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Hydrodynamic long-time tails after a quantum quench
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2Department of Physics, New York University, 4 Washington Place, New York, New York 10003, USA

(Received 16 December 2013; published 9 May 2014)

After a quantum quench, a sudden change of parameters, generic many-particle quantum systems are expected
to equilibrate. A few collisions of quasiparticles are usually sufficient to establish approximately local equilibrium.
Reaching global equilibrium is, however, much more difficult as conserved quantities have to be transported for
long distances to build up a pattern of fluctuations characteristic for equilibrium. Here we investigate the quantum
quench of the one-dimensional bosonic Hubbard model from infinite to finite interaction strength U using
semiclassical methods for weak and exact diagonalization for strong quenches. Equilibrium is approached only
slowly, as t−1/2 with subleading corrections proportional to t−3/4, consistent with predictions from hydrodynamics.
We show that these long-time tails determine the relaxation of a wide range of physical observables.
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I. INTRODUCTION

States at thermal equilibrium can be described with only a
few macroscopic parameters like temperature T and chemical
potential μ. The fundamental question of how such an
equilibrium state can be reached for an interacting quantum
system has recently gained a lot of attention [1–8], partially
due to new experimental opportunities to study this question
using ultracold atoms. They allow one to realize simple
model Hamiltonians and to change their parameters practically
instantaneously to study thermalization in a closed quantum
system with unprecedented precision and control.

In a typical quantum quench experiment, one considers the
evolution of the ground-state wave function |�0〉 of an initial
Hamiltonian H0 after a sudden change of the Hamiltonian,
H0 → H . The time evolution |�(t)〉 = e−iH t |�0〉 of a many-
particle system occurs generically in three main steps: prether-
malization, local equilibration, and global equilibration. First
the wave function starts to adjust to the new Hamiltonian [4,9]
on a short time scale. After this, often a quasistationary
“prethermalized” state is obtained [10–13], where quasipar-
ticles have been formed but not yet scattered on each other.
Sometimes coherent oscillations characterize this regime for
large quenches [14–16]. In a second step, a few scattering
processes of the excitation are often sufficient to achieve
approximately a local equilibrium state. This can, for example,
be captured within a kinetic equation approach [17–19].
Finally the third step, the buildup of a global equilibrium after a
quantum quench, has received probably the least attention and
will be the focus of this paper. It is dominated by the diffusive
transport of conserved quantities, like matter or energy, over
large distances. It therefore leads to pronounced long-time
tails, well known from hydrodynamics.

Two situations have to be distinguished when studying
hydrodynamic long-time tails after a quantum quench: ho-
mogeneous and inhomogeneous systems. For example, if the
relaxation of ultracold atoms in a trap is considered, in general
the spatial distribution of, e.g., the energy will be different
before and after the quench. This implies that energy has
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to be transported over large distances of the order of the
size L of the system [20,21]. If this transport is diffusive,
this takes a very long time L2/D, where D is a diffusion
constant. In Ref. [20] this effect was studied quantitatively
for weakly interacting fermions released from a trap. Perhaps
more surprisingly, conservation laws and diffusion lead also to
extremely slow relaxation in translationally invariant systems
studied in the following. Here it is important to realize that
any classical or quantum state is characterized by a pattern of
fluctuations. Consider, for example, fluctuations of the energy
density δe = e − 〈e〉, in a system at T > 0, where correlations
decay on a finite length scale lc. In equilibrium and on length
scales large compared to lc, they can be described by the
equal-time correlation function

〈δe(r)δe(r ′)〉eq ≈ cv kBT 2 δ(r − r ′), (1)

where cv = (〈H 2〉 − 〈H 〉2)/(V kBT 2) is the specific heat per
volume. During equilibration, the system has to build up this
fluctuation pattern; see Fig. 1. If only energy is conserved, one
can describe the equilibration at long times by a stochastic
linearized diffusion equation [22]

∂te − D∇2e = ∇f, (2)

where 〈f (r,t)f (r ′,t ′)〉eq = 2DcvT
2δ(r − r ′)δ(t − t ′). As dis-

cussed in Appendix A, one obtains from a straightforward
solution of this equation in d spatial dimensions

〈δe(r,t)δe(r ′,t)〉− 〈δe(r)δe(r ′)〉eq ∼ t−d/2 + O(t−3d/4) (3)

for |	r − 	r ′|2 
 Dt . A simple scaling analysis using Eq. (2) as a
fixed point (see Appendix A) shows that correction terms [23]
to Eq. (2), like ∂x(e∂xe), lead to corrections vanishing as
1/t3d/4. The same results are obtained when additional diffu-
sive modes (e.g., particle density n) are included. The situation
is, however, different in systems with momentum conservation.
In this case the momentum current (i.e., the pressure) has
contributions proportional to (δe)2 and (δn)2. These are
relevant perturbations in dimensions d < 2, described by
the Kardar-Parisi-Zhang (KPZ) universality class [24–27] in
d = 1. In this case one expects that some modes relax as 1/t2/3

instead of 1/t1/2 as observed numerically [28].
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FIG. 1. (Color online) After a quench and subsequent thermal-
ization, the amplitude of local fluctuations of, for example, the energy
density changes. As energy has to be transported diffusively over large
distances to build up the new pattern of fluctuations, equilibration
takes long times, resulting in hydrodynamic long-time tails.

II. THE MODEL

In this paper we will study a quantum quench in a lattice
model without momentum conservation. We consider the one-
dimensional (1D) bosonic Hubbard model

H = −J
∑

i

a
†
i ai+1 + H.c. + U

2

∑
i

ni(ni − 1) (4)

after a sudden quench from an initial state at U = ∞ where
ni = a

†
i ai = 1 to a state with finite U .

We have chosen this model for four reasons: (i) The
bosonic Hubbard model is probably the many-particle model
best suited for experimental quench studies using ultracold
atoms [7,8,29], (ii) long-time tails are most pronounced in
1D, (iii) the 1D case is especially suited for numerical
studies, and, finally, (iv) in contrast to many other simple
1D models, the bosonic Hubbard model is not close to an
integrable point: the dominant excitations of the bosonic Mott
insulator, doublons and holons, have different dispersions and
can therefore equilibrate by simple two-particle collisions [30].

We first consider a weak quench from U = ∞ to a finite but
large U � J . In this limit a dilute gas of quasiparticles, holons
(empty sites) with dispersion εh

k ≈ −2J cos k and doublons
(doubly occupied sites) with energy εd

k ≈ −4J cos k are
created. As their average separation ρ−1 = 1/4 (U/J )2 [31]
is much larger than their typical wavelength, a simple qua-
siclassical treatment of their dynamics is possible, following
Sachdev and Damle [32]. This approach was recently applied
to quantum quenches in an integrable system in Ref. [33]
and to short-time dynamics in Ref. [31]. While the motion of
the quasiparticles can be treated classically, their creation and
scattering is a quantum-mechanical process.

III. SEMICLASSICAL APPROACH

To describe relaxation to equilibrium after the quench, we
first calculate the probability pk = 8 (J/U )2 sin2 k = ρ[1 −
cos(2k)] that a doublon-holon pair with momenta k and −k is
created at a given site. This probability is used to create at t = 0
an ensemble of doublons and holons moving with the velocities
∂kε

d
k and ∂kε

h
k , respectively. The position and the time of the

next scattering event can then be determined successively.
Doublon-doublon and holon-holon scattering have no effect

FIG. 2. (Color online) Doublon momentum distribution function
for times t = (0,1,2,3,4,5,10,20)τdh after the quench, where τdh is
the doublon-holon scattering time, and ρ = 4(J/U )2 is the doublon
density. For t → ∞ an equilibrium state at T = ∞ is approached
where all momenta are equally occupied.

(as only the momenta of the two particles are exchanged),
while the scattering of holons and doublons leads to relaxation.
To leading order in U � J the reflection probability is 1 and
the new momenta after scattering can just be calculated from
energy and lattice-momentum conservation. Repeating this
procedure, we track the motion of about 105 quasiparticles
for long times and, furthermore, average over 500 ensembles.
Correlation functions obtained by this semiclassical dynamics
are expected to give the corresponding quantum-mechanical
correlation functions for U � J [32]. Related models of
hard-core particles moving in 1D have also been simulated,
e.g., in Refs. [28,34,35] to study thermal transport. In contrast
to our case, however, quadratic dispersions and momentum
conservation were used. We have also implemented a version
which takes into account the finite tunneling probability of
doublons and holons of order (J/U )2, but as qualitatively
similar results have been obtained in this case, we show results
only for vanishing tunneling rate in the following.

In Fig. 2 we show how the momentum distribution of
doublons gets flatter and flatter as a function of time.
As the initial total kinetic energy is on average zero, the
system relaxes toward an equilibrium state at T = ∞. For
all semiclassical plots we measure the time scale in units of
τdh ≈ 0.031U 2/J 3 = 0.123ρ−1/J , the doublon-holon scat-
tering time (obtained by dividing the simulated time by the total
number of doublon-holon scattering events and the number
of doublons). In these units, all semiclassical results are
completely independent of U/J .

Note that the semiclassical approach does not contain
extremely rare processes where a holon-doublon pair is created
or annihilated by converting the kinetic energy of a large
number of quasiparticles (of order U/J ) into interaction
energy in a complicated process [36]. We will not consider
the exponentially (in U/J ) long time scales [36] where these
processes become important and which ultimately lead to an
equilibrium state with J 
 T < ∞.

While we will argue that hydrodynamic long-time tails
generically govern the relaxation of most physical observables
for t → ∞, we find that they are much more pronounced in
some observables. We obtain the most pronounced long-time
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FIG. 3. (Color online) (a) The decay of the energy-energy cor-
relation function of nearest-neighbor quasiparticles is very slow in
time and consistent with hydrodynamic predictions. (b) Expectation
value of − cos(2k) for doublons (dark blue) and holons (light green).
Initially these quantities decay approximately exponentially in a few
collisions. At long times, however, a hydrodynamic long-time tail is
visible. The solid lines are quantitative predictions of these long-time
tails, obtained from the fit to the upper plot using Eq. (10). (c) Scaling
plot of Tn, Eq. (5). The thick black line is Eq. (6) with De evaluated
from the Kubo formula.

tails for the correlation functions

Tn(t) = 〈cos ki(t) cos ki+n(t)〉 (5)

describing the energy-energy correlation function of particle
i and particle i + n (we enumerate the particles from left
to right). Within a simple Boltzmann equation treatment of
the problem (see Appendix B), this quantity vanishes. The
solid line in Fig. 3(a) shows a fit to T1(t) of the form
c1/t1/2 + c2/t3/4, consistent with Eq. (3). Note that it is
mandatory to include subleading corrections to the fit as those
are suppressed only by relative factors of 1/t1/4. From a simple
power-law fit ct−α (dashed line), one obtains α ≈ 0.67 which
describes the numerical data equally well. While this exponent
is reminiscent of the 2/3 expected for the KPZ universality

class, we believe that this agreement is only accidental, as
strong umklapp scattering relaxes the current rapidly, which
is inconsistent with the KPZ universality class (see above). At
least three orders of magnitude longer simulations are needed
to be able to distinguish numerically the different asymptotic
behaviors. A similar discussion of an equilibrium correlation
function is given in Appendix C.

To investigate how the hydrodynamic correlations spread
in space, we show in Fig. 3(c) a scaling plot of

√
tTn(t) as a

function of n/
√

t at different times. The approximate scaling
collapse for long times shows that the information spreads
diffusively, n ∼ √

t . From linear hydrodynamics, Eq. (2), one
can easily calculate the scaling function (see Appendix A)

Tn(t) ∼ 1√
t

exp

(
− n2

8D̃et/τdh

)
. (6)

While the prefactor, depending on details of the quench,
is unknown, the energy diffusion constant D̃e = Deτdhρ

2 ≈
0.91 can be calculated from the Kubo formula evaluated at
thermal equilibrium. The thick black line in Fig. 3(c) shows
that the analytic formula describes the data quantitatively. This
shows that indeed linear hydrodynamics governs the buildup
of long-time tails.

When investigating the relaxation of the momentum distri-
bution, such long-time tails are much more difficult to detect.
In Fig. 3(b), we show the expectation value of cos(2k) for
doublons and holons,

T d,h(t) = 〈
cos

(
2k

d,h
i

)〉
, (7)

where the expectation value is determined by summing
over only doublon or holon momenta, respectively. Up to a
normalizing factor, this is the dominant Fourier component of
the distribution function shown in Fig. 3(b). As cos2 k = (1 +
cos 2k)/2, it is also directly related to the square of the kinetic
energy of each particle. At first, T d,h decays exponentially on
time scales consistent with predictions from the Boltzmann
equation; see Appendix B. For t � 25 τdh, however, a small
but finite long-time tail dominates the relaxation.

The relative prefactors of the long-time tail in various
physical quantities are related to each other as they arise
from the same hydrodynamic modes. To predict analytically
how the prefactors are related, we recall their physical origin:
after a local equilibrium has been established, it takes a long
time to establish globally the characteristic fluctuations of
the conserved densities. We therefore investigate first how in
thermal equilibrium the observables T1,eq,T

d
eq, and T h

eq, defined
in Eqs. (5) and (7), depend on the densities nd and nh and the
energy per particle ε. In the semiclassical limit the distribution
functions are given by n

d,h
k = zd,he

−βε
d,h
k , where the fugacities

zd and zh and β = 1/T are functions of nd , nh, and ε, and we
consider the limit βJ 
 1. Expectation values for doublons
and holons can be calculated from 〈O〉d,h = ∫

dk
2π

O(k) n
d,h
k .

As doublons and holons are created in pairs, their densities are
equal: nd = 〈1〉d = nh = 〈1〉h = ρ. Therefore the energy per
particle

ε = 〈εd〉d + 〈εh〉h
nd + nh

= −5βJ 2 + O(J (βJ )3) (8)

is only a function of β.
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Similarly, the three observables T1,eq,T
d

eq, and T h
eq depend

only on β. Using Eq. (8), they can therefore be written as
functions of ε only:

T1,eq ≈ 17

200

(
ε

J

)2

,

T d
eq ≈ 16

200

(
ε

J

)2

, (9)

T h
eq ≈ 4

200

(
ε

J

)2

.

The fact that these observables depend only on ε arises only
for models without forces where the energy is independent
of the distance of particles. Equation (9) shows that the
three observables are sensitive to fluctuations of the energy
but insensitive to fluctuations of the densities. Therefore
we expect that only the relaxation of a single mode, the
energy fluctuations, will dominate the equilibration of all three
quantities. Furthermore, the prefactor of the long-time tails will
directly be proportional to the prefactors obtained in Eq. (9).
We can use this to predict analytically the relative prefactors
of the long-time tails

T d = 16

17
T1, T h = 4

17
T1 for t → ∞, (10)

fully consistent with our numerical results, as shown by the
solid lines in Fig. 3.

IV. EXACT DIAGONALIZATION

The semiclassical approach discussed above breaks down
for strong quenches when the distance of quasiparticles
becomes comparable to their wavelength. To analyze this
regime we have used the ALPS code [37] for brute-force exact
diagonalization of small systems to investigate the relaxation to
equilibrium. The initial state, a perfect Mott insulator (U = ∞
or J = 0), is a product state where each site is singly occupied.
We then performed a sudden change of parameters to U = J .
This corresponds to a strong quench—the initial state is not
close to an eigenstate. For our numerics, we use periodic
boundary conditions, and we do not include states in the Hilbert
space where three or more bosons occupy a single site. Hence
our results describe a modified Hubbard model with a large
three-particle term U ′ ∑

i ni(ni − 1)(ni − 2). This allows us
to reach larger system sizes.

Even for this fully quantum-mechanical calculation we
obtain strong evidence of hydrodynamic long-time tails; see
Figs. 4 and 5. The clearest signature is obtained for the nearest-
neighbor correlation function of doubly occupied sites, Fig. 4,
which directly contributes to the energy-energy correlation
function. For small system sizes with only L = 10 sites, strong
finite-size effects do not allow us to identify how the long-time
average is approached. For slightly larger systems, however,
one can clearly see in Fig. 4 that the steady state is approached
very slowly, consistent with a power-law tail. While it is not
possible to extract from this data set reliably any exponent (see
the various fits in Figs. 4 and 5) or perform a meaningful scaling

(a)

(b)

(c)

FIG. 4. (Color online) Time evolution of the nearest-neighbor
doublon correlations −〈d̂i d̂i+1〉 + 〈d̂i〉2 with d̂i = ni(ni − 1)/2 ob-
tained from exact diagonalization data for system sizes L = 14,12,10
after a quench from U = ∞ to U = J . The solid lines are the
long-time averages obtained for each system size separately. For
L = 14 two fitting functions are shown. The black dashed line
−0.022 (J t)−0.69 is the best fit using a single exponent only, while
the green solid line −0.0033 (J t)−1/2 − 0.02 (J t)−3/4 is of the form
as expected from hydrodynamics; see Appendix A.

analysis, the results are clearly consistent with the type of
long-time tails expected from hydrodynamics. It is important
to note that also in the prethermalization regime of quantum
quenches, i.e., on time scales smaller than the scattering time
of quasiparticles, one obtains power-law relaxation as has been
shown by Barmettler et al. [31] in a study of the collisionless
dynamics of doublons and holons in the Bose-Hubbard model.
As we expect that scattering times for our parameters (strong
quench to U = J ) are short, we believe that the slow relaxation
observed in Fig. 4 occurs on time scales considerably larger
than the scattering time. Therefore the observed long-time tails
are very likely of hydrodynamic origin. Also the number of
doubly occupied sites (Fig. 5), which can directly be measured
experimentally [36], shows clear indications of long-time
tails.

It is surprising that the slow relaxation is so pronounced
already in a 14-site systems: often finite-size effects dominate
for such small systems and long times. Here it helps that
diffusive transport is much slower than ballistic transport.
The typical time scale associated with diffusive transport
over L sites scales with L2. As 142 = 196, it is not sur-
prising that diffusive effects dominate on the simulated time
scales.
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(a)

(b)

(c)

FIG. 5. (Color online) Time evolution of the number of doublons
per site 〈d̂i〉 = 〈ni(ni − 1)/2〉 obtained from exact diagonalization
data for system sizes L = 14,12,10 after a quench from U = ∞
to U = J . The solid lines are the long-time averages obtained for
each system size separately. For L = 14 two fitting functions are
shown. The black dashed line −0.06 (J t)−1.23 is the best fit using
a single exponent only, while the green solid line 0.016(J t)−1/2 −
0.048(J t)−3/4 is of the form expected from hydrodynamics; see
Appendix A.

V. CONCLUSION AND OUTLOOK

Studying in detail the equilibration within the one-
dimensional Bose-Hubbard model, we have demonstrated the
importance of algebraic long-time tails for the relaxation in
a closed quantum system. Our numerical results for strong
quenches as well as for weak quenches are fully consistent
with predictions from hydrodynamics. The hydrodynamic
long-time tails govern the relaxation of practically all physical
observables in generic quantum and classical many-particle
systems as long as a small number of conservation laws
are present. The relevance of these long-time tails depends
strongly on the observable which is considered. Sometimes
they are difficult to observe due to tiny prefactors. Unexpect-
edly, the long-time tails turned out to be more pronounced
in the quantum regime compared to the semi-classical limit:
while we needed billions of classical hard-core collisions to
identify them, they are clearly visible in a tiny quantum system.
The reason might be the more complex interaction processes
in a many-particle quantum system.

How can one can engineer an interacting many-particle
system which relaxes rapidly to an equilibrium state? This
is an interesting question especially as in experiments with

ultra-cold atoms, loss processes often put severe limits on
achievable time scales. Our results show that increasing
the scattering rate might not be the best way to achieve
fast relaxation as this typically leads to smaller diffusion
constants. As a consequence, it will take longer to build up the
fluctuations characteristic for a global equilibrium state and
the hydrodynamic long-time tails will have larger prefactors.
For the future it will be interesting to study how not only the
scattering processes but also the rate of change of parameters in
the system influence the role of hydrodynamic long-time tails.
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APPENDIX A: LONG-TIME TAILS
IN LINEAR HYDRODYNAMICS

In this appendix we briefly review the origin of long-
time tails after a quench in systems without momentum
conservation. While all results presented in this section are well
known, we have not been able to find an appropriate reference.
For simplicity we restrict the discussion to a single conserved
quantity, the energy. The hydrodynamic equations can easily
be generalized to several diffusive modes by replacing the
energy density e by a vector of conserved densities, the
diffusion constant by a diffusion tensor, and the specific
heat by a matrix of thermodynamics susceptibilities (for the
semiclassical calculation discussed in the main text energy
does not couple to the other conservation laws; see below). The
qualitative results remain unmodified as long as all diffusion
constants are finite, only conservation laws even under time
reversal and parity are considered, and, most importantly,
momentum is not conserved.

The starting point is the linearized stochastic diffusion
equation in d dimensions [22]

∂te − De∇2e = ∇f, (A1)

where De is the energy diffusion constant and fi describes
thermal fluctuations of the energy current. The size of
fluctuations can be determined from the condition that the
equilibrium correlations of the energy are correctly reproduced
by Eq. (A1),

〈e(r)e(r ′)〉eq = cV kBT 2δ(r − r ′), (A2)

where cV is the the specific heat per volume. In reality, these
correlations are not exactly local but as the hydrodynamic
equations describe only the behavior at long time and length
scales, we can approximate the spatial correlations by a δ

function. One obtains therefore that the fluctuations of the
current

〈fi(r,t)fj (r ′,t ′)〉 = δij 2kBT 2cV Deδ(r − r ′)δ(t − t ′) (A3)

are proportional to both the diffusion constant and the specific
heat.

053608-5
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For a given initial condition e(r,0) = e0(r), Eq. (A1) is
solved for t � 0 by

e(r,t) =
∫

ddr ′ gDe
(r − r ′,t)e0(r ′)

+
∫ t

0
dt ′

∫
ddr ′ gDe

(r − r ′,t − t ′)∇f(r ′,t ′), (A4)

gDe
(r,t) = 1

(4πDet)d/2
exp

(
− r2

4Det

)
. (A5)

From this solution and Eq. (A3) one obtains directly the
relaxation of the energy fluctuations as a function of time

〈e(r,t)e(r ′,t)〉 − 〈e(r)e(r ′)〉eq

=
∫

ddr1d
dr2 gDe

(r − r1,t)gDe
(r ′ − r2,t)

× (〈e0(r1)e0(r2)〉 − 〈e(r1)e(r2)〉eq). (A6)

This equation describes how the fluctuations of energy
approach their equilibrium value. As generically the energy
fluctuations directly after a quench, 〈e0(r)e0(r ′)〉, will differ
from their expectation value in the long-time limit, they have
to be built up slowly by diffusive transport.

Assuming sufficiently short-ranged correlations in the
initial state and using that

∫
dr1gD(r − r1,t)gD(r ′ − r1,t) =

g2D(r − r ′,t), one obtains from Eqs. (A5) and (A6)

〈e(r,t)e(r ′,t)〉 − 〈e(r)e(r ′)〉eq ∼ 1

td/2
exp

(
− (r − r ′)2

8Det

)
.

(A7)

After a quench, one therefore approaches the global equi-
librium state only algebraically. Corrections to this formula
from nonlinear contributions are discussed below. In Fig. 3
of the main text, we show that the spread of correlations
in our semiclassical simulations indeed follows Eq. (A7);
see the solid line in Fig. 3(c) To obtain a quantitative fit,
we have determined the diffusion constant De from the heat
conductivity κ using

De = κ

(
∂〈e〉eq

∂T

)−1

= κ

(
1

kBT 2

∑
i

ρi

〈
e2
i

〉
eq

)−1

(A8)

where the sum runs over the two particle species with density
ρi . The thermal conductivity κ can be determined numerically
using the Kubo formula [38]

κ = 1

LkBT 2

∫ ∞

0
dt〈Je(t)Je(0)〉eq (A9)

where Je is the total energy current, and L is the system size.
For our semiclassical simulations we have to consider the
T → ∞ limit. Note that De is finite in this limit as all factors
of T cancel. Furthermore, all linear thermoelectric effects, i.e.,
the coupling of the energy current to gradients of the particle
density vanish in this limit (nonlinear couplings do, however,
exist; see below) which justifies the use of energy diffusion
only in the derivation of Eq. (A7).

To estimate the importance of corrections to the linear
stochastic diffusion equation, it is useful to perform a simple

scaling analysis. Equation (A1) is invariant under the scaling
transformation x → x̃, t → t̃ , f → f̃ , and e → ẽ with

x = λx̃, t = λ2 t̃ , e = 1

λd/2
ẽ, f = 1

λ(d+2)/2
f̃ . (A10)

The analogous scaling relations also apply for the density
n and the fluctuations of the charge current. Examples of
possible correction terms are α∇(e∇e), α′∇(n∇e), or β∇4e.
Rewriting those in the new variables, one finds that they
are suppressed for large λ, α̃ = α/λd/2, α̃′ = α/λd/2, and
β̃ = β/λ2 (reflecting the scaling dimensions of e and ∇2,
respectively). The relaxation after a quantum quench is
therefore expected to be of the form

〈e(r,t)e(r ′,t)〉 − 〈e(r)e(r ′)〉eq

∼ 1√
t
f

(
r

λ
,

t

λ2
,

α

λd/2
,

α′

λd/2
,
β

λ2
, . . .

)

= 1√
t
f

(
r√
t
,1,

α

td/4
,

α′

td/4
,
β

t
, . . .

)
, (A11)

where f is a scaling function, the ellipses denote further
subleading corrections, and we have set λ = √

t in the last
equality. Using a Taylor expansion in the last three arguments
for large t , one finds that corrections are suppressed by α/td/4,
α′/td/4, and β/t . In our model, the α term is absent at T = ∞
due to the e → −e symmetry. The α′ term, however, should
be present. Note that nonlinearities of the form ∇e2 arising
as corrections to the momentum current in systems with
momentum conservation are instead relevant perturbations in
d = 1 leading to the KPZ universality class [24,27]. Such a
term cannot arise as a correction to the energy or charge current
as it would violate inversion symmetry. A related discussion of
how subleading nonlinearities affect the optical conductivity
of metals without momentum conservation has been given in
Ref. [23].

APPENDIX B: BOLTZMANN EQUATION
IN THE SEMICLASSICAL REGIME

For weak quenches, U � J , the density of of excitations,
doublons and holons, induced by the quench is very low. It is
instructive to investigate their relaxation within the Boltzmann
approach. This approach can describe local equilibration
but does not reproduce hydrodynamic long-time tails in
homogeneous systems.

Denoting the semiclassical distribution functions of dou-
blons and holons as nd

k and nh
k , respectively, the Boltzmann

equation takes the form

∂

∂t
nd

k =
∫

dq

2π

∫
dk′

2π

∫
dq ′

2π
Wk,q;k′,q ′δ

(
εd
k + εh

q − (
εd
k′ + εh

q ′
))

× δU(k + q − (k′ + q ′))
(
nd

k′n
h
q ′ − nd

kn
h
q

)
, (B1)

∂

∂t
nh

q =
∫

dk

2π

∫
dk′

2π

∫
dq ′

2π
Wk,q;k′,q ′δ

(
εd
k + εh

q − (
εd
k′ + εh

q ′
))

× δU(k + q − (k′ + q ′))
(
nd

k′n
h
q ′ − nd

kn
h
q

)
, (B2)

where δU (k) = ∑
n δ(k + n2π ) as umklapp scattering can

relax the momentum by multiples of the reciprocal lattice
vector. The transition rate for hard-core collisions in one
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(a) (b) (c)

(d) (e) (f)

FIG. 6. (Color online) Relaxation of 〈cos(nk)〉, n = 2,4,6, for doublons (a)–(c) and holons (d)–(f). Solid line, simulation data; dashed line,
Boltzmann equation result.

dimension is exactly given by

Wk,q;k′,q ′ = (2π )2
∣∣∂kε

d
k − ∂qε

h
q

∣∣∣∣∂k′εd
k′ − ∂q ′εh

q ′
∣∣ (B3)

This formula can, e.g., be obtained by calculating the change of
n

d,h
k from hard-core scattering with a neighboring particle and

comparing the result with the Boltzmann formula. After using
energy and lattice-momentum conservation and performing
the Fourier series expansion of the distribution functions as

n
d,h
k =

∑
m

cos(mk) dm/hm (B4)

we find the equations for the Fourier components

∂

∂t
dm = 2

∑
m′,m′′

dm′hm′′

∫
dk

2π

∫
dq

2π
cos(mk)

∣∣∂kε
d
k − ∂qε

h
q

∣∣
×{cos(m′kd ) cos[m′′(k + q − kd )]

− cos(m′k) cos(m′′q)},
∂

∂t
hm = 2

∑
m′,m′′

dm′hm′′

∫
dk

2π

∫
dq

2π
cos(mq)

∣∣∂kε
d
k − ∂qε

h
q

∣∣
×{cos(m′kd ) cos[m′′(k + q − kd )]

− cos(m′k) cos(m′′q)},
where kd (k,q) is the doublon momentum after the scattering of
a doublon with momentum k and a holon with momentum q,
determined from energy and momentum conservation (modulo
umklapp scattering).

We have solved Eqs. (B1) and (B2) numerically, in-
cluding all modes up to m = 8, with the initial condi-
tions h0(0) = d0(0) = −h2(0) = −d2(0) = ρ and hm(0) =
dm(0) = 0 otherwise, to match the initial condition nd

k (0) =
nh

k (0) = 8 (J/U )2 sin2 k; see Fig. 2 of the main text. The
result for the even modes (the odd modes are all zero) is
compared in Fig. 6 to the simulation data. The Boltzmann
equation predicts correctly the time scale of relaxation; see
Figs. 6(a) and 6(d). As in d = 1 there is a high probability that
one particle scatters again and again with the same scattering
partner, a full quantitative agreement cannot be expected even
for the first few scattering events.

For long times the Boltzmann equation predicts exponential
relaxation as it does not capture thermal fluctuations of energy
and particle density but describes those only on average.

APPENDIX C: EQUILIBRIUM CORRELATION FUNCTION

Hydrodynamic long-time tails also dominate equilibrium
correlation functions. In Fig. 7 we show 〈ei(t)ei(0)〉eq obtained
from a semiclassical simulation in equilibrium at T = ∞
where initially all doublons and holons have a k-independent
momentum distribution nd

k = nh
k = const and are uncorrelated

in space. We assume the same density of doublons and
holons. As for the quenches studied in the main text, it is
difficult to extract reliably the long-time asymptotics due to
large subleading corrections which vanish only slowly. The
numerical data are equally well described by a power-law fit
with exponent 0.59 and a fit to c1t

−1/2 + c2t
−3/4 as expected

from hydrodynamics.

FIG. 7. (Color online) Correlation function 〈eiei(0)〉eq calculated
in thermal equilibrium together with two fits to this function (see the
legend), which equally well describe the numerical result.
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