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Scattering of microwave photons in superconducting transmission-line resonators
coupled to charge qubits
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We investigate coherent single-microwave-photon transport in the coupled superconducting transmission lines
coupled to superconducting quantum interference device based charge qubits. The Fano resonance can be observed
in the scattering spectra in both the linear and nonlinear regimes of the dispersion relation of the microwave
photon. We further find that the degree of the two-qubit entanglement can vary from unity to zero when the Fano
resonance occurs. There exists a correspondence between the entanglement and the Fano resonance.
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I. INTRODUCTION

Superconducting circuits [1,2] based on Josephson junc-
tions can behave like two-level systems. Progress in this field
has made it possible to achieve coherent interaction between
the two-level system and the microwave photon by coupling
the superconducting qubit to a transmission-line resonator
[3–7]. The phenomena of cavity QED in superconducting
circuits have also been demonstrated [3,8–10] and can be
further used to couple two distant qubits [2,11]. For the
superconducting quantum interference device (SQUID) based
charge qubits coupled to a transmission line, measurements
of the populations of individual superconducting qubits have
been performed [12]. Recently, the progress in generating and
measuring single microwave photons [13–19] propagating in
the transmission line [20–23] has made it feasible to detect
the single-photon Dicke states. Therefore, one can use this
advantage to measure the qubit state through the detection of
the microwave photons.

When a propagating field is coupled to an emitter, the
interaction leads to the scattering of the field or the excitation of
the emitter. Because of the superposition principle of quantum
mechanics, the interference may occur when different exciting
paths are included and leads to the variations of the profile in
the scattering spectra. Fano resonance [24,25], first observed in
atomic absorption, indicates that when an excited discrete state
is coupled to a continuum of energy states, the scattering profile
shows asymmetric line shapes due to the quantum interference.
Fano resonance has been reported not only in the atomic or
molecular system but also in systems containing competitive
pathways such as nanostructures [26–28], metamaterials [29],
refractive cores within waveguides [30,31], photonic crystals
[32–34], microrings [35], and quantum dots [36].

Inspired by these advances, we study in this work the scat-
tering spectra of a system comprising the coupled transmission
line resonators coupled to two or three superconducting charge
qubits. We find that the Fano resonance can occur in both the
linear and nonlinear regimes of the dispersion relation of the
photons. We further show that the Fano resonance stemming
from the interference between the discrete and continuum
states has a correspondence to two-qubit entanglement.

*yuehnan@mail.ncku.edu.tw

II. THE MODEL

Let us consider the evanescently coupled superconducting
transmission-line resonators coupled to two dc-SQUID-based
charge qubits [37,38], as depicted in Fig. 1. With the proper
gate voltage Vg, the Cooper pair box formed by the dc SQUID
with the two Josephson junctions can behave like a two-
level system (charge qubit). The incident microwave-photon
propagating in the transmission line would be either scattered
or absorbed by the qubits.

By assuming all the transmission resonators have the same
frequency ω, the Hamiltonian of the evanescently coupled
transmission-line resonators can be written as

Ht = �ω
∑

i

a
†
i ai − �J

∑
i

(a†
i ai+1 + H.c.), (1)

where a
†
i (ai) is the creation (annihilation) operator of the

microwave-photon propagating in the ith resonator and J is the
coupling constant representing the microwave-photon hopping
from one resonator to another.

This Hamiltonian [Eq. (1)] describes a tight-binding boson
model with the dispersion relation

�k = ω − 2J cos(ζk), (2)

where k denotes the wave vector of the microwave photon in
the resonator and ζ is the lattice constant and is set to be unity
throughout this paper.

The interaction between the microwave photon propagating
in the transmission resonators and the two charge qubits leads
to the scattering of the photon. The total Hamiltonian of the
combined charge-qubit photon system can be described as

HT =
∑
j=1,2

��jσej ,ej
+

∫
dk��ka

†
kak + �

(
g1akσe1,g1

+ g2ake
ikdσe2,g2 + H.c.

)
, (3)

where �j is the energy spacing of the j th charge qubit, σej ,ej

(σej ,gj
) = |ej 〉〈ej | (|ej 〉〈gj |) is the diagonal (off-diagonal)

element of the qubit operator with |ej 〉 (|gj 〉), meaning the
j th qubit in its excited (ground) state, and a

†
k is the creation

operator of the k-mode propagating microwave photon. Here,
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FIG. 1. (Color online) Schematic diagram of two SQUID-based
charge qubits coupled to the evanescently coupled superconducting
transmission-line resonators. Here Cg denotes the capacitance of the
gate. The two identical Josephson junctions have capacitance CJ and
coupling energy EJ. The charge qubit acts as the scattering target
for the incident microwave photon, and its transition energy can be
controlled by both the magnetic flux � threading the SQUID loop and
the gate voltage Vg. Note that, depending on the interqubit distance,
the charge qubits can be coupled to the same or different transmission
resonators.

gj describes the coupling strength between the field and the
j th qubit, and d denotes the interqubit distance.

The stationary state of the system can be written as [39,40]

|Ek〉 =
∫

dz[φ†
k,R(z)C†

R(z) + φ
†
k,L(z)C†

L(z)]|vac〉

+
∑
j=1,2

ξkj
σej ,gj

|vac〉, (4)

where |vac〉 = |g1,g2〉|0〉 indicates that both the charge
qubits are in the ground state with zero photons and
ξkj

is the probability amplitude that the j th charge qubit
absorbs the microwave photon and jumps to its excited
state. We also assume that the field is incident from the
left, φ

†
k,R(z) ≡ eikz[θ (−z) + αθ (z)θ (d − z) + tθ (z − d)] and

φ
†
k,L(z) ≡ e−ikz[rθ (−z) + βθ (z)θ (d − z)]. Here, t and r rep-

resent the transmission and reflection amplitudes, respectively.
Also, α and β are the probability amplitudes of the field
between the two charge qubits (positions z = 0 and d,
respectively), and θ (z) is the unit step function.

III. FANO RESONANCE IN DIFFERENT REGIMES

At the matching condition (λ ∼ 4ζ ), the dispersion relation
[Eq. (2)] is approximated to be linear: �k � ωJ ± 2Jk, with
ωJ = ω − 2J (in what follows, we only consider the case with
positive group velocity, i.e., �k � ωJ + 2Jk). However, in the
low-energy regime (long wavelength, λ � ζ ), the dispersion
relation can be approximated to be parabolic: �k = ωJ + Jk2.
In order to study the scattering of the incident microwave
photon, the Hamiltonian HT can be further transformed into
the real-space representation H̃ and applied to the stationary
state [41] [Eq. (4)]. The transmission spectrum T = |t |2
and ξkj

in both regimes can be obtained by solving the
eigenvalue equation H̃ |Ek〉 = Ek|Ek〉. The general form of
the transmission spectrum in both regimes is

T = 2
1

2
2(

g2
21 + g2

12
)2 + 2

1
2
2

. (5)

In the linear regime, j = vg(kvg − �j ), with vg being
the group velocity of the microwave photon, and we have
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FIG. 2. (Color online) Transmission spectra of the incident mi-
crowave photon for the detuning δ1 = 0.05 (red dashed curve), 0
(black solid curve), and −0.05 (blue dot-dashed curve) in the (a)
linear and (b) parabolic regimes of the dispersion relation. Here,
the interqubit distance d is assumed to be much smaller than the
wavelength of the incident microwave photon. (c) The transmission
(black curve) and reflection (red curve) coefficients [under the
same consideration as that of the red dashed curve in (a)] include
dissipations for the factor P = 5 (dashed curve) and 20 (solid curve).
The inset in (b) describes the energy configuration leading to the
interference between the discrete and continuous states. The detuning
δ2 is fixed to be −0.05. Here, the ratio of the coupling strength
is assumed to be g1/g2 = 10, and J is set to be 0.5. Parameters
are normalized by g2, and the normalized wave vector is defined as
K ≡ vgk/g2.

defined the detuning δj ≡ ωJ − �j . In the parabolic regime,
j = 2Jk(Jk2 + δj ) with the detuning δj ≡ ωc − �j (ωc is
the minimum of the parabolic dispersion curve).
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Figure 2 shows the transmission spectra T for different
detuning δ1 in both the linear and parabolic regimes of the
dispersion relation. Here we have set δ2 = −0.05g2. The
parabolic dispersion relation is similar to that in the photonic
crystals [42] when ωJ is between the energies of the two
qubits [δ1 > 0, δ2 < 0, as depicted in the insets of Fig. 2(b)].
Therefore, this can be viewed as the interference between the
discrete and the continuous pathways and results in the Fano
line shapes (red dashed and black solid curves) around the
double-peak profile [41]. When δ1 < 0, the energies of the
two qubits are larger than ωc; the interference (Fano line shape)
would therefore vanish (blue dot-dashed curve). Similarly, as
shown in Fig. 2(a), although lacking the “band-edge-like”
structure in the linear dispersion relation, when ωJ is set
between �1 and �2, the single-peak profile in the transmission
spectra also reveals the Fano line shape. This is because the
two qubits play the role of the discrete states, which lead to
the interference between two different pathways (red dashed
and black solid curves). Similarly, as can be seen in Fig. 2(a),
the Fano line shape disappears when the interference vanishes
(blue dot-dashed curve). In addition, from Eq. (5), one knows
that the transmission spectrum is governed by the coupling gj

and the detuning δj , meaning that the Fano resonance can be
controlled by varying these two parameters.

Experimentally, the charge-qubit photon system is also
coupled to the environment. This coupling leads to dissipations
[3] such as the excited-state relaxation of the charge qubit
and photon loss. To include the dissipations, we can use
the “quantum jump” of an open system to modify the total
Hamiltonian [39] to

HT =
∑
j=1,2

�(�j − i�′/2)σej ,ej
+

∫
dk��ka

†
kak

+ �
(
g1akσe1,g1 + g2ake

ikdσe2,g2 + H.c.
)
, (6)

where the non-Hermitian term −i�′/2 describes the decay
from the excited state of the qubit into other dissipative
channels at rate �′. In order to study the effect of the
dissipations on scattering properties, we define a factor P = g1

�′
and replot the red dashed curve in Fig. 2(a) for different P . As
shown in Fig. 2(c), the dissipations result in lower probability
of both transmission and reflection coefficients, but the their
behavior remains similar. We therefore assume the dissipations
are negligible in the following discussions.

IV. THE CORRESPONDENCE BETWEEN THE
ENTANGLEMENT AND FANO RESONANCE

Apparently, the Fano resonance depends crucially on the
energy differences between the incident microwave photon
and the two charge qubits. It is interesting to investigate how
the two-qubit entanglement varies when the Fano resonance
occurs.

If the incident microwave-photon is not scattered but
trapped between the two charge qubits, the entangled state
of the two qubits can be created: ξk1 |e1,g2〉|0〉 + ξk2 |g1,e2〉|0〉.
To demonstrate the degree of the entanglement, Fig. 3 shows
the concurrence [43] C of the two qubits for different detuning
δ1 (with fixed δ2 = −0.05g2). The concurrence quantifies the
degree of the entanglement of the two qubits. For our system,
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FIG. 3. (Color online) Concurrence between the two charge
qubits for the detuning δ1 = 0.05 (red dashed curve), 0 (black solid
curve), and −0.05 (blue dot-dashed curve) in the (a) linear and (b)
parabolic regimes of the dispersion relation. Here, the interqubit
distance d is assumed to be much smaller than the wavelength of
the incident microwave photon. The detuning δ2 is fixed to be −0.05.
We also assume the ratio of the coupling strength g1/g2 = 10, and J

is set to be 0.5. Parameters are normalized by g2, and the normalized
wave vector is defined as K ≡ vgk/g2.

after tracing out the microwave-photon modes, the reduced
density matrix of the two-qubit state is a pure state, and the
concurrence simply takes the form

C = 2
∣∣ξk1

∣∣∣∣ξk2

∣∣∣∣ξk1

∣∣2 + ∣∣ξk2

∣∣2 = 2|g21||g12|
g2

2
2
1 + g2

1
2
2

. (7)

As can be seen in Fig. 3, the concurrence varies from unity
to zero when the Fano resonance occurs in both the linear
and parabolic regimes of the dispersion relation. The zero
points of the Fano resonance (zero points of the transmission
coefficient T ) coincide with the dips of the concurrence. This
can be understood from the exact solution k (k = k0) for the
zero points of the Fano resonance (and the concurrence): kL

0 =√−δ2
J

for the linear regime (when ω is between �1 and �2),
and kP

0 =
√

δ2
vg

for the parabolic regime.
In both regimes, the zero points of the Fano resonance occur

when δ2 = 0. This point corresponds to the total reflection
(T = 0). In this case, the second qubit takes all the excitation
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FIG. 4. (Color online) Populations of qubit 1 (red dashed curve)
and qubit 2 (black solid curve) for the detuning δ1 = 0.05, 0, and
−0.05 in the (a) linear and (b) parabolic regimes of the dispersion
relation. Here, the interqubit distance d is assumed to be much smaller
than the wavelength of the incident microwave photon. The detuning
δ2 is fixed to be −0.05. The ratio of the coupling strength is assumed
to be g1/g2 = 10, and J is set to be 0.5. Parameters are normalized
by g2, and the normalized wave vector is defined as K ≡ vgk/g2.

in the two-qubit Hilbert space, as shown in Fig. 4. However,
when δ2 has nonzero negative values, the interference between
the discrete and continuous channels creates the two-dip
(Fano-like) line shape for the parabolic (linear) regime in the
concurrence.

To get more insight on the correlations, we further study
the exact solutions when the transmission and the concurrence
equal to unity. The exact solutions in the linear regime for
T = 1 read

kL = g2
1δ2 + g2

2δ1

vg

(
g2

1 + g2
2

) , (8)

and the solutions for C = 1 can be expressed as

kL = g1δ2 + g2δ1

vg(g1 + g2)
or kL = g1δ2 − g2δ1

vg(g1 − g2)
, (9)

while the exact solutions in the parabolic regime for T = 1
read

kP =
√

−(
g2

1δ2 + g2
2δ1

)
J
(
g2

1 + g2
2

) , (10)

and the solutions for C = 1 can be expressed as

kP =
√

−(g1δ2 + g2δ1)

J (g1 + g2)
or kP =

√
−(g1δ2 − g2δ1)

J (g1 − g2)
.

(11)

One can find that Eqs. (8) and (10) resemble Eqs. (9) and (11),
respectively. This indicates that correlations exist between
the two-qubit entanglement and the Fano resonance. The
underlying physics is that when the Fano resonance occurs,
the transmission spectrum goes down to zero and results in

the minimum of the concurrence. It then dramatically changes
from zero to unity. Correspondingly, the population of qubit 1
(qubit 2) first goes down (up) and then goes up (down), and
the maximum entanglement occurs when the populations of
the two dots are equal, as shown in Fig. 3.

V. FANO RESONANCE AND THE CONCURRENCE WITH
AN ADDITIONAL CHARGE QUBIT

In practice, it is feasible to couple more qubits to the
transmission-line resonators [2]. Therefore, the Fano reso-
nance and the bipartite entanglement would be changed in
the presence of the additional qubits. Here, we consider an
additional charge qubit placed next to the two qubits with the
coupling strength g3, as depicted in Fig. 5(a). Compared with

g /g

(b)

(c)

K

K

(a)

g /g

1 2 3
d

η

FIG. 5. (Color online) (a) Schematic diagram for the three charge
qubits coupled to the coupled transmission resonators. Transmission
spectra of the incident microwave photon for the ratio of the couplings
g1/g3 = 1 (black solid curve), 2 (red dashed curve), and 10 (blue
dot-dashed curve) in the (b) linear and (c) parabolic regimes of the
dispersion relation. Here, the interqubit distances d and η are both
assumed to be much smaller than the wavelength of the incident
microwave photon, such that the three qubits may be coupled to the
same resonator. The detuning δ1(2) is fixed to be −0.05 (+0.05), and
the detuning δ3 is fixed to be −0.025. The ratio of the coupling
strength is assumed to be g1/g2 = 10, and J is set to be 0.5.
Parameters are normalized by g2, and the normalized wave vector
is defined as K ≡ vgk/g2.
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FIG. 6. (Color online) Concurrence between the first two charge
qubits for the ratio of the couplings g1/g3 = 1 (black solid curve), 2
(red dashed curve), and 10 (blue dot-dashed curve) in the (a) linear and
(b) parabolic regimes of the dispersion relation. Here, the interqubit
distances d and η are both assumed to be much smaller than the
wavelength of the incident microwave photon. The detuning δ1(2) is
fixed to be −0.05 (+0.05), and the detuning δ3 is fixed to be −0.025.
The ratio of the coupling strength is assumed to be g1/g2 = 10, and J

is set to be 0.5. Parameters are normalized by g2, and the normalized
wave vector is defined as K ≡ vgk/g2.

Eq. (6), the modified Hamiltonian becomes

HT =
3∑

j=1

��jσej ,ej
+

∫
dk��ka

†
kak + (

g1akσe1,g1

+ g2ake
ikdσe2,g2 + g3ake

ikησe3,g3 + H.c.
)
. (12)

The stationary state with the third qubit can be written as

|Ek〉 =
∫

dz[φ†
k,R(z)C†

R(z) + φ
†
k,L(z)C†

L(z)]|vac〉

+
3∑

j=1

ξkj
σej ,gj

|vac〉. (13)

After carrying out the eigenvalue equation H̃ |Ek〉 = Ek|Ek〉
[here, H̃ is the real-space representation of Eq. (11)], the
general three-qubit transmission coefficient in both regimes
can be obtained:

T = (123)2(
g2

312 + g2
213 + g2

123
)2 + (123)2

.

(14)

The concurrence of the first two qubits (qubits 1 and 2) in the
presence of the third qubit can be expressed as

C = 2|g123||g213|
(g123)2 + (g213)2 + (g312)2

, (15)

where j and δj have the same form as the previous definition.
To avoid misleading readers, here, we have set the energy of

the third qubit to be larger than that of the incident microwave-
photon with the detuning δ3 = −0.025g2, while δ1 = −0.05g2

and δ2 = +0.05g2. As can be seen in Fig. 5, in both the linear
and the parabolic regimes of the dispersion relation, the Fano
line shapes change when decreasing the coupling between the
third qubit and the photon. This is because the larger difference
between the couplings induces more diversity between the two
channels, leading to the distinct Fano line shapes. The presence
of the third qubit also induces additional interference of the
discrete and continuous states. As a result, the transmission
spectra show the double Fano line shapes in Fig. 5.

Figure 6 shows how the concurrence of the first two
qubits changes when decreasing the coupling g3. As seen,
the quantum coherence moves back to the first two qubits
(qubits 1 and 2) while reducing the coupling g3. However,
the presence of the third qubit does not affect the zero
points of the concurrence. Since the general forms of the
transmission coefficient and concurrence [Eqs. (14) and (15)]
of the three-qubit case have a predictable rule, it is possible to
extend the present theory to the case of the qubit array.

VI. SCATTERING PROPERTY OF A QUBIT ARRAY

The scattering property of a charge-qubit array coupled to
the transmission resonators can be studied by applying the
transfer-matrix method. For the case of a single-qubit coupled
to the transmission resonators, the transmission amplitude t

and the reflection amplitude r can be obtained by solving the
eigenvalue equation [40]:

t = cosϕeiϕ, r = isinϕeiϕ, (16)

where the phase shift ϕ = tan−1( g2


), with g being the coupling

strength between the field and the qubit, and  has been defined
in Sec. III for both linear and parabolic dispersion relations.
The transfer matrix Tq for the transmission resonators coupled
to a single-qubit can be calculated from the Green’s-function
method [44] as

Tq = 1

t

[
t2 − r2 r

−r 1

]
=

[
1 + iε iε

−iε 1 − iε

]
, (17)

with ε = tanϕ. We can extend this scheme to the qubit array
case; the transfer matrix τ through the whole system can then
be written as [45]

τ =
N∏

i=1

Tqi
Tdi

, (18)

where

Td =
(

eikdi 0
0 e−ikdi

)
(19)

represents the transfer matrix for the transmission resonator
with length di . Note that the parameter ε in the transfer
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FIG. 7. (Color online) The transmission coefficient of the system
consisting of the transmission resonators coupled to a N -charge-qubit
array for (a) N = 4 and (b) N = 10. Here, the ratio of the coupling
strength g1 and other qubits gi (i 
= N ) is fixed to be 10, and g1/gN

is varied. Parameters are normalized by g2, and the normalized wave
vector is defined as K ≡ vgk/g2.

matrix Tqi
has been changed correspondingly to ε = g2

i


,

with gi being the coupling strength between the field and
the ith qubit, and dN = 0 for the transfer matrix TdN

since the microwave photon is scattered at the N th qubit.
From the transfer matrix τ , the scattering coefficient for
arbitrary coupling strength gi and interqubit distance di can be
obtained.

In the transmission spectrum, we find that with fixed
interqubit distance di = π/2 and the energy detuning δi =
0.025g2, a propagation-forbidden region (T = 0) exists in
the parabolic regime. In Fig. 7(a), we plot the transmission
coefficient for qubit number N = 4 with a fixed ratio of
the coupling strength g1/g2 = g1/g3 = 10 but with varying
g4. As can be seen, the propagation-forbidden region in the
transmission spectrum becomes wider when increasing g4.
As a comparison, Fig. 7(b) shows the transmission spectra
for qubit number N = 10. In plotting this panel, we fix the
ratio of g1 to other coupling strengths gj (j = 2–9) and
vary the coupling g10. Similarly, the propagation-forbidden
region becomes wider with increasing g10. However, compared
with Fig. 7(a) (N = 4), the presence of the additional qubits
significantly squeezes the propagation-forbidden region. This
indicates that in a system of the transmission resonators
coupled to a charge-qubit array, one can control the mi-
crowave photon to propagate or not either by tuning the
coupling strength or switching on or off the coupling of
some qubits.

VII. EXPERIMENTAL REMARKS

The correlation between the Fano resonance and bipartite
entanglement has been reported [46] recently in a plasmonic
system of a metal nanowire coupled to two quantum dots.
In general, the nonlinear dispersion relation of the surface
plasmons stems from the geometry of the nanowire, which
generally cannot be changed without an external field [47].
In addition, to see the variations of the Fano resonance and
concurrence, one needs to tune the energy and the couplings
of the quantum dots. Therefore, it might not be easy to
control the parameters experimentally. On the contrary, in the
superconducting charge qubits coupled to the transmission-
line resonators, the dispersion relation can be varied through
the change of the interresonator coupling J , the coupling
between the qubit and the microwave photon can be changed
in the range of 5–200 MHz by varying the magnetic flux
and the gate voltage [3], and the detuning between the
transition frequency of the qubit and the microwave photon
can be tuned in the same way from −10 to 10 GHz [3].
In this work, the coupling g2 has been used as the unit to
normalize all other parameters. We assume g2 to be a feasible
value around 20 MHz. Correspondingly, g1 = 200 MHz,
δ2 = 1 MHz, the hopping probability J = 10 MHz, and the
minimum of the parabolic dispersion relation ωc = 5 GHz. By
indicating the correlation between the Fano resonance and the
two-qubit entanglement, we provide an easy way to estimate
the entanglement through the measurement of the scattering
spectra.

VIII. SUMMARY

In conclusion, we investigated the system consisting of
two SQUID-based charge qubits placed near the coupled
transmission-line resonators. We studied the scattering spectra
of the microwave photon propagating in the coupled trans-
mission line. The transmission coefficients in both linear and
parabolic regimes of the dispersion relation show the Fano line
shape. We further studied the entanglement between the two
qubits and found that, when the Fano resonance occurs, the
entanglement in both linear and parabolic regimes varies from
unity to zero. This result indicates that a correlation exists
between the Fano resonance and two-qubit entanglement. We
also obtained the general forms of the transmission coefficient
and the bipartite concurrence in the presence of the third
charge qubit. By varying the coupling between the third qubit
and the microwave photon, both the transmission and the
entanglement can be controlled. The scattering property has
also been extended to the system of the charge-qubit array;
we found the propagation-forbidden region can be formed and
controlled by varying the coupling strength or the number
of qubits.
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