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Simultaneous stationarity and localization of linear wave packets: The importance
of dimensionality and broad spectral support
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In this paper we review the conditions needed for the localization and stationarity of a wave packet during
propagation in a linear transparent medium. The requirements on the dimensionality and spatiotemporal frequency
content for wave packets with such characteristics are discussed. In particular, we demonstrate how the localization
of the stationary two-dimensional solution of the propagation equation depends on the features and shape of
its spatiotemporal spectral bandwidth. The spatiotemporal properties of the one-dimensional (1D) spatial and
1D temporal beams stationarily propagating in dispersive materials are illustrated both in the normal and in the
anomalous dispersion regime.
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I. INTRODUCTION

The generation of localized stationary propagating optical
wave packets is one of the most challenging tasks in nonlinear
optics. Strongly localized (finite energy) wave packets station-
ary propagating in a nonlinear medium are known as solitary
waves or solitons. The formation of these kinds of wave packets
(WPs) requires specific conditions [1,2]. However, other types
of (weakly) localized WPs exist thanks to their conical
nature, and in the last few years stationary WPs propagating
without diffraction and dispersion in linear or in nonlinear
dispersive media have been the object of several studies [3–
10]. Localized and quasistationary (with finite energy due to
beam apodization) three-dimensional wave packets have been
generated also in nonlinear processes [11–16], with asymptotic
features relating to those of nondiffracting and nondispersive
polychromatic Bessel beams in linear dispersive media. A
description of conical waves in a linear medium has been given
in [17] showing how these can be identified with X-shaped
or O-shaped modes of the wave equation in media with,
respectively, normal or anomalous group velocity dispersion
(GVD). On the other hand, as we shall see in the present work,
the study of the simultaneous properties of stationarity and
localization of linear WPs deserves special care, and needs the
understanding of the role of the dimensionality and spectral
content of the wave packet.

In general the stationarity of a WP in a linear dispersive
medium requires the infinite energy to be distributed in space
and time, in order to ensure constant propagation conditions
along an infinite path. Some examples of stationary waves
in a linear medium are well known: the monochromatic
plane wave, which is existing as an unbounded object in the
three-dimensional space, but is characterized by a single wave
vector (�k), and thus can be treated as a one-dimensional (1D)
entity; the monochromatic Bessel beam (BB), which also has
infinite energy and due to its conical nature is a stationary
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propagating two-dimensional (2D) object. A similar station-
ary propagating WP is the two-dimensional spatiotemporal
Bessel beam (STBB), also featured by infinite energy [18].
Analogously, the three-dimensional X waves and O waves are
stationary wave packets in linear media when having unlimited
energy [3–6,8,9]. All the mentioned examples, except for the
monochromatic plane wave (which is not a localized wave
packet neither in time nor in space) are WPs which are
localized at least in two dimensions. In order to be localized
in one dimension (spatial or temporal), the WP should be
featured by a spectral bandwidth with different components
(in accordance with the Fourier transform properties). Note
that in a nonlinear medium the 1D localization still requires
nonmonochromaticity, but a WP with such characteristics
can be stationary due to the “external force” produced by
nonlinearity via nonlinear phase shift. This leads to the
generation of the so-called solitons [1]. In contrast, in a linear
medium, a polychromatic one-dimensional wave packet is
nonstationary due to dispersion (or diffraction).

It turns out, as preliminarily shown in [19] where we mainly
focused on the spatial aspect of the beam localization, that the
simultaneous features of wave stationarity and localization in a
linear medium requires infinite energy, a broad polychromatic
spectral support, and at least two dimensions. The last point
is supported by the existence, as mentioned before, of the 2D
spatially localized BB, or of the 2D STBB characterized in
[18], both stationary in propagation. In both cases, the ringlike
spatial spectrum of the BB or the ringlike spatiotemporal
spectrum of the STBB leads to a Bessel profile in the near field,
and to its localization in space and in space-time, respectively.

The aim of the present paper is to discuss and review
in detail the necessary requirements on the spatiotemporal
frequency content of a two-dimensional wave packet (1D
in space and 1D in time), so that it can be simultaneously
stationary and localized when propagating in a linear medium,
both in the normal and in the anomalous dispersion regime; this
is respectively the case, for instance, of the two-dimensional
counterpart of the 3D X wave, stationary in the normal
dispersion regime and briefly illustrated in [19], and of the
STBB, the latter being the two-dimensional space-time version
of the 3D so-called O wave, stationary in the anomalous

1050-2947/2014/89(5)/053809(8) 053809-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.89.053809


G. VALIULIS et al. PHYSICAL REVIEW A 89, 053809 (2014)

dispersion regime. The spatial and temporal characteristics
of the localization of the stationary two-dimensional solution
of the propagation equation deserve a thorough study, and
we shall demonstrate in both group velocity dispersion
regimes how these depend on the features of the wave packet
spatiotemporal spectral support.

In Sec. II we present the extended theoretical model where
the two-dimensional field solution of the linear propagation
equation is derived together with its spatiotemporal spec-
trum dependence, and the conditions for stationarity and
localization are discussed. The spatiotemporal features of the
2D wave packet stationarily propagating in a linear medium
are presented in Sec. III, concentrating on the anomalous
dispersion regime in Sec. III A and on the normal dispersion
regime in Sec. III B. The spatial and temporal intensity profiles
of the radiation are discussed together with the realistic case of
finite energy (beam apodization). In Sec. IV the conclusions
are presented.

II. TWO-DIMENSIONAL SOLUTION OF THE LINEAR
WAVE EQUATION

The propagation of the linearly polarized light wave in
linear transparent media is described by the scalar wave
equation

�E − 1

c2

∂2D

∂t2
= 0, (1)

where E(t,r) is the electric field, D(t,r) is the electric dis-
placement, c is the speed of light, t is time, r = (x,y,z) are the
coordinates, and � = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 is the Laplace operator.
In an isotropic dispersive medium the electric displacement
D(t,r) reads as

D(t,r) =
∫ ∞

0
ε(t ′)E(t − t ′,r)dt ′, (2)

where ε(t) is the linear response function [ε(t) = 0 when t <

0] related to linear permittivity ε(ω) via the Fourier transform:

ε(ω) =
∫ ∞

0
ε(t)e−iωtdt. (3)

By means of the Fourier transform it is possible to write down
a solution of the wave equation (1) in the full 3D case, but we
shall focus here on the two-dimensional solution, i.e., a WP
modulated in time t and featured by one transverse coordinate
x, propagating along the z axis. In the coordinate frame moving
with the velocity u0 and setting η = t − z

u0
, the electric field

of such a wave is

E(t,x,z) = A(η,x,z) exp{i(ω0t − k0z)} + c.c., (4)

where the complex amplitude A(η,x,z) reads as

A(η,x,z) = 1

(2π )2

∫∫ ∞

−∞
S0(�,kx)

× exp{i[�η − kxx − G(�,kx)z]}d�dkx, (5)

where � = ω − ω0 (ω0 being the carrier frequency). S0(�,kx)
is the initial spatiotemporal spectrum of the WP and c.c.
denotes the “complex conjugated” term. The effect of material

dispersion and diffraction is described by

G(�,kx) =
√

k2(ω0 + �) − k2
x −

(
k0 + �

u0

)
, (6)

where k(ω0 + �) is the dispersion relation function depending
on the material properties [k(ω) = ωn(ω)

c
], and k0 = k(ω0).

Note, that the freedom in choosing an initial spectrum S0(ω,kx)
reflects in the freedom in defining ω0. Commonly, it can
be treated as a central (carrier) frequency and defined, for
example, as the “center of mass” of the wave packet:

ω0 =
∫

ω|S0(ω,kx)|2dω dkx∫ |S0(ω,kx)|2dω dkx

. (7)

Equations (5) and (6) describe the unidirectional solution
of the linear wave equation in the nonparaxial case when
accounting for the full dispersion [k(ω)] of the material. On the
other hand, by using Taylor expansion k(ω0 + �) = k0 + �

u
+

1
2g�2 + · · · and assuming a paraxial beam (k2

x � k2
0), we

obtain from Eq. (6),

G(�,kx) = ν� + 1

2
g�2 − k2

x

2k0
, (8)

where ν = u−1 − u−1
0 is the group velocity mismatch, u is the

“material” group velocity u = ( dk
dω

)−1|ω=ω0 , and g = d2k
dω2 |ω=ω0

is the group velocity dispersion coefficient. Thus Eq. (5)
together with Eq. (8) describe the solution of the “paraxial”
parabolic equation for the wave envelope, which can be written
as

∂A

∂z
+ ν

∂A

∂η
− i

2
g

∂2A

∂η2
+ i

2k0

∂2A

∂x2
= 0. (9)

In the following we shall discuss the possibilities to
obtain a stationary propagating 2D localized WP. Note that
Eq. (5) describes the solution of the wave equation with any
initial spatiotemporal spectrum S0(�,kx). In general, the WP
stationarity requires the function G(�,kx) to be linear [3] of
the form G(�,kx) = γ1� + γ2kx + γ , where γ1, γ2, and γ

are free parameters, so that the field amplitude profile can be
written as A(η,x,z) = A0(η − γ1z,x − γ2z) exp(−iγ z); thus
using Eq. (6) the following relation must be satisfied:√

k2(ω0 + �) − k2
x = k0 + γ + �

(
γ1 + u−1

0

) + γ2kx. (10)

As already discussed in [19], in order for a WP to have
a spatially localized and stationary profile in one spatial
dimension, it has to be a nonmonochromatic solution, thus with
some temporal spectral bandwidth. From Fourier transform
properties we know that the finite dimensions of the WP
implies having a bandwidth. Moreover, the stationarity condi-
tion expressed by Eq. (10) shows that the spatial localization
and the temporal localization are not independent, since it
sets � = f (kx). As a consequence, spatial localization, which
implies having a bandwidth of spatial frequencies, necessarily
implies having a bandwidth of temporal frequencies as well.
Thus a 2D linear WP (1D spatial and 1D temporal) can
be stationary propagating and localized when its space and
time coordinates become entangled via angular dispersion,
i.e., when the different temporal frequencies are distributed
at different propagating angles. Such a wave packet can be
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described in the temporal-frequency domain by setting the
spatiotemporal spectrum S0(�,kx) = 2πS0(�)δ(kx − �(�)),
or in the spatial-frequency domain by setting S0(�,kx) =
2πS0(kx)δ(� − �(kx)). We shall consider from now on the
first case, where the function �(�) defines the transverse wave
vector kx = k sin[θ (�)] = �(�) dependence on frequency,
and consequently defines the angular dispersion θ (�) of the
WP.

We shall now derive the spectral dependence of the field
amplitude stationary solution satisfying the wave equation.
We start by rewriting Eq. (5) in the following way:

A(η,x,z) = 1

2π

∫ ∞

−∞
S0(�) exp{i[�η − �(�)x

−G(�,�(�))z]}d�. (11)

In general, the solution, Eq. (11), describes a nonstationary
wave with angular dispersion. In order to guarantee stationarity
we should set the angular dispersion [�(�)] such that it can
support the wave invariant propagation condition

G(�,�(�)) = α� + β, (12)

where α and β are free parameters. Indeed for the longi-
tudinal wave vector kz = √

k2(ω0 + �) − k2
x , from Eqs. (6)

and (12) we have kz(�) = k(�) cos[θ (�)] = k0 + β + �(α +
u−1

0 ). The linear dependence on frequency guarantees the
stationary propagation. From Eqs. (6) and (12) we can also
derive

�(�) = ±
√

k2(ω0 + �) −
[
k0 + β + �

(
1

u0
+ α

)]2

,

(13)

where the two possible signs represent the two symmetric
branches of the angular dispersion. In order to have a WP
symmetric across the x axis we should consider both branches
of the spectrum [the material is linear and a linear superposition
of the WPs (11) is possible]. Thus in Eq. (5) we substitute the
initial spectrum distribution, which accounts for both branches
of the angular dispersion, and we obtain

A(η,x,z) =
∫ ∞

−∞
S0(�) cos[�(�)x]

× exp{i[�η − (α� + β)z]}d�

2π
, (14)

or in (t,x) frame,

A(t,x,z) = e−iβz

∫ ∞

−∞
S0(�) cos[�(�)x]

× exp

{
i�

[
t − z

(
1

u0
+ α

)]}
d�

2π
. (15)

Since the electric field is derived by multiplying the com-
plex amplitude by the carrier exponent ei(ω0t−k0z), it is obvious
that Eq. (15) describes the stationary propagating WP with
group velocity ugr = 1

u−1
0 +α

and phase velocity vph = ω0
k0+β

.

The transverse wave vector is defined by �(�) [kx = �(�)]
and the longitudinal wave vector is kz = √

k2 − k2
x = k0 +

β + �(1/ugr). We note for completeness that in the regime
of paraxial approximation, instead of writing the spectral

dependence of the transverse wave vector as Eq. (13), by
combining Eq. (8) with the condition, Eq. (12), we have

�(�) = ±
√

k0[g�2 + 2(ν − α)� − 2β], (16)

and in this case Eq. (14) describes the solution of the paraxial
equation, Eq. (9). From now on we shall keep the paraxial
approximation, and for simplicity we shall choose the coordi-
nate system moving with the WP group velocity in the material
u0 = u (ν = 0).

III. SPACE-TIME FEATURES OF THE STATIONARY
2D LOCALIZED WAVE PACKET

A. Wave packet spectral support

As the spatial and temporal features of the stationary wave
packet depend on its spatiotemporal spectral support, it is
important to briefly describe the parameters entering into
play in the spectral bandwidth shape. Note that these can be
chosen with some freedom: The carrier frequency ω0 and the
spectrum profile S0(�) can be defined independently [we can
define ω0 and introduce some frequency shift for the S0(�)
profile]. This gives the possibility to introduce a frequency
offset �0 = α

g
and to describe the angular dispersion by just

one free parameter which we shall denote by β̃. The second
parameter (α) is predefined by choosing the shift of the S0(�)
profile with respect to �0. Therefore, Eq. (16) can also be
written as

�(�) = ±
√

k0[g�̃2 − β̃], (17)

where β̃ = 2β + α2

g
and �̃ = � − �0. In this way we have

a unified representation for any angular dispersion curve,
depending just on one parameter β̃. Since the function k′(ω0 +
�0) = k′(ω0) + g�0 for the new “central” frequency �̃ = 0,
the group velocity value is ugr = 1

u−1+α
. Figure 1 illustrates

possible angular dispersion supports kx = �(�) in different
group velocity dispersion regimes, with the superimposed
freely chosen spectrum S0(�).

B. Anomalous GVD case (g < 0)

The transparent dielectric medium in the near infrared
spectral region usually possesses the anomalous group velocity
dispersion features. In such case (g < 0) the stationary solution
exists only for β̃ < 0 and the angular dispersion curve

2 0 20

2

4

1 0 1
0

0.5

1

S( )S( ) S( )S( )

(a)(a) (b)(b)

(n) (n)(n)(n)

kx
(n) kx

(n)

FIG. 1. (Color online) Angular dispersion support: (a) normal
GVD case (g > 0); (b) anomalous GVD (g < 0). Black solid line
depicts the S0(�). Temporal and spatial frequencies are normalized
as �(n) = �

√
|g|/|β̃| and k(n)

x = kx/
√

k0|β̃|.
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becomes O shaped [see Fig. 1(b)]. Since g < 0 and β̃ < 0
we can introduce the more convenient parameters �2 = −k0β̃,
γ 2 = k0|g|. Thus in this case, we have �(�) =

√
�2 − γ 2�2,

where for simplicity of notation �̃ has been replaced by
the symbol �. The infinite integration margins in Eq. (15)
lead to a delocalized wave with exponentially growing tales.
The localized 2D solution is possible when �(�) is a real
number, therefore the wave packet should contain frequency
components within a finite range, i.e., the integration margins
should be set from −�

γ
to �

γ
:

A(t,x,z) = e−iβz

∫ �/γ

−�/γ

S0(�) cos[(�(�)x)]

× exp{i�[t − z/ugr]}d�

2π
. (18)

In the case where S0(�) = a0√
�2−γ 2�2

we have after integration

A(t,x,z) = a0e
i(�0τ−βz)

γ
J0

(√
�2

γ 2
τ 2 + �2x2

)
. (19)
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FIG. 2. (Color online) Intensity profile of spatiotemporal Bessel
beam solution for the anomalous GVD case. Below are shown the 1D
temporal and spatial profiles, and the time-integrated profile (bottom
row). The angular dispersion support is shown in the top right corner
inset; the dashed line represents the |S0(�)|. Normalized units are
used: �(n) = �

√
|g|/|β̃|, k(n)

x = kx/
√

k0|β̃|, t (n) = t
√

|β̃|/|g|, x(n) =
x
√

k0|β̃|.

Here τ = t − z
ugr

, ugr = 1
u−1+α

. This is the field amplitude
of the spatiotemporal Bessel beam, whose spatiotemporal
intensity profile is shown in Fig. 2, and which has already
been observed and characterized in [18]. This wave packet is
analogous to a 2D version of the so-called O wave stationary
in the anomalous GVD regime [17]. As described in [18],
for the experimental realization of such a WP, by means of
a pulse shaper setup, the ring-shaped spectral mask should
be uniformly illuminated (this corresponds to a constant
intensity spatiotemporal spectrum, leading thus to a localized
Bessel spatiotemporal profile). However the on-axis spectrum
S0(�) = a0√

�2−γ 2�2
, leading to the ideal Bessel profile both in

space and time, contains two infinite spikes separated by some
background (as shown in the top right part of Fig. 2).

Different stationary wave packets could be formed by using
other shapes of the spectrum. If S0(�) = const, (|�| < �/γ )
is a simple rectangular on-axis spectral profile (no spikes) the
resulting WP is the incomplete STBB illustrated in Fig. 3;
however, a double-spiked spectrum (without background)
corresponds to an X-shaped array of pulses (leading to a
1D array of spatially localized time-integrated beams), which
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kx
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FIG. 3. (Color online) Intensity profile of the incomplete spa-
tiotemporal Bessel beam in the anomalous GVD region. Shown below
are the 1D temporal and spatial profiles, and the time-integrated
profile (bottom row). The angular dispersion support is shown in the
top right corner inset; the dashed line represents the |S0(�)|. Units
are normalized as in Fig. 2.
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FIG. 4. (Color online) (a) X-shaped array of pulses in the anoma-
lous group velocity dispersion region. The angular dispersion support
is shown in the top right corner inset; the dashed line represents the
|S0(�)|. Units are normalized as in Fig. 2. (b) Zoomed rectangular
area with 1D temporal and spatial intensity profiles.

may be of interest in all those applications where pixel-like
localized light sources are needed (for instance, in arrays
and matrices scribing of transparent materials) (Fig. 4). In
all these cases the resulting WPs are stationary. The invariance
during propagation is guaranteed by the infinite energy of the
solution. In fact the spatiotemporal localization of STBB is
obvious because of the ring-shaped spatiotemporal spectral
support. Also note that if one increases the thickness of this
ring-shaped spectrum, one gets instead of the ideal STBB, the
spatiotemporal Bessel Gaussian wave packet, quasistationary
in materials with anomalous dispersion regime.

We highlight that the polychromatic spectral support is
clearly important for having a precise single peak location
of the WP. This is evident in the spatial and temporal sections
of the intensity profiles reported in Figs. 2 and 3. On the
other hand, if we concentrate only on the spatial aspect of

the 1D localization and consider the time-integrated profile of
the beam (whose contrast features are essential, for instance,
for an effective radiation absorption and thus energy to matter
transfer in microfabrication applications), we note that the
most enhanced central peak in the beam appears only in the
case of Fig. 2, thus thanks to the presence of a broad spectral
bandwidth but containing the two on-axis frequency peaks.

It should be mentioned, that there are some limitations
for creating stationary spatiotemporal Bessel beams with very
narrow spatial profile. These come from the relation between
the STBB pulse duration τs and the beam diameter ds . This
relation can be derived from the solution given by Eq. (19)
and reads as τs/τ0 = ds/d0

√
(Ld/Lg), where Ld = 1

2k0d
2
0 is

the diffraction length (beam confocal parameter) calculated

for a diameter d0 of a Gaussian beam and Lg = τ 2
0

2g
is the

group velocity dispersion length calculated for a duration τ0

of the Gaussian pulse. For instance in fused silica, and for a
2 μm wavelength radiation, we obtain a 10 μm beam diameter
provided the pulse duration is 7 fs, this being roughly the
optical cycle (6.6 fs) at 2 μm. Therefore it turns out that the
minimum achievable diameter of such a localized beam should
be 20–30 μm. More tiny 1D spatial beams could be generated
at shorter wavelengths, but in that case the GVD becomes
normal.

C. Normal GVD case (g > 0)

In the normal GVD region the angular dispersion support
�(�) = ±

√
k0[g�̃2 − β̃] becomes X shaped, as shown in

Fig. 1(a). It is possible to have a stationary solution of the linear
propagation equation in both cases where β̃ < 0 (spectral
gap in the transverse k-vector space) and β̃ > 0 (spectral
gap in the temporal-frequency space). We will concentrate
on the first case, keeping in mind that the second one could
be identically analyzed, because of the space-time analogy
(temporal variable t can be exchanged with the spatial one, x).

The spatiotemporal localization of the wave packet is not
so obvious as in the anomalous GVD case where the Bessel
profile clearly appears due to the ring-shaped spatiotemporal
spectrum. In order to analyze the formation of stationary and
localized wave packets in a normally dispersive material, we
can perform the integration in Eq. (15) for different cases.
We shall illustrate the localization features of the resulting
space-time intensity profile of a stationary (1D spatial, 1D
temporal) wave packet. The case without spatial gap in the
spectral distribution is shown in Fig. 5 [β = 0 in the top right
corner inset: the solid line is kx = �(�), while S0(�) is shown
by dashes)]. The WP has a sharp peak, but the tails are constant
and nondecaying, as also shown in the spatial and temporal
sections of Fig. 5.

We should also note, that in contrast to the 2D spatial
case, the introduction of a gap in the spatiotemporal spectrum
(β < 0) is here a necessary condition for having a decay in
the tails of the spatial intensity profile (Fig. 6). This can be
shown analytically by analyzing the asymptotic behavior of
Eq. (15). In order to demonstrate the gap influence on the
tails asymptotic features we considered the solution given
by Eq. (15) at a given distance z (since it is invariant with
propagation we can take z = 0), and an angular dispersion
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FIG. 5. (Color online) Intensity profile of the 2D stationary solu-
tion of the wave equation featured by normal dispersion spectral
support [kx = �(�)] without angular frequency gap (β̃ = 0) as
shown in the top right corner inset; the dashed line represents the
|S0(�)|. Below are shown the 1D temporal and spatial profiles, and
in the bottom row the time-integrated profile. Units are normalized:
�(n) = �

√
g/k0, k(n)

x = kx/k0, t (n) = t
√

k0/|g|, x(n) = xk0.

described by �(�) =
√

k0(g�2 − 2β) (α = 0,β < 0). The
“characteristic” coordinates along the X-shaped tails could be
introduced: ξ = t − x

√
k0g and ζ = t + x

√
k0g. If β = 0, we

obtain from Eq. (15) A(ξ,ζ ) = A0(ξ ) + A0(ζ ), with A0(t) =
1

2π

∫ ∞
−∞ S0(�) exp(i�t)d� being the temporal WP profile

corresponding to an initial spectrum S0(�). The solution
A(ξ,ζ ) represents nothing more than the superposition of two
tilted wave packets in the space-time plane. If we consider
one of the two tails (for instance ζ = 0, ξ �= 0) we have
A(ξ,0) = A0(ξ ) + A0(0). For a spectrum S0(�) related to
any “bell-shaped” pulse profile featured by the asymptotic
behavior A0(t)||t |→∞ = 0, we obtain a WP characterized
by a central spike of amplitude A(0,0) = 2A0(0), however,
A(ξ,0)||ξ |→∞ = A0(0) = const, i.e., the tail is not decaying.
This result is in accordance with the amplitude profile features
obtained by integration of Eq. (15), as also shown in the
corresponding intensity profile presented in Fig. 5. In contrast,
a spatiotemporal spectrum with the presence of a gap between
the two hyperbolic branches (β < 0) leads to an X-shaped WP
with decaying tails. This can be shown analytically by taking
a rectangular spectrum S0(�)||�|<a = S00, S0(�)||�|>a = 0. In
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FIG. 6. (Color online) Intensity profile of the 2D stationary
solution of the wave equation featured by normal dispersion spectral
support [kx = �(�)] with angular frequency gap as shown in the top
right corner inset; the dashed line represents the |S0(�)|. Units are
normalized as in Fig. 2. 1D temporal and spatial profiles (below), and
time-integrated profile (bottom row).

this case from Eq. (15) we obtain

A(ξ,0) = S00μ

πξσ 2

[
(μ + a) sin

(
ξ (a − μ)

2

)
+ (μ − a) sin

(
ξ (a + μ)

2

)]
, (20)

where μ = √
a2 + σ 2, σ 2 = −2β/g.

From Eq. (20) we can see how the tail of the 2D X-type
wave packet is in this case decaying as A(ξ,0) ∼ 1

ξ
. The

numerical integration of Eq. (15) also revealed that in the
case of a Gaussian spectrum S0(�) (with the same width
as the rectangular spectrum considered for the result given
above), the tails decay occurs even faster. Note, however, that
in both cases illustrated in Figs. 5 and 6, the infinite energy
of the theoretical solution supports the nondecaying tails in
the time-integrated intensity profiles, shown just below the
space-time profiles.

The important role of polychromaticity in the 1D spatial
localization is confirmed by the result of Fig. 7, obtained
for a WP angular dispersion identical to that of Fig. 6, but
with a temporal bandwidth ten times smaller. In that case
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FIG. 7. (Color online) Intensity profile of the 2D stationary solu-
tion of the wave equation featured by narrow spectrum and normal
dispersion spectral support [kx = �(�)] with angular frequency gap
as shown in the top right corner inset; the dashed line represents the
|S0(�)|. Units are normalized as in Fig. 2. 1D temporal and spatial
profiles (below), and time-integrated profile (bottom row).

an oscillating spatial profile [due to the cosine function in
Eq. (15)] appears, and the spatial localization vanishes. Figure
8 shows the effect of the angular dispersion line [kx = �(�)]
“thickness” which acts as a beam apodization effect, thus
leading to a time-integrated profile with decaying tails (in this
case the solution is energy limited and thus quasistationary).

Also in this case, the spatial and temporal localization
features are not independent, and the relation between pulse
duration and central spike diameter [τs/τ0 = ds/d0

√
(Ld/Lg)]

is still valid. Nevertheless since the normal group velocity
dispersion regime is typical for radiation in the visible and
UV spectral region where the optical cycle is very small, the
localization limits are tighter than in the anomalous dispersion
regime. For instance, in a BBO crystal a stationary localized
wave packet at 300 nm wavelength (corresponding to 1 fs
optical cycle) could have a 2 μm beam diameter provided the
pulse duration is 7.5 fs.

IV. CONCLUSIONS

To conclude, in this paper we have reviewed the condi-
tions needed for the localization and stationarity of a wave
packet during propagation in a linear transparent medium,
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FIG. 8. (Color online) Intensity profile of the 2D stationary solu-
tion of the wave equation featured by thick normal dispersion spectral
support [kx = �(�)] with angular frequency gap shown in the top
right corner inset; the dashed line represents the |S0(�)|. Units are
normalized as in Fig. 2. 1D temporal and spatial profiles (below), and
time-integrated profile (bottom row).

highlighting the requirements on its dimensionality and its
spatiotemporal frequency content. The results presented sup-
port the concept that at least two dimensions (where space and
time are equivalent) are needed in order to have simultaneous
stationarity and localization of a WP. We have studied, in
particular, the two-dimensional field solution of the linear
propagation equation, which has been derived together with its
spatiotemporal spectrum dependence, and we have discussed
the conditions for stationarity and localization of such a 2D
wave packet in the normal and anomalous group velocity
dispersion regimes. The theoretical model highlights that a
2D (1D spatial and 1D temporal) stationary WP in a linear
dispersive medium can also be sharply localized (in both
dimensions x and t) provided that its spectrum is featured
by spatial and temporal coordinates entangled via angular
dispersion. The importance of the temporal polychromaticity
of the WP bandwidth has been put in evidence, both for the
case of localized 2D X-type waves (2D counterpart of the
X waves) propagating stationarily in the normal dispersion
regime, and for the case of localized spatiotemporal Bessel
beams or even spatiotemporal localized “pixel-like” wave
packets stationarily propagating in the anomalous dispersion
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regime. From the spatial point of view, in order to have
high contrast temporally integrated beam profiles, we have
noticed that in the positive GVD case, the beam apodization
plays an important role reflecting in the necessity of a finite
width of the spatial bandwidth supporting the spectrum of
the resulting quasistationary wave packet. The aim of our
work was to present a unified and systematic theoretical
description of different 2D wave packet configurations both
spatiotemporally localized and stationary, showing also how
these strongly depend on the features and shape of their
spatiotemporal spectral support. Finally note that the results
obtained here suggest that the entanglement between the

spectral-spatial and spectral-temporal coordinates could be
exploited even more generally, targeting for instance, different
spatiotemporal profiles outcomes for applications where tai-
lored features of the pulse and beam, as the amplitude profile,
the localization, and the stationarity, can be controlled along
propagation.
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