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Radio-frequency spectroscopy of the attractive Hubbard model in a trap
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Attractive interaction between fermions can lead to pairing and superfluidity in an optical lattice. In contrast to
the “continuum,” on a lattice the trap-induced density variation can generate a non monotonic profile of the pairing
amplitude and completely modify the spectral signatures of any possible pseudogap phase. Using a tool that fully
captures the inhomogeneity and strong thermal fluctuations, we demonstrate how the crucial radio-frequency
signatures of pairing in a trapped attractive fermion lattice are “inverted” compared to the traditional continuum
case. These features would be central in interpreting any spectroscopic hint of fermion pairing and superfluidity.
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I. INTRODUCTION

Optical lattices allow controllable cold atom realization
[1–4] of interacting quantum lattice models. The achievements
include the observation of a Fermi surface [5] and Mott
insulating phase [6,7] for repulsive fermions, and the evidence
of superfluidity (SF) [8] and anomalous expansion [9] in
the attractive case. While the canonical antiferromagnetic
state [10,11] of repulsive fermions and superfluidity in the
single-band attractive Hubbard model (AHM) [12] remain
inaccessible, the observation of precursors [13] to these states
would already be a major advance.

Even if a pairing-induced gapped, or pseudogap (PG), phase
is thermally accessible, the spectroscopic signatures would
be hard to interpret. The well-developed theory of pairing
in the “flat” AHM [14–16] provides no obvious guidance
on the angle-resolved spectrum of the trapped lattice. The
complication has a simple origin. Trapping potentials lead to
a monotonic increase in density, as one moves from the edge
to the center of the trap, but the pairing amplitude variation
becomes nonmonotonic once the central density crosses
unity. The nonmonotonicity affects the spatial character of
excitations and generates a spectroscopic response differing
drastically from the famed “backbending” that one observes
in the flat lattice or the trapped continuum gas [17,18].

We completely solve this problem, using a Monte Carlo
(MC) method that handles both the inhomogeneity and
thermal fluctuation on large lattices. We predict the follow-
ing: (1) Increasing confinement leads to rapid decrease in
the overall spectral gap, pushing weight to low frequency,
and quick suppression of the coherence feature at the gap
edge. (2) Radio frequency spectroscopy (RFS), the cold
atom analog of angle resolved photoemission spectroscopy
(ARPES), shows “backbending,” the traditional signature of
a pairing gap, only for weak trapping and low temperature,
with the momentum-dependent gap smallest near k ∼ kF ∼
{π/2,π/2}. For stronger confinement, however, this inverts to
“forward bending” with the gap largest near k ∼ kF , despite
the presence of strong pairing. (3) This “inversion” is generic
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and arises when the density at the trap center exceeds 1. It
survives beyond Tc but vanishes for T � Tc.

We provide an analysis of the effect in terms of the
quasiparticle states in the trap and demonstrate an approximate
“local density” approach that captures most of the MC-based
features and can yield reliable RF spectra on very large,
experimentally relevant, lattices.

II. MODEL HAMILTONIAN AND METHOD

We study the two-dimensional (2D) attractive Hubbard
model in the presence of a harmonic potential:

H = H0 − |U |
∑

i

ni↑ni↓, (1)

where

H0 = −t
∑
〈ij〉σ

c
†
iσ cjσ +

∑
iσ

(Vi − μ)niσ . (2)

The first term denotes the nearest neighbor tunneling amplitude
of atoms on the optical lattice, the confining potential has form
Vi = V0(x2

i + y2
i ), μ is the chemical potential, and U > 0 is the

strength of attractive on-site interaction. xi and yi are measured
in units of lattice spacing a. On a L × L lattice, the corner value
Vc = V{L/2,L/2} = 2V0(La/2)2. We use L = 24.

The spatial variation in mean value and the thermal
fluctuation about the mean pairing amplitude are crucial in
describing the physics of this system. Unbiased calculations in
the homogeneous limit employ determinantal quantum Monte
Carlo (DQMC) [14–16] to access finite temperature properties.
While there are a few recent calculations using large system
size [11,20,21], they are focused on thermodynamic properties
and have not touched upon the spectral functions of the AHM.

We use a strategy used earlier on moderately sized systems
[22,23], augmented by a cluster Monte Carlo technique [24]
that readily allows access to system size ∼30 × 30. We first
derive an effective Hamiltonian by decoupling the interaction
term simultaneously [25] in the pairing and density channels
via a Hubbard-Stratonovich (HS) transformation. The exact
transformation puts a constraint on the coupling constants
in these two channels [26]. We choose both couplings to be
unity and neglect the time dependence of the auxiliary fields,
to reproduce Hartree-Fock-Bogoliubov-de Gennes (HFBdG)
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theory at T = 0. Our model is

Heff = H0 + Hcoup + Hstiff, (3)

where

Hcoup =
∑

i

(�ic
†
i↑c

†
i↓ + ��

i ci↓ci↑) −
∑

i

φini (4)

and

Hstiff = 1

U

∑
i

(|�i |2 + φ2
i

)
. (5)

�i = |�i |eiθi is a complex scalar, and φi is a real scalar field.
The inclusion of φi is essential to capture the Hartree shift in
the inhomogeneous system. The T = 0 state corresponds to
solving δE/δ�i = 0 and δE/δφi = 0, where E is the energy
in the {�,φ} background and reproduces mean field theory
[27]. Finite temperature configurations {�i,φi} follow the dis-
tribution P {�i,φi} ∝ Trc,c†e−βHeff and may differ significantly
from the mean field state.

We use the Metropolis algorithm to update the |�|, θ , and
φ variables. This involves solution of the HFBdG equation
[27,28] for each attempted update, to compute the fermion
trace. For determining the acceptance of a move we solve
the HFBdG equation on a 8 × 8 cluster around the update
site. Global properties like pairing field correlation, density
of states, etc., are computed via solution of the HFBdG
equation on the full 24 × 24 system in equilibrium {�i,φi}
configurations. We have checked (see Sec. V A) that our Tc

matches the DQMC estimate [16] over a wide U/t window.
Large-scale determinantal Monte Carlo (DQMC) results are
not available for the trapped problem, so we compared the
results of our method to DQMC data in the “flat” problem.
DQMC results for the superfluid transition temperature (Tc)
are available at density n = 0.7 on a 10 × 10 lattice for U/t

varying from 2 to 8.

III. SPATIAL BEHAVIOR AT FINITE TEMPERATURE

The parameter space of the trap problem involves U/t ,
Vc/t , average density nav, and temperature T/t . To keep the
effort manageable we set U/t = 6, where the Tc in the flat
system is maximum. We have explored the variation from
weak to strong confinement over a wide density window but
will show detailed results mainly at nav = 1.

For V0 = 0 the model is known [14,15] to have a SF ground
state for 0 < n < 2, except at n = 1 where there is coexistence
of SF and DW correlations. For n 	= 1 the SF has Bardeen-
Cooper-Schrieffer (BCS) character at U/t 
 1 and a Bose-
Einstein condensed (BEC) form at U/t � 1. What is the effect
of confinement?

Figure 1(a) shows the ground state for varying nav =
Nf /L2, where Nf is the number of fermions, and corner
potential Vc. At finite V there is a small window near nav = 1
where DW correlations survive, up to Vc/t ∼ 0.8 [29]. Beyond
this window the system has only SF order. However, the spatial
extent of the SF shrinks with increasing Vc or nav since the
central part of the trap becomes doubly occupied (ni = 2)
suppressing �i . Figure 1(b) shows the Vc-T phase diagram
at nav = 1. There is a narrow SF+DW window at small Vc,
beyond which there is only SF order, with the Tc (left axis)
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FIG. 1. (Color online) (a) Ground state of the 2D AHM at
U/t = 6 for varying average dimensionless density nav and trapping
strength Vc/t . The tiny region near nav = 1 corresponds to strong
density wave (DW) correlation coexisting with superfluidity [19].
The band insulator (BI) refers to the presence of a ni = 2 core.
The B and I regions, separated by the red dotted line, correspond
to “backbended” and “inverted” RFS. (b) Finite temperature phase
diagram at U/t = 6 and nav = 1. Beyond the small window at weak
Vc the system has only SF order at low temperature, with an increasing
BI core for Vc/t � 4. NG refers to the gapped normal state. The Tc

(on left axis) falls monotonically with Vc as does �0/t (blue dots,
right axis); the T = 0 gap in the spectrum. The dotted line is a guide
to the eye. The Tc at Vc = 0 would vanish in the infinite volume limit;
the results here are for a 24 × 24 system.

decreasing quickly with increasing confinement. The T = 0
spectral gap �0 (right axis) falls even more sharply, dropping
from ∼4.6t at Vc = 0 to ∼1.5t at Vc = 6t .

Figure 2 shows the radial variation of the thermal av-
erage of ni = ∑

σ c
†
iσ ciσ (left), |�i | (center), and 
i =

|�i ||�i+δ| cos(θi − θi+δ) (right). The coordinate i is r =√
x2 + y2/(L/

√
2), varying along the diagonal. 
i tracks

nearest neighbor correlation in that direction. We have set
Vc = 3t and nav ∼ 1 and T = 0,0.08t,0.3t .

Figure 2(a) shows the expected monotonic fall in 〈〈nr〉〉
at all T . The cloud at T = 0.3t is slightly broader than
at T = 0. The pairing field amplitude in Fig. 2(b) is more
interesting. It is nonmonotonic at all T , a peculiarity of the
lattice where it grows with n till n = 1 and falls beyond.
The T = 0 result for 〈|�r |〉 is what is expected from mean
field HFBdG theory, with a clear peak in the region where
nr ∼ 1. At T = 0.08t the amplitude profile looks similar
to T = 0, but with a large growth in the corner where it
was zero at T = 0! The trend amplifies at T = 0.3t where
〈〈|�r |〉〉 is much less inhomogeneous than at T = 0. This is
due to the low-amplitude stiffness in regions with low |�i |
at T = 0. We provide a connection to the flat system physics
in Sec. V B.

Figure 2(c) is meant to highlight the suppression of phase
correlation with temperature. At T = 0 the phases are locked,
so 
i = |�i ||�i+δ| ≈ |�i |2. At T = 0.08t ∼ 0.7Tc while the
amplitudes are not very different from T = 0 the phase
correlation is weakened. By T = 0.3t while amplitudes have
grown, NN phase correlations have weakened to about 20% of
the T = 0 value. Long-range phase correlation is of course lost
at Tc. These spatial characteristics are not directly measurable,
experimentally, so we move to the spectral signatures that RF
spectroscopy can probe.

Figure 3 shows the single particle density of states (DOS).
Figure 3(a) shows Vc dependence at T = 0. There are two
primary effects of trapping: (1) the effective gap reduces with

053609-2



RADIO-FREQUENCY SPECTROSCOPY OF THE . . . PHYSICAL REVIEW A 89, 053609 (2014)

0 0.2 0.4 0.6 0.8 1
r/a

0

0.5

1

1.5

2

T/t=0.001
     =0.080
     =0.300

(a) n
i

0 0.2 0.4 0.6 0.8 1
r/a

0

0.1

0.2

0.3

0.4
(b)|Δ

i
| /t

0 0.2 0.4 0.6 0.8 1
r/a

0

0.05

0.1

0.15 (c) Φ
i 
/t

2

FIG. 2. (Color online) Spatial variation and temperature dependence at U = 6t , Vc = 3t . (a) density, 〈〈ni〉〉, (b) pairing field magnitude,
〈|�i/t |〉, (c) nearest neighbor pairing field correlation. All patterns are thermally averaged. r/a is the dimensionless normalized radial distance
from the center along the diagonal.

increasing Vc due to appearance of low-frequency spectral
weight and (2) the “coherence peak” and sharp gap edge
are blurred. The decrease in the gap arises from the smaller
pairing amplitude in regions which have density ni → 0
or ni → 2. We have explicitly checked this from the local
density of states (LDOS). In fact at n ∼ 1.9 the pairing gap
in the flat system is 0.8t , not very different from the threshold
that we observe. The ni ∼ 1 region contributes to spectral
weight at |ω| � 2.5t , consistent with results from the flat
system. In a flat system the threshold, ωgap, and the coherence
peak location, ωcoh, coincide.

At T ∼ 0.08t , Fig. 3(b), the DOS for Vc = 0.1t and Vc = t

look very similar, with a reduction of ωgap from the T = 0 value
and suppression of the coherence peak. The Vc = 3t case also
shows reduction of ωgap with respect to T = 0, but continues
to be distinct compared to the weaker Vc cases. Since 〈|�i |〉
has not changed significantly with respect to T = 0 [Fig. 2(b)]
these changes are attributable to phase disorder.

By the time T = 0.3t , Fig. 3(c), the DOS in the three
cases are essentially similar, since the 〈|�i |〉 homogenizes
even in the trap (Fig. 2). The density does continue to be
inhomogeneous, affecting φi , but |�i | is more important for
the low-frequency spectrum.

IV. MOMENTUM-RESOLVED SPECTRAL FUNCTION

The momentum resolved spectral function, Fig. 4, is more
dramatically affected by trapping. The 3 × 3 panel shows the
spectrum A(k,ω). The formal definition in terms of HFBdG
eigenstates is given in the Appendix. In each panel, the x axis
corresponds to the k scan from {0,0} to {π,π}, the y axis is
the frequency ω, and A(k,ω) is color coded as indicated. The
columns are for Vc = 0.1t,t,3t (left to right), the rows are
T = 0,0.08t,0.3t (top to bottom). The size dependence of our
results is shown later.

The left column at Vc = 0.1t shows the thermal evolution
in an essentially flat system. (1) The top panel shows the
ground state. Here A(k,ω) ≈ u2

kδ(ω − Ek) + v2
kδ(ω + Ek),

where Ek =
√

(εk − μ)2 + �2, uk and vk are the usual BCS
coherence factors, εk is the tight binding dispersion, and
� is the uniform pairing amplitude. The two dispersing
bands correspond to ±Ek, and one observes the expected
“backbending” in the lower curve near k ∼ {π/2,π/2} [30],
where, for us, εk ≈ μ. (2) The middle panel shows that at
T = 0.08t coherent particle-hole mixing is almost lost. For
k ∼ {{0,0} → {π/2,π/2}} the spectrum is mainly “particle-
like,” while for k ∼ {{π/2,π/2} → {π,π}} it is “hole-like.”
There is significant mixing only near k ∼ {π/2,π/2}. There is
a faint surviving trace of the mean field, ±Ek, dispersion, the
+Ek branch for k ∼ {0,0}, and the −Ek branch for k ∼ {π,π}.
Effectively there are three branches in A(k,ω) at each k. (3)
The bottom panel shows that at T = 0.3t there is no trace of the
mean field Ek, and the spectrum is an incoherent combination
of upper and lower band features at all k.

For Vc = t , the middle column, the moderate confinement
already shows signatures in A(k,ω). (1) In the top panel, the
T = 0 spectral functions are broad since k states overlap with
multiple trap eigenstates. Low k states have large (and broad)
weight in the lower band while k ∼ {π,π} involves broad
weight in the upper band. The gap between the upper and lower
bands is still smallest at k ∼ {π/2,π/2}, and the backbending
feature has not vanished. (2) At T = 0.08t and T = 0.3t the
results are similar to what we saw for the flat case, with some
extra (trap induced) broadening noted above.

The third column shows results at Vc = 3t where the trap
center density is ni ≈ 2. The ARPES differs qualitatively from
the flat case. (1) At the top, at T = 0 the A(k,ω) is very
broad since a large number of trap eigenstates overlap with
|k〉. The interband separation now has a maximum for k ∼
{π/2,π/2} and is minimum for k → {0,0} or {π,π}. This
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FIG. 3. (Color online) DOS for increasing degree of confinement at three temperatures: (a) T = 0, (b) T = 0.08t , and (c) T = 0.3t .
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FIG. 4. (Color online) The spectral function A(k,ω) for a “diagonal scan” of momentum from ka = {0,0} → {π,π}. Along the row, Vc

varies from 0.1t,t,3t (left to right). Down the column T varies from 0,0.08t,0.3t . The Tc of the unconfined system is ∼0.14t ; at Vc = 3t

it is ∼0.1t .

is a case of “forward bending” rather than backbending. If
RF spectroscopy probes the edge of the lower band it would
obtain a concave pattern, rather than the convex result that
traditionally indicates a pairing gap. The gap, as is obvious
from the full A(k,ω) is nevertheless present. (2) In the middle,
at T = 0.08t all gaps are smaller compared to T = 0 but the
unusual k dependence persists. (3) In the bottom, at 0.3t there
is only the hint of the k dependent gap observed at lower T .
How do we relate these results to spatial structure?

The overall DOS is N (ω) = −(1/π )Im
∑

i Gii(ω), i.e.,
a sum of the local DOS over the system where Gii(ω) is
the local projection of the spin averaged fermion Green’s
function. If the density ni were slowly varying, then as a start-
ing approximation we could use G

trap
ii (ω) ≈ Gflat(ω,n = ni).

We have checked that this works reasonably even on our
24 × 24 system. The overall DOS is then given by N (ω) ≈

∫
dnP (n)Nflat(ω,n), where Nflat(ω,n) is the flat system DOS at

density n and the density distribution P (n) = 1
N

∑
i δ(n − ni)

can be computed from the MC density profile.
This immediately creates a connection between the density

(and auxiliary field) variation in the trap and the features
observed in the DOS. The ARPES, however, involves the
overlap 〈k|m〉 of a plane wave state with a BdG eigenstate
ψm. If all ψm were extended over the system, and overlap all
|k〉, the strange gap modulation with k would not arise.

We find that the BdG states are radially localized to a
remarkable degree. Section V C shows typical real space and
momentum space patterns for Vc = 3.0t . The lowest energy
excitation at T = 0, at Em ∼ 0.9t , is localized near the corners,
where ni → 0. This has Fourier modes only near k = {0,0}.
For Em � 1.3t the excitations shift to the center of the trap and
involve modes near k ∼ {π,π}. Only for Em � 2.5t , where the
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BdG states have large weight on the ni ≈ 1 annulus do we see
contribution at k ∼ {π/2,π/2}.

Although our system size is larger than accessible in typical
DQMC studies, it is well below the ∼100 × 100 lattices used
in experiments. This is where the local density approximation
(LDA) to P (n) becomes useful. LDA prescribes that n

trap
i ≈

nflat(μi), where μi = μ − Vi and nflat(μ) can be computed
from DQMC or analytic approximations. In Sec. V D we
compare the MC based ARPES data with results obtained
using LDA on the same size. The agreement is remarkable.
We extended this to a huge ∼200 × 200 system, and all the
qualitative features of our original result survive.

V. DISCUSSION

A. Benchmarks

To benchmark our result we compare the superfluid tran-
sition temperature (Tc) obtained by our strategy to available
DQMC results at density n = 0.7 on a 10 × 10 lattice for
U/t varying from 2 to 8. Figure 5 compares our results to
this benchmark. We capture the nonmonotonic character and
the correct peak location, and our Tc estimate is within
10% of the DQMC result at all U/t . This is far superior
to mean field theory, which would have generated a Tc

growing monotonically with U/t , with an order of magnitude
overestimate already at U/t = 6.

B. Origin of thermal behaviour

In Fig. 2 the mean value of |�i | tends to become indepen-
dent of position ri with growing T , even though the density ni

remains inhomogeneous. This is related to the lower amplitude
stiffness of regions with low |�| at T = 0 and has a direct
correspondence with the behavior in flat systems. In Fig. 6 we
have studied the mean value �̄(n,T ) = (1/N )

∑
i〈|�i |〉n,T in

the flat system and discovered that although �̄ is strongly n

dependent at T = 0, with a 70% variation as n changes from
1.0 to 0.1, at T = 0.3t that variation is only ∼30%. This flat
system effect shows up in the trap as a local amplitude stiffness
that depends on the T = 0 magnitude of |�| in that region.

FIG. 5. (Color online) Comparison of superfluid Tc obtained
within our static auxiliary field (SAF) scheme, with DQMC
(Ref. [15]) for various values of interaction strength. The results
are for a flat system with density n = 0.7 and lattice size 10 × 10.
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FIG. 6. (Color online) The thermal average of |�/t | on a “flat”
system for varying density (n) and temperature (T ). The T = 0.001t

result corresponds to mean field theory; the finite T results involve
fluctuations within the SAF scheme.

C. Behaviour of Bogoliubov-de Gennes (BdG) wave functions

We analyzed the BdG wave functions in real space and in
terms of their momentum content and show a few illustrative
examples in Fig. 7 for Vc = 3t . BdG wave functions in real
space have been represented by ui,vi and in momentum space
as Uk,Vk . The center of the spatial maps is ri = (0,0). For the
momentum maps the center is k = (0,0), and the corners are
(±π,±π ).

Our observations are the following: (1) The first row of
Fig. 7 corresponds to the lowest energy excitation. One can
see that (a) the state has large amplitude in the low-density
region at the corners and (b) Uk and Vk are large near k = 0.
The low gap in A(k = 0,ω) arises due to overlap with this
excitation. (2) In the second row, E = 1.326t , higher up in the
spectrum. This state (a) is mainly localized at the center of the
trap, i.e., the highest density region, and (b) is the first state
with significant k = (π,π ) content. The |�i | here is small,
but larger than in the corner region. (3) Row 3 shows states
with contribution at k = (π/2,π/2). These are spread over the
system but have significant weight in the n ≈ 1 annulus, where
|�| at T = 0 is largest. The states are at significantly higher
energy than the states in rows 1 and 2.

D. Extrapolation to large system size

Pushing the “local density” approach to the momentum
resolved spectral function we checked the accuracy of this
approach in capturing A(�k,ω) in the trap. We computed
the “local density” based spectral function AL

trap(k,ω) as
follows:

AL
trap(k,ω) =

∫
P (n)Aflat(n,k,ω) dn. (6)

This prescription is incomplete without specifying P (n).
The first approximation is to use the PMC(n) that emerges from
the MC itself. This approach, although it does not require BdG
solutions on the large system, still requires MC-generated data
and is impractical on large sizes, ∼100 × 100, that are likely
to be used in experiments. For that P (n) itself needs to be
approximated.

We tested the standard prescription that, for a slowly
varying density field, one can relate ni to a local chemical
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FIG. 7. (Color online) BdG eigenfunctions for three different excitation energies, along the row um
i ,Um

k ,vm
i ,V m

k . Along the column different
m, starting with the lowest Em.

potential μi = μ − Vi , where ni and μi are related by the
same equation of state as in the homogeneous system. That
relation we infer from numerical results on the flat system.
The μLDA itself is fixed by requiring 1

N

∑
i ni(μi) = nav. From

ni one can generate the “local density approximation” result
PLDA(n). This can be computed easily on any size, and we
generated it on 24 × 24 and 192 × 192 lattices.

Figure 8 compares the full HFBdG spectral function at Vc =
3t with three approximations (along the row) at T = 0. The
first panel shows the HFBdG result for A(k,ω), while the sec-
ond panel shows AL

trap(k,ω) based on PMC(n) integration. The
third panel shows AL

trap(k,ω) based on PLDA(n) on a 24 × 24
lattice; the fourth panel shows the result on a 192 × 192 lattice.

For the larger lattice the corner potential is kept at Vc = 3t , as
in the small system, so that the larger and smaller systems are
roughly equivalent. All the main features of the HFBdG based
calculation survive in the P (n)-based result. We have checked
that the correspondence works at finite temperature as well.

VI. CONCLUSIONS

We provide a solution to the angle-resolved spectral
properties of attractive fermions on a lattice in the presence
of confinement, crucial for any cold atom experiment. Even a
moderate trapping potential creates a “core” with low pairing
amplitude and generates spectral features that are widely

FIG. 8. (Color online) Comparison of the actual A(k,ω) (first column) with that based on P (n) obtained from the full calculation (second
column) and on P (n) obtained from LDA scheme for 24 × 24 lattice (third column) and 192 × 192 lattice (fourth column). All the figures are
for the ground state.
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different from the well-studied “continuum” model and the
“flat” Hubbard lattice. We point out a “forward bending”
feature that would be the RF spectroscopy signature of a
pairing gap, clarify the spatial origin of this feature, and
illustrate a scheme that allows access to the spectrum on
very large experimentally realized lattices. By analyzing the
spatial character of the BdG states and their momentum
content we have shown that the low-density region of the
trap induces a smaller gap at low momentum while the
high-density part of the trap contributes a smaller gap at high
momentum.
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APPENDIX: FORMAL DEFINITION OF A(k,ω)

The spectral function A(k,ω) for a given configuration of
�i,φi has been calculated via the following expression:

A(k,ω) =
∑

n,En�0

[|un(k)|2δ(ω − En) + |vn(k)|2δ(ω + En)],

(A1)

where

un(k) = 1

N1/2

N∑
i=1

eik·�ri un(�ri),

vn(k) = 1

N1/2

N∑
i=1

eik·�ri vn(�ri).

To get the final A(k,ω) it has been averaged over many
equilibrium configuration of �i,φi .
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