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Measurement-based tailoring of Anderson localization of partially coherent light
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We put forward an experimental configuration to observe transverse Anderson localization of partially coherent
light beams with a tunable degree of first-order coherence. The scheme makes use of entangled photons
propagating in disordered waveguide arrays and is based on the unique relationship between the degree of
entanglement of a pair of photons and the coherence properties of the individual photons constituting the pair.
The scheme can be readily implemented with current waveguide-on-a-chip technology, and surprisingly the
tunability of the coherence properties of the individual photons is done at the measurement stage, without
resorting to changes of the light source itself.
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I. INTRODUCTION

More than 50 years ago, Anderson described in a seminal
paper [1] how diffusion in the process of electron transport in
a disordered (random) semiconductor lattice can be arrested,
leading to the localization of the wave function in a small
region of space, the so-called Anderson localization. This
unique phenomenon has been observed in a myriad of
physical systems [2], including electron gas [3], matter waves
(atoms) [4–6], and acoustic waves [7]. The observation of
transverse localization of light in a photonic system was
predicted by De Raedt et al. [8], considering the similarities
existing between the Schrödinger equation and Maxwell
equations. This led to the observation of Anderson localization
in photonic systems [9–13] in various scenarios.

The underlying physical principles that lead to Anderson
localization are also responsible for changes on the spreading
of the wave function in a quantum random walk, characterized
by a quadratic dependence of the size (variance) of the
wave function with propagation distance when no disorder
is present [14,15]. The consequences of introducing static
disorder in a quantum random walk (leading to Ander-
son localization) have been studied, for example, for one-
dimensional [16–18] and two-dimensional [19] systems. In a
sense, generalizations of quantum protocols such as the Shor’s
factorization algorithm [20] and the Groover’s searching
algorithm [21] can also be analyzed in similar terms, since
they can be viewed as quantum random walks.

In most cases, the input state in a quantum random walk is
considered to be fully coherent. Since Anderson localization
is a consequence of interference effects, one can dare thinking
that an initial coherent state is thus necessary to observe
Anderson localization. However, Čapeta et al. [22] have
shown that even a partially coherent input light beam can
lead to Anderson localization in a disordered waveguide
array (WGA). Partially coherent beams can be described as a
superposition of orthogonal coherent modes, where the modal
coefficients are random variables that are uncorrelated with one
another [23,24]. Therefore, according to [22], since spreading
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of each mode, being a coherent mode, can be arrested in
a random medium with static disorder, the whole partially
coherent beam should also suffer localization in a similar way
to a fully coherent beam.

Here we propose an experimental scheme which could
lead to the observation of Anderson localization of partially
coherent beams with a tunable degree of first-order coherence.
The approach is based on two basic ingredients. On the
one hand, a single photon in a pure quantum state (von
Neumann entropy E = 0) is arguably the most simple example
of a photonic state which shows first-order coherence [25].
Mixed single-photon quantum states do not show first-order
coherence. On the other hand, the degree of entanglement of
a pure two-photon state (photons A and B) is directly related
to the purity of the quantum state of photon A (B), which
results from tracing out all degrees of freedom corresponding
to photon B (A). The von Neumann entropy of the quantum
state that describes photon A (B) could be used as a measure
of the degree of entanglement of the paired photons.

Consequently, the manipulation of the degree of entangle-
ment of the two-photon state can effectively tailor the first-
order coherence of the signal (idler) photon [26], generating a
one-photon quantum state which is mixed, and thus partially
coherent. Anderson localization (colocalization) of entangled
photon fields in disordered waveguides has been presented
in [27–29]. However, in that case the goal was to look
for Anderson localization of the two photons that form the
entangled pair, while here entanglement is a tool to tailor the
degree of coherence of one of the subsystems (photon A or
photon B) which form the entangled pair.

The paper is organized as follows. In Sec. II the ex-
perimental scheme and the main theoretical tools used in
the analysis are presented and discussed. Main results are
presented in Sec. III. The single-photon coherence measures
used throughout the text are defined in the Appendix.

II. THE PROPOSED EXPERIMENTAL SCHEME

In general, the quantum description of a pure entangled
two-photon state (photons A and B) is written

|�〉 =
∫

dp

∫
dq �(p,q)â†

A(p)â†
B(q)|0〉, (1)
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where p and q represent the transverse wave vectors of photons
A and B, respectively, â

†
A(p) and â

†
A(q) are creation operators

of photons in modes A and B, and �(p,q) is the mode
function that describes the properties of the biphoton [30].
For monochromatic fields, the positive-frequency electric-field
operators are expressed as

Ê
(+)
A (x) ∼

∫
dp âA(p) exp(ipx), (2)

Ê
(+)
B (y) ∼

∫
dq âB(q) exp(iqy). (3)

We note that temporal dependence of the electric-field oper-
ators has been omitted for the sake of simplicity. Defining
�(x,y) = ∫

dp
∫

dq �(p,q) exp(−ipx − iqy), the normal-
ized pure entangled two-photon state given by Eq. (1) can
be written as

|�〉 =
∫

dx

∫
dy �(x,y)|x〉A|y〉B, (4)

where we have defined |x〉A ≡ Ê
(−)
A (x)|0〉A and |y〉B ≡

Ê
(−)
B (y)|0〉B . Notice that the two-photon amplitude �(x,y)

corresponds to the second-order correlation function
�(x,y) = A〈0|B〈0|Ê(+)

B (y)Ê(+)
A (x)〉.

The two-photon amplitude � can be described by a Schmidt
decomposition of the form

�(x,y) =
N∑

j=1

√
λjfj (x)gj (y); (5)

λj are the Schmidt eigenvalues and {fj } and {gj } are the
Schmidt modes corresponding to photons A and B. For
the sake of simplicity, the two-photon amplitude �(x,y) is
approximated by the Gaussian function:

�(x,y) ∼ exp[−α(x + y)2 − β(x − y)2]. (6)

In this case, the Schmidt modes correspond to Hermite
functions of order j [31,32]. Some representative cases are
shown in Fig. 1(d).

The parameters characterizing the spatial correlations be-
tween photons A and B, α and β, can be expressed using more
suitable parameters that describe characteristics of photon A:
its rms beam width (σ0) and the beam width-spatial bandwidth
product (γ0), here denoted as incoherence:

α = 1

4σ 2
0

(
2γ 2

0 ± γ0

√
4γ 2

0 − 1
)
, (7)

β = 1

4σ 2
0

(
2γ 2

0 ∓ γ0

√
4γ 2

0 − 1
)
. (8)

The derivation of Eqs. (7) and (8) is included in the Appendix.
In general, γ0 � 0.5 and is related to the Schmidt number, K =
2γ0, which is a measure of the size of the mode distribution
involved in Eq. (5), i.e., K = (

∑N
j=1 λj )2/

∑N
j=1 λ2

j . For α =
β, there is not entanglement between photons A and B, the
Schmidt decomposition contains a single mode [see Fig. 1(a)],
and γ0 attains its minimum value, i.e., γ0 = 0.5. This case
yields a pure and first-order coherent photon. In all other cases,
the spectrum of the Schmidt decomposition contains several
modes. Figure 1(b) shows the weights of the first 15 Schmidt
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FIG. 1. (Color online) Schmidt mode decomposition. Here we
show the first 15 Schmidt modes of the Schmidt decomposition for
three cases: (a) a separable state with γ0 = 0.5, (b) an entangled state
with γ0 = 1.5, and (c) an entangled state with γ0 = 3. The shapes of
some selected Schmidt modes (see the legend) are plotted in (d) for
γ0 = 1.5. In all cases σ0 = 1 μm.

modes (eigenvalues λj ) for γ0 = 1.5, and Fig. 1(c) shows them
for γ0 = 3.

The key point of our scheme is the presence of a detection
scheme that projects the photon B into a restricted set of modes
before detection, or in particular the projection into a single
Schmidt mode gj . In this way, the number of modes that
describe the quantum state of photon A after detection of
photon B would be correspondingly reduced. Importantly, the
first-order coherence of photon A depends on the number of
modes onto which the photon B is projected. The projection of
photon B into a specific single mode effectively renders photon
A into a first-order coherent photon. In contrast, detection of
photon B into an increasing number of modes results in a
partially coherent signal photon with a decreasing degree of
coherence. Therefore, this can thus be appropriately called
tailoring of the first-order coherence by heralding detection.

By tailoring the first-order coherence of a single photon,
we also tailor the characteristics of the Anderson localization.
The projection and detection of photon B into a finite number
M of modes is represented by the quantum operator ŶB =∑M

j=1 |gj 〉B〈gj |B with |gj 〉 = ∫
dygj (y)|y〉B . After detection,

the truncated quantum state of photon A reads as

ρ̂A = TrB[|�〉〈�|ŶB] =
min(N,M)∑

j=1

λj |fj 〉A〈fj |A, (9)

corresponding to an incoherent superposition of min(N,M)
modes with weights λj .

A sketch of the experimental configuration considered is
shown in Fig. 2. A pair of entangled photons (A and B) is gen-
erated. Photon A is injected into a one-dimensional waveguide
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FIG. 2. (Color online) Sketch of the experimental configuration
proposed to observe Anderson localization of partially coherent
photons in a disordered waveguide array (WGA). The three-slab
waveguide (TSW) allows propagation of different numbers of guided
modes depending on its core size. EPG: The Entangled-photons
generator is the source of photon pairs. iCCD: intensified CCD. D:
single-photon detector. IS: imaging system.

array (WGA) with refractive index profile nA(x). The waveg-
uide array contains 101 layers of semiconductor material
AlxGa1−xAs with the index of reflection taken from [33]. The
whole structure is created by alternating two different layers:
Al0.3Ga0.7As and Al0.8Ga0.2As of the same thickness 0.6 μm.
The disorder is induced by randomizing the index of refraction
of each layer, etc.: nA(x) = n0

A(x) + 	nA(x). The probability
distribution of the random disturbances 	nA(x) is described
by a Gaussian function characterized by its typical standard
deviation δ.

On the other hand, the photon B can propagate in different
three-slab waveguides (TSWs) with refractive index profile
nB(y) and different sizes of the core of the waveguide. The
material of the core is Al0.3Ga0.7As and two surrounding layers
are made of Al0.8Ga0.2As. The layers surrounding the core
are considered to be infinite in their thickness. The number
of guided modes supported depends on the core size [see
Fig. 3(a)], so the three-slab waveguide effectively selects a
certain amount of modes of photon B, effectively tailoring the
first-order coherence of photon A. A three-slab waveguide has
been chosen for simplicity and because of its suitability for
integration on a chip altogether with the WGA.

The evolution of the spatial shape of photons A and B, in the
waveguide array and the three-slab waveguide, respectively,
can be conveniently described by means of the guided modes
supported by each waveguide, {ui(x)} for the WGA and {vj (y)}
for the TSW [34]. The guided modes are obtained as solutions
of the Helmholtz equations:

	ui(x) + [
n2

A(x)k2
0 − κ2

i

]
ui(x) = 0, (10)

	vj (y) + [
n2

B(y)k2
0 − μ2

j

]
vj (y) = 0, (11)

where κi and μj are the corresponding propagation constants.
The index of refraction is considered to be homogeneous
along the direction of propagation (along the z-axis in both
waveguides). Equation (10) has been solved using the finite
element method [35], whereas Eq. (11) has been solved by the
semianalytical method [36]. The polarization of photons A and
B is transverse electric, i.e., parallel to the surface boundary
between layers, and their wavelengths are 1550 nm, far below
the band gap of the material. Therefore, absorption can be
omitted in our model. Moreover, the propagation distance z1
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FIG. 3. (Color online) (a) Number of guided modes supported by
the three-slab waveguide (TSW) as a function of the core size of the
waveguide. (b)–(d) show the overall spatial overlap factor between
Schmidt modes {gj } and guided modes of the three-slab waveguide
{vj }, as given by the product F = ∏

j |djj |, as a function of the
magnification factor Z of the imaging system. Three different cases,
with different values of γ0, are considered: (b) γ0 = 0.5, (c) γ0 = 1.5,
and (d) γ0 = 3. In all cases σ0 = 1 μm. The five curves in each plot
correspond to five different three-slab waveguides supporting various
amounts of modes, as given by the legend in (d).

of photon A has been restricted to 0.5 mm in order to prevent
reaching the reflective boundaries of WGA.

The coupling of the input photons, characterized by the
Schmidt modes fn and gm, to the corresponding waveguides,
characterized by modes ui and vj , is expressed via the coupling
coefficients

cni =
∫

dxfn(x)u∗
i (x), (12)

dmj =
∫

dygm(y)v∗
j (y). (13)

Using coefficients cni and dmj the quantum state of two photons
after their propagation at distances z1 and z2 in the two
waveguides is

|�〉 =
∑

n

√
λn

∑
ij

cnidnj
exp(iκiz1 + iμj z2)|ui〉A|vj 〉B,

(14)

where |ui〉A ≡ ∫
dxui(x)|x〉A and |vj 〉B ≡ ∫

dyvj (y)|y〉B . We
can write z1 = z2 = z without losing generality.

Detection of photon B after projection via a three-
slab waveguide is represented by the operator ŶB =∑nmax

i=j |vj 〉B〈vj |B , where nmax refers to the limited amount of
guided modes present in the specific three-slab waveguide
considered. For fixed values of γ0 and σ0, the spatial profile
of photon B is the same, but the spatial profiles of the guided
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modes {vj } differ in their sizes for waveguides with different
core size. Modes of the Schmidt decomposition {gj (y)} and
guide modes in the TSW {vj (y)} can be ordered by its
mode order (j = 1,2, . . .), with modes with the same order
having similar spatial shapes. In order to maximize the spatial
overlap between the Schmidt modes and the guided modes,
we include an imaging system designed to maximize the
overall spatial overlap factor F = ∏

j |djj |. Figures 3(b)–3(d)
show the overall spatial overlap factor as a function of the
magnification factor (Z) of the imaging system for five different
three-slab waveguides which support 1, 3, 5, 10, and 15 guided
modes, respectively. For instance, for σ0 = 1 μm and γ0 = 3,
the optimum magnification factors are 0.55, 0.82, 1.13, 1.61,
and 2.03.

In contrast, since we are interested in the Anderson
localization of photon A after propagation in the disordered
waveguide array, the spatial profile of photon A is detected by
an intensified coupled-charge detector (iCCD), which allows
us to detect electromagnetic signals at the single-photon level.
Detection of a photon in each pixel of the iCCD is represented
via the photon-number operator n̂A(x) = Ê

(−)
A (x)Ê(+)

A (x). Af-
ter detection of photon B, the spatial shape of the photon A
at distance z in the WGA is described by the photon-number
spatial distribution:

pA(x) = TrA[ρ̂An̂A(x)]

=
∑
m,n

√
λmλnI (m,n)

∑
i,j

cmic
∗
nj

× exp{iz(κi − κj )}ui(x)u∗
j (x), (15)

where I (m,n) = ∑
j dmjd

∗
nj . The width of photon A can be

characterized by its effective beam width:

weff =
〈

[
∫

dxpA(x)]2∫
dxp2

A(x)

〉
, (16)

where 〈〉 refers to averaging over an ensemble of random
realizations of a disordered WGA.

In order to analyze the results presented in Sec. III, it
is important to take into account that the beam size σ0

and the incoherence γ0 of photon A, defined in Eqs. (7)
and (8), correspond to values before projection and detection
of photon B. Therefore, after filtering mediated by the spatial
mode projection of photon B using the TSW, the first-order
correlation function of photon A at the input of WGA is written

G
(1)
A (x,x ′) =

∑
m,n

√
λnλmI (m,n)fn(x)f ∗

m(x ′). (17)

One can obtain the values of σ and γ for photon A via
Eqs. (A5), (A8), and (A9) in the Appendix.

If photon B propagates in a TSW that supports a single
propagating mode, the size of photon A will correspond to
the size of that single mode, independently of the value of σ0.
When other modes are added via an increase of the guiding
capability of TSW, the beam size σ reaches its initial value
σ0, as it is shown in Fig. 4(a) for a photon with σ0 = 1 μm. A
similar behavior of the value of γ is also shown in Fig. 4(b),
where a strong dependence on the effectiveness of the coupling
to the TSW is observed. When coupling to a single mode,
γ = 0.5, independently of the value of γ0. When the number
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FIG. 4. (Color online) (a) Beam size σ and (b) incoherence γ of
photon A when photon B propagates in different TSWs and afterward
is detected. Each TSW is designed to support a different number of
guided modes, as indicated in the axis. We consider three different
two-photon states [see the legend in (b)], characterized by γ0 = 0.5,
1, and 3. In all cases, σ0 = 1 μm.

of propagating modes in TSW is enlarged, the value of γ , even
though it is smaller than γ0, also converges to γ0, since now
propagation in the waveguide does not effectively filter the
input state.

III. RESULTS

For the sake of comparison, we first consider a separable
two-photon state (K = 1), so the Schmidt decomposition
contains a single mode, as shown in Fig. 1(a). Photon A
is in a first-order coherent state, and since there is no
entanglement there is also no dependence on the characteristics
of the propagation of photon A on photon B being projected
and detected. As expected, when no disorder is considered
(δ = 0), photon A diffracts the least in comparison to other
cases considered in Figs. 5(c) and 5(e), which correspond
to entangled paired photons. When disorder is introduced
(δ = 0.02), photon A turns out to be localized, with the size
of the output probability distribution being almost equal to
the input probability. Anderson localization is the result of
the coupling of photon A to localized guided modes of the
disordered WGA {ui(x)}.

We now consider two examples with two-photon entangled
states with γ0 = 1.5 and 3. This corresponds to two-photon
states with Schmidt number K = 3 and 6 and entropy of
entanglement E = 2 and 3.021. The Schmidt decompositions
are shown in Figs. 1(b) and 1(c). Unlike the coherent case
(γ0 = 0.5), the size of photon A depends on the amount of
propagating modes of the TSW used. This phenomenon is
more visible with the ordered WGA, as shown in Figs. 5(c)
and 5(e). Note that each Hermite function {fi} for i > 1
contains high spatial components that spread even faster than
the narrow Gaussian profile given by f1, but in the overall they
might have a smaller impact on the final size of photon A due
to decreasing weights λj for a given state.

For a disordered WGA with δ = 0.02 the effect of the
partially coherent nature of photon A values on its propagation
is more visible, as seen in Figs. 5(d) and 5(f). The lower
the degree of coherence, the broader is the output effective
width of the spatially localized photon A. Moreover, Hermite
functions {fi} with increasing order localize with a higher
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FIG. 5. (Color online) Spreading of the size of photon A after
propagation in the WGA, as given by the ratio weff(z)/weff(0). Photons
A and B are part of a two-photon state with three different values of
the amount of entanglement but with the same value of σ0 = 1 μm.
(a) and (b) correspond to a nonentangled two-photon state with γ0 =
0.5 (K = 1). (c) and (d) correspond to an entangled state with γ0 =
1.5 (K = 3), while for (e) and (f) we have γ0 = 3 (K = 6). (a), (c),
and (e) correspond to the propagation of photon A in a nondisordered
WGA, while (b), (d), and (f) correspond to the propagation of photon
A in a disordered WGA with σ = 0.02. We present averaged results
obtained over 100 different realizations of WGA. The curves in all
plots represent propagation of photon B in different TSWs which
support distinct amounts of guided modes, as shown in the legend in
(f). This legend is valid for all plots.

ratio weff(L)/weff(0) than the fundamental Hermite function
f1. Our calculations also predict a noticeable dependence of the
amount of localization expected, shown in Fig. 5, on important
experimental values such as the magnification factor of the
imaging system or the effectiveness of the coupling to the
TSW. Therefore, if one were to use a different optimization
function F for the imaging system, differences in Figs. 5(d)
and 5(f) would be more visible.

IV. CONCLUSION

We have presented an experimental scheme for the observa-
tion of transverse Anderson localization of partially coherent

light with a tunable degree of coherence. The degree of
coherence is tuned by injecting one photon of a fully coherent
two-photon entangled state in a waveguide with a finite and
controllable amount of propagating modes. The system can be
integrated on a semiconductor chip, since both the disordered
waveguide array (WGA) and the three-slab waveguide (TSW)
considered were designed with this goal in mind. Therefore,
our proposal is experimentally feasible, taking into an account
current mature semiconductor technologies.
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Jr. acknowledges Grants No. CZ.1.05/2.1.00/03.0058 and
No. CZ.1.07/2.3.00/20.0058 of MŠMT ČR.

APPENDIX: QUANTIFYING THE FIRST-ORDER
COHERENCE OF THE SINGLE PHOTON

The two-photon states given by Eqs. (1) and (4) describe a
generally entangled state. The density matrix that characterizes
the quantum state of one of the photons that constitute the pair,
for instance ρ̂A for photon A, is obtained by tracing out the
variables describing photon B, so

ρ̂A =
∫

dx

∫
dx ′ρA(x,x ′)|x〉A〈x ′|A, (A1)

where

ρA(x,x ′) =
∫

dy�(x,y)�∗(x ′,y). (A2)

Notice that ρA(x,x ′) is the well-known first-order correlation
function G

(1)
A (x,x ′) of photon A, defined as

G
(1)
A (x,x ′) = Tr[ρ̂AÊ

(−)
A (x)Ê(+)

A (x ′)], (A3)

where Ê
(+)
A and Ê

(−)
A are the positive- and negative-frequency

electric-field operators [23]. The first-order correlation func-
tion for photon B is defined similarly.

Making use of Eqs. (6) and (A2), we obtain

G
(1)
A (x,x ′) ∼ exp

[
−(α + β)x2 − (α + β)x ′2

+ (α − β)2

2(α + β)
(x + x ′)2

]
. (A4)

The Gaussian form of the two-photon amplitude, as defined
in Eq. (6), allows us to quantify the width of photon A in
the position space using G

(1)
A (x,x ′). The rms spatial width of

photon A is

σ 2 =
∫

dx x2G
(1)
A (x,x)∫

dx G
(1)
A (x,x)

= α + β

16αβ
. (A5)
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The two-photon amplitude �(p,q) in the transverse wave-
number domain is equal to

�(q,k) ∼ exp

[
− (q + k)

16α

2

− (q − k)2

16β

]
. (A6)

Similar to the case considered above, the first-order correlation
function in the transverse wave-number domain reads

G
(1)
A (q,q ′) = Tr[ρ̂A â

†
A(q)âA(q ′)]. (A7)

One can calculate the rms width of photon A in the transverse
wave-number domain as

W 2 =
∫

dq q2G
(1)
A (q,q)∫

dq G
(1)
A (q,q)

= α + β. (A8)

Here we quantify the first-order coherence of photon A as
the product of its spatial beam width (σ ) by its width in the

transverse wave-vector domain (W ):

γ = σW = α + β

4
√

αβ
; (A9)

this parameter γ represents the amount of incoherence. For
more details concerning quantification of coherence, see [37].
Making use of Eqs. (A5) and (A9) one easily obtains Eqs. (7)
and (8) in the main text. The minimum value of γ is γ = 0.5. It
corresponds to a separable two-photon state with α = β. In this
case, photon A (and photon B) shows first-order coherence. For
entangled states, photon A is described by an incoherent su-
perposition of Hermite-Gauss modes, whose number increases
with a corresponding increase of the degree of entanglement
between photons A and B. Therefore, increasing values of γ

correspond to photons with a lower degree of coherence.
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