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Pinning of hidden vortices in Bose-Einstein condensates
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We study the vortex dynamics and vortex pinning effect in Bose-Einstein condensates in a rotating double-well
trap potential and corotating optical lattice. We show that the vortex number does not diverge when the rotational
frequency � → 1 if the trap potential is of anisotropic double-well type. The critical rotational frequency
as obtained from numerical simulations agrees very well with the value

√
l/ l for l = 4, which supports the

conjecture that surface modes with angular momentum l = 4 are excited when the rotating condensate is trapped
in a double-well potential. The vortex lattice structure in a rotating triple-well trap potential and its pinning show
very interesting features. We show the existence and pinning of hidden vortices whose phase profile is similar to
that of the visible vortices.
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One of the most striking properties of the rotating Bose-
Einstein condensate (BEC) is its ability to form vortices and
a vortex lattice that manifest the superfluidity of the BEC [1].
Ultracold gases in optical lattices can be used to explore a
wide range of fundamental problems in condensed matter
physics [2]. Inspired by this, extensive theoretical and experi-
mental studies have taken place with BECs in rotating optical
lattices showing some interesting properties [3]. Pinning of
vortices and the associated structural phase transition from the
Abrikosov vortex lattice structure to the lattice structure of the
optical lattice is one of those properties [4–9].

The BEC in a double-well potential trap has received
much attention because of its rich physics [10–14]. This
has motivated the study of the BEC trapped in a rotating
double-well potential [15]. A recent theoretical study about the
Feynman rule for the number of vortices in a rotating superfluid
applied to a BEC trapped in a rotating double-well potential
has unearthed the existence of hidden vortices [16]. These
hidden vortices do not have visible cores but carry angular
momentum. It has been shown that the Feynman rule for the
number of vortices in the condensate can be satisfied only after
including the hidden vortices [16,17].

Our study is motivated by the report of hidden vortices in a
BEC in a rotating double-well trap potential [16]. It is natural
to ask whether the hidden vortices can be pinned by the optical
lattice. In this paper we study the vortex formation and vortex
pinning in a BEC in a rotating double-well trap potential
and corotating optical lattice. Interestingly, our numerical
simulations show that there exist two types of hidden vortices
with different phase profiles and only the type that displays
a phase profile similar to that of the visible vortices can be
pinned to the optical lattice. Since the hidden vortices are
distributed along the central barrier region of the double-well
trap potential, we consider the case of a triple-well trap
potential where there are two barrier regions. In this case the
nature of the vortex lattice and its pinning effect shows very
interesting features. Another motivation for the present study is
to derive the Feynman rule for a BEC trapped in an anisotropic
double-well potential. The Feynman rule for the number of
vortices N in a rotating superfluid in a rigid container of radius
R is given by N = m�R2/� [18]. It has been shown that for a
condensate trapped in a single-well (harmonic) potential and

confined in a corotating optical lattice, the number of vortices
increases linearly with rotational frequency � and diverges
when the rotational frequency approaches the harmonic trap
frequency [19]. However, no such divergence in the vortex
number has been observed in the experiments of Williams
et al [6]. Subsequently Kato et al. [7] argued that such
divergence in the number of vortices could be avoided if one
considers an optical lattice with a Gaussian envelope of the
laser beams. We show that the nondivergence of the number
of vortices for � → 1 also occurs if the BEC is trapped in an
anisotropic double-well potential. We have also addressed the
problem of the relation between the surface-mode frequency
and the critical rotational frequency �c for rotating a BEC
in a double-well trap potential. For the case of a harmonic
trap (single-well) potential the initial surface-mode excitation
that leads to single-vortex formation has angular momentum
l = 2. However, for the case of a double-well trap potential,
the problem is nontrivial as in this case it is conjectured
that higher-order surface modes with l = 4 are expected to
contribute to the initial motion of the rotating condensate that
leads to the vortex formation [17].

We consider the two-dimensional (2D) dimensionless
time-dependent Gross-Pitaevskii equation (GPE) (i − γ )ψt =
[− 1

2 (�2
x + �2

y) + V (x,y) − μ + p|ψ |2 − �Lz]ψ [5] for the
formulation of our problem. The potential V (x,y) is the sum
of two potentials VDW(x,y) + Vlattice(r). Here VDW(x,y) is the
anisotropic double-well trap potential given by VDW(x,y) =
1
2 (x2 + λ2y2) + V0e

−x2/2σ 2
, where V0 denotes the depth of the

double-well potential and λ = ωy/ωx denotes the anisotropy
parameter; Vlattice denotes the optical lattice potential and is
given by

Vlattice(r) =
∑
n1,n2

V1 exp

(
−|r − rn1,n2 |2

(σ ′/2)2

)
.

Here rn1,n2 = n1a1 + n2a2 denotes the lattice points and V1 is
the strength of the laser beam. For the triangular optical lattice
(TOL), the two lattice unit vectors are given by a1 = a(1,0)
and a2 = a(−1/2,

√
3/2), whereas for the square optical lattice

(SOL) a1 = a(1,0) and a2 = a(0,1). The spatial coordinates,
time, condensate wave function, and rotational frequency are
in units of a0, ω−1

x , and a
−3/2
0 , and ωx , respectively, where
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a0 = √
�/mωx . The strength of the potentials V0 and V1 are in

units of �ωx . The two-body interaction parameter p is given
by p = 4πasN/Rz, where as is the s-wave scattering length,
N is the total number of particles, and Rz is the condensate size
along the z direction. In addition, μ is the chemical potential
and γ is the phenomenological dissipation parameter. The
dissipation term enables the system to relax into an equilibrium
configuration. The value of the dissipation parameter γ has
been determined by fitting theoretical results with experiments
to be 0.03. We have used the same value in our calculations.
Small variation of γ only influences the relaxation time scale,
but does not change the ultimate steady-state vortex structure.
For discussions on the dissipation mechanism see [20,21].

The Crank-Nicolson scheme is used to numerically solve
the 2D GPE. For our simulation, we set a small spatial step
	x = 	y = 0.04 and time step 	t = 0.0005. The dissipation
parameter is set to γ = 0.03. The lattice constant a is fixed
as a = 2.2 and p = 1000. The parameters are chosen from
the experiments of 87Rb [6,7]. All the quantities plotted in the
figures are dimensionless.

We obtain below the expression for the surface-mode
frequency for the rotating condensates trapped in a double-well
potential using the time-dependent variational analysis. For
this we set Vlattice(r) = 0 and λ = 1. As the condensate is
trapped in the double-well-shaped potential, we use the ansatz
for the condensate wave function to be of the form

ψ(x,y,t) = c(t)x2 exp{− 1
2 [α(t)x2 + β(t)y2 − 2iγ (t)xy]}.

In the presence of rotation, the centrifugal term −�Lz

shifts the surface mode with l = 4 (for the double-well trap
potential) by ±4�. By following a similar procedure for
finding the surface-mode frequency for the harmonic trap
potential case [22], we obtain the lowest-energy surface-mode
frequency for a BEC trapped in a rotating double-well potential
as ω−4 = ω − 4� [23]. This relation shows that the dynamical
instability that leads to the visible vortex formation begins at
� = ω/4. Table I shows the variation of the surface-mode
frequency � = ω/4 and the critical rotational frequency �c

obtained numerically with nonlinear interaction parameter p

and the depth of the double-well potential V0. It can be seen
that �c agrees quite well with the value

√
l/ l = 0.5 for l = 4.

This shows that the initial condensate motion that leads to the
vortex formation indeed consists of the higher-order surface
modes with l = 4. The comparison between the two frequencies
shows that the surface-mode frequency is much smaller than
�c. This is unlike the harmonic (single-well) trap case, where
the surface-mode frequency is quite close to �c [22].

TABLE I. Surface mode frequency � and critical rotational
frequency �c.

Theoretical � = ω/4 Numerical �c

p V0 = 40 V0 = 20 V0 = 40 V0 = 20

1000 0.258 0.220 0.47 0.46
800 0.279 0.237 0.49 0.48
600 0.307 0.260 0.52 0.52
400 0.346 0.297 0.57 0.56
200 0.402 0.359 0.62 0.63
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FIG. 1. (Color online) (a) Condensate density |ψ2| for a triple-
well trap and (b) phase profile of ψ for � = 0.9 at t = 300. Here
V0 = 40 and σ = 0.5.

Figure 1(a) shows the vortex lattice formation in a
BEC trapped in a symmetric triple-well potential given by
VTW(x,y) = 1

2 (x2 + y2) + V0e
−(x+3)2/2σ 2 + V0e

−(x−3)2/2σ 2
. In

the central potential well, the vortices form a one-dimensional
linear chain structure. However, in the two other wells on both
sides of the central well, the vortex lattice structure is the
usual Abrikosov lattice. The hidden vortices that form in the
two barrier regions around the central potential well are shown
as phase defects in the corresponding phase profile in Fig. 1(b).
We have also confirmed numerically the presence of the hidden
vortices in this case from the Feynman rule, which can also be
written as Nt/2 = lz, where Nt is the total number of vortices
(visible plus hidden) in the condensate and lz is the average
angular momentum per atom in equilibrium [18,19,21].

We derive the Feynman rule for the rotating BEC
when trapped in an anisotropic double-well potential VDW =
1
2m(ω2

xx
2 + ω2

yy
2) + V0e

−x2/2α2
. The effective potential in the

presence of the rotation is

V (�) = m

2
ω2

xx
2

(
1 − �2

ω2
x

− V0

mω2
xα

2

)

+ 1

2
ω2

yy
2

(
1 − �2

ω2
y

)
+ V0,

where we have retained terms only up to second order in
x/α. Using the Thomas-Fermi approximation, we neglect the
kinetic energy term in the Gross-Pitaevskii equation [19] to
get

μ′
TF(�) = m

2
ω2

xR
2
x(�)

(
1 − �2

ω2
x

− a

)

+ 1

2
mω2

yR
2
y(�)

(
1 − �2

ω2
y

)
.

Here μ′
TF(�) = μTF(�) − V0, μ′

TF(0) = μTF(0) − V0, and
a = V0

mω2
xα

2 . The radius of the condensate can be taken as the
average of the condensate radius along the x and y directions
as R(�)2 = 1

2 [R2
x(�) + R2

y(�)], where Rx(�) [Ry(�)] can
be obtained by putting Ry(�) = 0 [Rx(�) = 0] in the above
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expression of μ′
TF(�). We thus obtain

R(�)2 = μ′
TF(�)

m

⎛
⎝ 1(

1 − �2

ω2
x

− a
)
ω2

x

+ 1(
1 − �2

ω2
y

)
ω2

y

⎞
⎠ .

The normalization condition
∫

ψ∗ψ dx dy = 1 gives the rela-
tion between μ′

TF(�) and μ′
TF(0) as μ′

TF(�)/μ′
TF(0) = (�)1/4,

where

� =
⎛
⎝

(
1 − �2

ω2
x

− a
)(

1 − �2

ω2
y

)
(1 − a)

⎞
⎠ .

Using this relation and the values of Rx(0) and Ry(0) as
obtained above, the condensate radius can be written as

R(�)2 = �

2

(
(1 − a)Rx(0)2

1 − a − �2

ω2
x

+ λ2Ry(0)2

λ2 − �2

ω2
x

)
,

where λ = ωy

ωx
. We thus obtain the Feynman rule for the double-

well trap potential in our dimensionless unit as N = �R2(�),
where

R2(�) = �

2

[
R2

x(0)

(
1 − b

1 − b − �2

)
+ R2

y(0)

(
λ2

λ2 − �2

)]
,

b = V0/σ
2, σ = α/a0, and

� =
(

(1 − �2 − b)(1 − �2/λ2)

1 − b

)1/4

.

Here Rx(0) and Ry(0) are the condensate radii along the
x and y directions, respectively, in the ground state. For
a harmonic symmetric trap b = 0, λ = 1, Rx = Ry = R⊥,
� = (1 − �2)1/2, and we get back the result R2(�) = R⊥(0)2

(1 − �2)−1/2 [7].
From the Feynman rule as derived above, it could be seen

that for the isotropic case (λ = 1) the radius of the condensate
R(�) → ∞ when � → 1, similar to the case of the harmonic
trap. On the other hand, for the anisotropic case (λ 	= 1) the
radius of the condensate depends on the anisotropy parameter
λ. Whenever λ < 1, the term λ2 − �2 becomes negative and
the condensate becomes unstable. However, for λ > 1 the
rotation at � = 1 is also possible. This is shown in Fig. 2.
It could be seen from the figure that the analytical Feynman
rule for the number of vortices matches quite well the total
number of vortices Nt as obtained numerically. It may be noted
that for λ > 1, the divergence is shifted to � > 1. Because
of this it is now possible to rotate the cloud at a frequency
above the critical value � = 1. However, experimentally there
is a limit to which the rotational frequency can be increased
beyond the value � = 1 because of the increased heating of the
condensate, which leads to a drop in the number of vortices. For
example, in Ref. [6] the vortices could be observed only up to
�
ωr

= 1.15. Therefore, the anisotropy parameter λ = ωy

ωx
can be

appropriately adjusted to shift the divergence to a frequency
value that is beyond the experimental limit of the rotational
frequency �.

In Fig. 3 we present the lattice potential energy obtained
from numerical simulations for different strengths V1 of the
TOL (red points) and SOL (blue line with points). It shows that
the transition from the Abrikosov vortex lattice to the pinned
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FIG. 2. (Color online) Variation of the total number of vortices
with rotational frequency �. The solid line represents analytical
results and the points represent the numerical results for λ = 1.1.
The inset shows the isotropic case λ = 1. Here V0 = 40 and σ = 0.5.

lattice occurs through the intermediate coexisting state, similar
to that observed for the case of the harmonic trap potential [5].
The comparison between the two cases shows that the strength
of the TOL potential required for the pinning of the visible
vortices is lower than that of the SOL case. This is expected
since the Abrikosov vortex lattice structure is commensurate
with the TOL. Figure 4(a) shows the completely pinned vortex
lattice for the SOL with strength V1 = 2.2. When the strength
of the SOL is further increased to V1 = 3, we find that there
is an extra unpinned vortex on both sides of the central barrier
region as shown in Fig. 4(b). A defect of this kind has already
been observed in an experiment for the BECs trapped in a
harmonic potential [4]. It is interesting to note that such defects
do not appear for the TOL (not shown here). This is because
of the commensurate nature of the Abrikosov vortex lattice
and the TOL, which allows all the vortices to get pinned to
the optical lattice pinning sites, leaving no room for unpinned
defect vortices.
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FIG. 3. (Color online) Lattice potential energy against the
strength V1 of the TOL (red points) and SOL (blue line with points).
Here � = 0.7, V0 = 40, and σ = 0.5.
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FIG. 4. (Color online) Pinned vortex lattice for the SOL potential
at (a) V1 = 2.2 and (b) V1 = 3 and t = 250. Here � = 0.9 and σ =
0.5.

Figure 5 shows the pinning of the vortices for the case
of rotating a BEC in a triple-well trap potential. Due to the
linear lattice structure of the vortex lattice [see Fig. 1(a)],
only alternate vortex sites in the linear chain of vortices
coincide with the pinning sites of the TOL and can get pinned.
This is exactly shown by our numerical simulation and in
Fig. 5(a), where we can see that only alternate vortices of the
central linear chain of vortices are pinned. The vortices in the
neighboring two wells form the usual Abrikosov lattice and
therefore all these are pinned to the TOL. On the other hand,
all the vortex sites in the linear chain of vortices coincide with
the SOL pinning sites and can get pinned. This is shown in
Fig. 5(b), where we can see that all the vortices in the central
well are completely pinned. In the neighboring two wells, all
the vortices are also pinned, except the defect vortices.

We now consider the pinning of the hidden vortices. This is
a difficult problem because the pinning, if any, could be seen
only as defects in the phase profile of the condensate density.
To get a clear picture of the pinning of hidden vortices, we first
increase the number of hidden vortices in the condensate. This
can be done by adequately increasing the width of the central
barrier region of the double-well trap potential (by increasing
σ ) such that this region can accommodate a sufficient number
of hidden vortices. Interestingly, by increasing the width, we
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FIG. 5. (Color online) Pinned vortex lattice for the (a) TOL and
(b) SOL potentials. Here p = 1000, � = 0.9, V1 = 3, and σ = 0.5.
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FIG. 6. (Color online) (a) Condensate density and (b) its phase
profile. Here � = 0.9, V1 = 0, and σ = 2.

find the existence of a different type of hidden vortex located
in the central barrier region. The phase profile of this type
of hidden vortex is different from that of the hidden vortices
reported earlier in the literature [16]. Figure 6(a) shows the
visible vortices that form the usual Abrikosov lattice on both
sides of the larger central barrier region. From the phase
profile in Fig. 6(b) we can see that there are two types of
such phase defects in the central barrier region. There are
some lines that end in the central barrier line where the phase
changes discontinuously and these defects are the usual hidden
vortices reported earlier in the literature. Then there are other
lines where the phase changes discontinuously from black
to white (similar to the phase profile of the visible vortices)
and the end of these lines represent the phase defects. These
phase defects [shown by red points in Fig. 6(b)] represent
a different type of hidden vortex. We identify these phase
defects as hidden vortices since there are no visible vortices
at these positions (red points) as seen from Fig. 6(a). This
is also checked by calculating the average value of the
angular momentum and verifying the Feynman Nt/2 = lz
rule as mentioned above. From numerical simulations we
find that only this type of hidden vortex gets pinned to the
optical lattice sites. Figure 7(a) shows the pinning of the
visible vortices in the SOL potential. Figure 7(b) shows the
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FIG. 7. (Color online) (a) Pinned vortex lattice for the SOL
potential and (b) its phase profile. Here � = 0.9, V1 = 100, and
σ = 2.

053625-4



PINNING OF HIDDEN VORTICES IN BOSE-EINSTEIN . . . PHYSICAL REVIEW A 89, 053625 (2014)

corresponding phase profile. As we increase the strength of
the SOL potential, the hidden vortices gradually move away
from their positions and finally get pinned to the SOL sites.
The magnified picture of the central region is shown in
the right top corner of the figure, where the pinned hidden
vortices are shown by red points. Similar pinning of the
hidden vortices is also seen for the TOL for lattice strength
V1 = 100.

In conclusion, we have derived analytically the surface-
mode frequency and the Feynman rule for the BEC in a rotating
double-well trap potential and compared them with numerical
results. We have shown the existence of the surface mode with
l = 4 for the double-well potential and the nondivergence of

the vortex number for the anisotropic double-well potential
when � → 1. The linear vortex lattice structure as well as its
interesting pinning effect for the condensate in a rotating triple-
well trap potential is expected to be very useful in applications
such as quantum computing [24]. We have shown the existence
of hidden vortices whose phase profile is similar to that of the
visible vortices. It is shown that this type of hidden vortex
also gets pinned, but for a much higher strength of the optical
lattice.
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