIG. 10. (Color online) The magnitude of the normalized polar-
ization is plotted as a function of the normalized distance for a
two-level system initially inverted. uy = kozo = 7/4, F—; = 0.05 (a)
at T =T"™ —2, (b) at T = T™*. Solid curve: contribution from
all 40 modes are included; dashed curve: contribution from the odd
m = 1,2,3,4,5,6 are only included.

FIG. 11. (Color online) Same as Fig. 6 except that uy = kozop =
T /4.
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FIG. 12. (Color online) (a) The position and (b) the height of the
maximum of the normalized Rabi frequency at the outgoing plane
of a slab, for an initially inverted two-level system, are plotted as a
function of the ratio I'y/ I'», ug = kozo = 7 /4.

intuitive result that the peak of the burst decreases very fast
with an increase of this ratio; however, these results show that
the location (delay in time) of this peak initially increases,
before decreasing.

Last, I examine the effect of including a random phase
in the expressions for the initial values of pg*(T = 0). This
modification is intended to bring the semiclassical Maxwell-
Bloch system of equations in closer agreement with the full
quantum theory.

If T choose for each of the even and odd eigenfunction
families a random phase from the interval [0,27] the values
obtained for the magnitude and location of the peaks of the
curves plotting |p? (T)| as a function of normalized time for
the odd modes having m = 1 - -4 are, respectively, (0.0825,
7.083), (0.2097, 5.764), (0.0798, 6.953), (0.0212, 8.078).

Comparing these values with the corresponding values
with no initial random phase, one notes that corresponding
quantities differ everywhere by much less than 1%. This
provides an estimate of the error that one should expect in
computing the features of the superradiant burst in treating this
problem through the semiclassical Maxwell-Bloch equations.

V. CONCLUDING REMARKS

In this paper, a mathematical technique for analyzing and
computing solutions of the Maxwell-Bloch equations in the
nonlinear regime is detailed. This method is applied to the
problem of superradiance.

Specifically, I showed the following:

(1) The problem of the electrodynamics of a two-level atom
system can be analyzed transparently in the nonlinear regime
through the use of the 1D Wiechert-Liénard Green’s function
eigenfunctions expansion; in particular, it is now possible to
follow the dynamics of each mode through the different phases
of the superradiant emission.

(2) The main dynamical features leading to the mixing of
the different modes in the nonlinear regime of superradiance
follow the same general patterns for slabs of different thick-
nesses.

(3) The peak magnitude of the superradiant burst decreases
as the value of the ratio of the longitudinal decay rate over
the transverse decay rate increases; the delay in the temporal
position of this peak initially increases before decreasing.
These results provide specific guidelines for the density of
atoms needed to experimentally observe superradiance.

Last, I note that the technical limitation associated with
analyzing the nonlinear problems through the method of
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eigenfunctions is the issue of memory management in the
numerical computation. The dimensions of each of the overlap
integrals tensor are (I x [ x [) where [ > Suy, if an accuracy
of less than 1% error in the results is desired.
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