
PHYSICAL REVIEW A 89, 053606 (2014)

Dynamic and energetic stabilization of persistent currents in Bose-Einstein condensates
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We study conditions under which vortices in a highly oblate harmonically trapped Bose-Einstein condensate
(BEC) can be stabilized due to pinning by a blue-detuned Gaussian laser beam, with particular emphasis on the
potentially destabilizing effects of laser beam positioning within the BEC. Our approach involves theoretical
and numerical exploration of dynamically and energetically stable pinning of vortices with winding number
up to S = 6, in correspondence with experimental observations. Stable pinning is quantified theoretically via
Bogoliubov-de Gennes excitation spectrum computations and confirmed via direct numerical simulations for a
range of conditions similar to those of experimental observations. The theoretical and numerical results indicate
that the pinned winding number, or equivalently the winding number of the superfluid current about the laser
beam, decays as a laser beam of fixed intensity moves away from the BEC center. Our theoretical analysis helps
explain previous experimental observations and helps define limits of stable vortex pinning for future experiments
involving vortex manipulation by laser beams.
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I. INTRODUCTION

The persistence of superfluid flow and superconducting
currents about barriers, and the related topic of the pinning of
quantized vortices and magnetic flux, appear as signature phe-
nomena of superfluidity and superconductivity [1]. While there
have been numerous experimental investigations of quantized
vortices in atomic Bose-Einstein condensates (BECs) [2,3],
relatively few experiments have explored parameters for which
one or more barriers within a BEC can localize and inhibit
the motion of singly or multiply quantized vortices. Evidence
for such vortex pinning by laser beams was demonstrated
in studies of the interactions of vortex lattices in rotating
BECs and corotating optical lattices [4], as well as with single
laser beams piercing the BEC [5–7]. Experiments involving
the persistence of superfluid flow about a single laser barrier
centered within a BEC extend the concept of vortex pinning
and determine time scales over which superfluid flow can be
maintained in annular traps. In these experiments, macroscopic
superfluid flow in annular traps has been obtained from internal
atomic state manipulation [8–10], weak-link rotation [11],
laser path engineering [6], and the decay of two-dimensional
quantum turbulence [12]. Theoretically and numerically, stable
vortex pinning about a central potential barrier has been ex-
amined [13,14] for various heights and widths of the potential,
and for BECs with few atoms or weak interatomic interactions.
Also, the energetic stability of multiply quantized vortices
pinned at the center of a harmonic trap by a localized potential
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was studied in Ref. [15]. However, for larger or more strongly
interacting BECs, and especially regarding the influence of
other parameters such as beam position on the stability of
superfluid flow and vortex pinning [6,7], the stability problem
has not been fully explored. Furthermore, as the field continues
to evolve, vortex state engineering methods utilizing vortex
pinning and manipulation are becoming more feasible [6], and
there is an increasing need to better understand conditions for
which vortices can be stably pinned and manipulated within a
BEC.

In this article, motivated by recent experimental observa-
tions [8,12] that suggest persistent current lifetimes in BECs
may be limited by the position of a pinning laser beam, and
by new methods for generating and manipulating vortices
in BECs [6], we theoretically and numerically explore the
dynamical and energetic stability of vortex pinning about
a laser barrier. In our approach, we consider the laser
intensity, width, and position within a two-dimensional (2D)
harmonically trapped BEC. Our physical scenario corresponds
to the parameters of Ref. [12] in which superfluid flow in a
highly oblate BEC was established about a laser beam through
the decay of 2D quantum turbulence. We also present new
experimental observations suggesting that the decay of net
superfluid flow may be in part due to laser beam position
drift, similar to the conclusions of Ref. [8]. Our main result
is that for the trap and BEC parameters associated with the
experimental observations, the number of vortices that can be
pinned by the beam drops as the beam intensity decreases
or as the pinning potential moves away from the center
of the BEC, consistent with the experimental observations.
Our results additionally suggest that in currently developing
methods involving vortex manipulation in BECs, regimes
of stable pinning must be considered for the engineering
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of persistent currents and complex vortex or pinning site
distributions.

Our discussion is structured as follows. To set up and
motivate the theoretical and numerical problem, we first
discuss general concepts and experimental observations of the
decay of superfluid flow in an annular, highly oblate BEC and
include experimental evidence for the drift in the position of the
beam relative to the trap center as the BEC is held in the trap.
Following this, we describe the model setup and theoretical
background that supports our analysis and present our main
computational results. Finally, we summarize our findings and
discuss directions for future study. A brief Appendix provides
details regarding our numerical methods.

II. GENERAL CONCEPTS AND EXPERIMENTAL
MOTIVATION

Vortices of topological charge S = 1 are dynamically stable
in BECs. They are routinely observed in experiments, and their
dynamics can be accordingly followed [16,17]. However, such
single quantized vortices represent excited states of the system,
a feature that especially at nonzero temperatures in a stationary
harmonic trap has significant dynamic implications. In a highly
oblate BEC, dissipation due to interaction of the vortices with
thermal excitations will cause the vortices to spiral out of
the trap, or vortices of opposite circulation to annihilate one
another and convert their energy into acoustic energy within
the BEC. Vortices are thus not inherently energetically stable.

In the case of higher charge (S > 1) vortices, energetic
instability is accompanied by an intrinsic dynamical insta-
bility that was originally evaluated in Ref. [18]; see also
Refs. [13,19,20] for recent detailed mathematical analyses
of this instability that favors the splitting of multicharge
vortices into single-charge vortices with the same total winding
number. This, in turn, renders preferable the loose clustering
of multiple vortices rather than their perfect colocation. With
the addition of a blue-detuned laser beam that pierces a BEC,
theoretical analysis has shown that singly and multiply quan-
tized vortices can be stably pinned by the laser beam [7,13,14].
As a general concept for axially symmetric systems, as long as
the vortex remains pinned to the beam, and no other vortices
are introduced into or leave the system, metastable superfluid
flow about the barrier will persist.

The first experimental study of BEC persistent currents
involved the creation of superfluid flow about a blue-detuned
Gaussian laser beam that acted as a vortex pinning potential
within the BEC [8]. In this study, the authors noted that the
lifetime of superflow about the central barrier was limited by
drift in the relative positions of the center of the harmonic
potential and the initially colocated laser beam. This is an
indication of the need to better understand and control the
parameters involved in the stability of vortex pinning and
superflow persistence. In the experiment of Ref. [12] on 2D
quantum turbulence, similar effects were observed; although
not discussed in Ref. [12], the results of these observations
are presented below and serve as a primary motivation for our
theoretical investigation. Recent experimental methods have
now minimized or eliminated such relative drift and enabled
superflow to persist for up to 2 minutes [10].

We base our study on the experiment of Ref. [12]. In this
experiment a blue-detuned laser was used to stir vortices
into highly oblate BECs of ∼2 × 106 87Rb atoms held in
a trap with radial (r) and axial (z) trapping frequencies of
(ωr/2π,ωz/2π ) = (8,90) Hz. After the 0.33 s stir, and an
equilibration period lasting 1.66 s, the BEC is held in the
annular trap for a variable hold time th; in the following
discussion, th = 0 corresponds to the end of the equilibration
period. At the beginning of the hold period, the system is at a
temperature T ∼ 47 nK, and the BEC critical temperature at
this point is ∼82 nK. Once the hold period ends, the central
barrier is ramped off over 0.25 s, the trapping potential is
removed, and the BEC ballistically expands for ∼50 ms and is
then observed using standard absorption imaging techniques.
For the cases in which a persistent current about the central
barrier exists prior to barrier ramp-down and expansion, a hole
was observed in the expanded density distribution; the area
of the core can be used to determine the winding number of
superfluid flow around the central barrier [21]. Alternatively,
the BEC may be held for an additional 3 s in the trap after the
barrier ramp-off but before the expansion imaging procedure,
allowing the vortices to separate and become experimentally
distinguishable. In this case, the number of vortices observed
corresponds to the winding number of the current that was
pinned prior to barrier ramp-down. Both methods were used
to determine the winding number of the persistent current
as a function of th. Similar experimental techniques for
observing vortex pinning, superfluid currents, and winding
number have been used in numerous experiments; see, for
example, Refs. [5,8,21,22].

As described and shown in Refs. [12,23], annular superflow
corresponding to a winding number up to S ∼ 5 was created
in this stirring and equilibration procedure, and was observed
to persist for 1/e times on the order of 30 s, as indicated in
Fig. 1. For this plot, the mean number of vortices was counted
after decay of the persistent current into individual vortices in
the harmonic trap after barrier ramp-down, as described above.
Each black square represents the mean vortex number observed
in 10 runs. The time-dependent drop in vortex number can be
caused by any mechanism that destabilizes a vortex pinned
to the central barrier, allowing it to spiral out of the BEC,
although such vortex dynamics were not directly confirmed in
the experiment. If the central barrier was instead removed at the
beginning of the hold period, immediately after equilibration,
and the system was left to evolve in a purely harmonic trap,
the mean number of vortices observed dropped at a faster
rate. These data are indicated in Fig. 1 by gray circles. The
higher number of vortices observed in the cases where the
central barrier was present is an indication of superflow being
maintained by the Gaussian barrier beam.

One likely mechanism for the observed decay of the
supercurrent is relative drift of the pinning beam with respect to
the harmonic trap center, as was earlier speculated in Ref. [8].
In order to investigate any such drift in the experiment of
Ref. [12], the BEC was expanded immediately after barrier
ramp-down, and the density hole due to the pinned vorticity
was thus visible. By direct averaging of five images taken
under identical conditions, for various hold times, the relative
position of the dark density hole with respect to the center of
the fitted Thomas-Fermi BEC profile was studied. The results
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FIG. 1. Evidence of superfluid current persistence and its decay.
Black squares show the mean number of vortices formed and held
in the presence of the laser barrier, observed in 10 runs for each
of the hold times th shown, with 3 s of hold time used to separate
the vortices for determining the vortex number. Error bars represent
statistical uncertainty. An exponential fit to the data (black curve)
gives a 1/e lifetime of 31(4) s. Gray circles show the lifetime of
vortices in the system under the same conditions, but with the pinning
beam ramped down at the beginning of the hold time rather than at the
end. An exponential fit (gray curve) gives the lifetime of free vortices
to be 15(1) s, an indication that vortex and current lifetime decreases
without the central barrier present. The BEC lifetime decreases with
a 1/e lifetime of 24(3) s (not shown).

are summarized in Fig. 2. As observed in the figure, for the
first 25 s of hold, a relative drift of the pinning beam can be
observed in the data and serves as a possible mechanism for
the decay of superfluid current indicated in Fig. 1. This relative
drift could result from beam drift due to movement by the laser
mirrors, or due to changes in the magnetic trap position due to
a changing temperature of the magnetic field coil.

Phase slips induced by the gradual decay of atom number
may also occur, as experimentally studied in Ref. [22]. The
authors found that a decay of persistent current winding
number was correlated with the decay of BEC atom number
N : as N decreased, the maximum velocity of superfluid flow
vs at the inner toroidal radius would exceed a decaying critical

velocity vs
c =

√
2�ωT

m
( μ

�ωT
)1/6 [24,25], leading the winding

number to drop by one unit due to a phase slip associated with
vortex motion across the toroidal trap. In the above expression
for vs

c , ωT is the approximate harmonic trapping frequency
of the annular region along the radial direction, and μ is the
chemical potential. For our toroidal trap, μ is approximately
proportional to

√
N [26], hence vs

c decreases at a rate that is
approximately 12 times slower than that of the decay of N ,
and therefore much slower than the observed decay rate of the
persistent current. We also estimate that vs

c is initially between
one and two times larger than vs for persistent current winding
numbers of 4 or 5, consistent with the ability of our toroidal
potential to support persistent currents with these winding
numbers. Moreover, for our experimental conditions, where N

was much larger than the atom numbers of Ref. [22], the ratio
of vs

c to vs initially increases as N decays, thereby enhancing
the stability of persistent currents; only after N has decreased
by about three orders of magnitude would we expect atom

FIG. 2. (Color online) Experimental indication of relative drift
between the harmonic trap center and pinning laser beam. Top
panels: Each image of expanded BECs, acquired with a procedure
described in the text, is an average of five images taken under identical
conditions and for the hold times indicated. For th = 2 s, a large
fluid-free core indicating pinned vorticity is observed on the right side
of the BEC center; this core is presumed to originate at the repeatable
initial position of the pinning beam, prior to any drift. The darkness of
this core in the BEC after image averaging indicates that this position
is consistent from shot to shot. For longer hold times, a consistent
drift in the core position relative to its initial position is observed. For
th = 30 s, the core is much less visible, and the relative position of the
pinning beam and the harmonic trap is therefore much less repeatable
from shot to shot. Bottom panel: Colored circles indicate the changes
�x and �y of the position of the core in expanded images, relative
to the mean core position at th = 2 s, for the hold times shown in
the centers of each circle (times given in seconds). The magnitude
of statistical uncertainty is indicated with larger dashed circles about
the center of each mean position. Position uncertainties for th = 30 s,
and later times are unusually large compared with earlier times and
are thus not shown. As in the top row of images, data are obtained
from averages over five experimental runs at each hold time given.

number decay to be a significant mechanism for persistent
current decay due to phase slips based on this estimate. Thus
to the extent that vs

c serves as a reasonable estimate of a
superfluid critical velocity for the onset of phase slips under
our experimental conditions, it appears unlikely that the loss of
atom number alone can explain the observed persistent current
decay.

Our experimental observations of current decay and beam
drift serve as the primary motivating factors for the theoretical
study presented in the remainder of this paper. A full set
of numerical simulations of vortex dynamics under a wide
range of possible experimental systematic errors is beyond
the scope of this study. Rather, our study is designed to
address the question of energetic and dynamical stability of
vortex pinning from a theoretical standpoint and including
the potentially destabilizing effects of an off-center Gaussian
pinning potential.
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III. THEORETICAL SETUP

In order to explore the above observations from a theoretical
perspective, we start our considerations from a nondimensional
grand-canonical energy functional for a BEC in the mean-field
approximation [27] of the form

H =
∫

dr′
[
|∇�|2 + V (r′)|�|2 + 1

2
|�|4 − μ|�|2

]
, (1)

where dr′ is a volume element, �(r′) ∈ C is the BEC order
parameter at 3D position r′ = (x,y,z), and μ is the chemical
potential associated with the conservation of the number of
atoms N = ∫

dr′|�|2. Defining r = (x,y), V (r′) ∈ R is the
external confining potential, of the form

V (r,z) =
(

1

2
|r|

)2

+
(

ωz

2ωr

z

)2

︸ ︷︷ ︸
VT

+V0e
−2|r−r0 |2

w2︸ ︷︷ ︸
VB

, (2)

where VT is the trap’s parabolic confining potential with
fixed angular frequencies matching those described in the
previous section, creating a highly oblate potential amenable
to a 2D reduction used in the remainder of this paper. VB

is the repulsive potential due to a blue-detuned laser-beam
potential of peak barrier energy V0 and Gaussian radius w

centered at 2D position r0 relative to the center of the harmonic
trap VT , enabling stability analysis for both on-center and
off-center beams. The time, energy, and length scales in
Eqs. (1) and (2) are, respectively, 1/ωr , �ωr , and

√
�/2mωr ,

where m is the atomic mass. For 87Rb with an s-wave scattering
length of as = 5.5 nm, this amounts to the dimensionless N

being connected to the experimentally measured atom number
through a multiplicative factor of Nfac,2D � 20. From here
on, when we refer to N , this multiplicative conversion will
be implied, and the symbol will stand for the experimentally
relevant atom number.

The resulting equation of motion for this Hamiltonian sys-
tem (�̇,c.c.)T = Jσ (δH/δ�,c.c.)T = JσDH is the Gross-
Pitaevskii equation [27], where D is the functional gradient of
H (�,�∗), J = diag(−iI,iI ) with I the identity operator and
σ interchanges row 2 with 1. The GPE can be written as

i�̇ = −∇2� + V (r)� + |�|2� − μ�. (3)

Of particular importance for our considerations in what follows
will be the stability of stationary solutions � to Eq. (3). This
is determined by the eigenvalues {ε} of the Hessian of the
Hamiltonian, H ≡ σD2H (�), and excitation spectrum {λ} of
the resulting linearization operator JH, which corresponds
to the so-called Bogolyubov-de Gennes analysis [27]. When
considering the excitation spectrum of single or multivortex
states, we find in it the existence of negative energy modes [28].
Negative energy eigenvalues (also referred to as anomalous
modes) of H indicate energetic instability, since “dissipative”
perturbations (e.g., from exchanges of atoms with the thermal
cloud if the temperature deviates from zero) in the system
can render them dynamically unstable, as can collisions with
other eigendirections having positive energy even in the purely
Hamiltonian (zero-temperature) system. Nevertheless, in the
latter case, energetic instability of an excited state such as
a dark soliton or a vortex [27] does not necessarily lead to

dynamical instability. Thus these modes reveal the potential
of such an excited state towards genuine dynamical instability,
which arises in both of the above mentioned scenarios. The
linear stability/excitation spectrum of the system is monitored
through the eigenvalues λ = λr + iλi of JσD2H ; dynamical
instability arises when λr 
= 0 since, due to the Hamiltonian
structure, the eigenvalues feature a fourfold symmetry over
the real and imaginary axes. From prior experience (see, e.g.,
Ref. [29]), which is confirmed again here, linear stability
generically indicates evolutionary nonlinear (orbital) stability
in the mean-field model, at least for time scales monitored of
the order of tens of seconds, i.e., comparable to the lifetime of
the BEC.

An additional key observation is that the number of negative
energy modes depends on the topological charge, or winding
number S of the multivortex configuration considered [20]. In
particular, S is mathematically defined as

S = 1

2π

∫
∂�

vdr, v = ∇φ,

where ∂� is the boundary of a region containing the vortices,
v is the superfluid velocity of the condensate and φ is the
phase associated with the complex valued wave function
� = √

ρeiφ . To examine the role of small amplitude excita-
tions to a stationary vorticity-bearing solution � = �(r)eiSθ

[30], where θ is the polar angle, perturbations of the form
ψ = a(r)eλt + b(r)eλ∗t are introduced. Given the cylindrical
symmetry of the problem, these can be selected to have
a decomposition in polar coordinates given by a(r,θ ) =
α̃(r)eiκaθ and b(r,θ ) = β̃(r)eiκbθ . In particular, if we set κa = κ

then κb = κ − 2S, a single index κ will dictate the angular
dependence of the excitation with given eigenvalue λ. Hence,
the spectrum of eigenvalues {λ} can be decomposed as the
union of the spectra {λκ} pertaining to perturbations of
index κ .

It has been shown numerically [18] and analytically [20]
that instability windows arise in a solution with topological
charge S only for indices |κ| < S. The null eigenvalues
corresponding to the phase or gauge [U(1)] invariance of the
GPE model appear in the spectrum of κ = S. For a vortex in a
harmonic trap, there is an anomalous mode for κ = S − 1 that
is typically not resonant with any modes of positive energy,
accounting for the dynamical stability of the S = 1 vortex
discussed earlier. We also note that this mode converges to
zero as ωr → 0, restoring translational invariance in the limit.
For each 0 � κ < S − 1 in the case of S > 1, an anomalous
mode can lead to windows of instability, as has been shown,
e.g., in Refs. [18,20]. One of the principal points of the present
work is to illustrate that for experimental parameters in use in
current experiments, such anomalous modes can be completely
suppressed for a strong enough Gaussian pinning potential VB,
even if the pinning potential is not centered at the center of the
harmonic trap. Indeed, the modes not only cease to resonate
with positive modes and no longer lead to dynamical instability
windows, but for even higher laser powers (and hence larger
V0), they undergo a transition from negative to positive energy.
This precludes the existence of any such resonances and lends
energetic stability to the corresponding multicharge vortex
state.
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An important comment is that such energetic stability
enhances the observability of these higher charge configu-
rations. This is contrary to the experimental difficulties in
observing such higher charge vortices in the absence of the
barrier considered herein, as reported earlier in Ref. [31].
The theoretical explanation of such enhanced observability
has to do with the fact that, as mathematically proved in
Ref. [32] and numerically illustrated, e.g., for the case of
single charge vortices in Ref. [33], the presence of arbitrarily
small dissipative perturbations immediately destabilizes these
anomalous modes. The role of dissipative perturbations in the
case of BECs is played by the lossy coupling to thermal atoms
(in any realistic finite temperature setting). As a result, vortices
develop complex excitation frequencies in their spectra [33]
that lead to their well-known spiraling out of the condensate;
see, e.g., Ref. [34]. This effect is stronger for higher charge
vortices, as the latter bear more anomalous modes as indicated
above. Hence, the energetic stabilization of these anomalous
modes (in the absence of dissipation) “shields” the multicharge
state from such a detrimental effect.

IV. COMPUTATIONAL RESULTS

Figure 3 is a principal example showing, for experimentally
accessible parameters, the suppression of the instability for
a vortex of charge S = 5 as the pinning laser power (V0)
increases. Since the only potentially unstable modes satisfy
κ < S − 1 = 4, only indices up to κ = 3 are considered in the
top panel of the figure. It can be seen that for high enough
values of V0 (see Fig. 3 for details), dynamical instability
by any of the potentially unstable perturbation indices κ is
completely suppressed. Perhaps even more importantly, as
illustrated by the bottom panel, for V0 > 146 all negative
energy modes have been converted to positive energy ones,
thus converting the configuration into an energetically stable
one and a likely candidate for experimental observation.

A more detailed evaluation of the critical V0 beyond
which the vortices of different topological charge become
energetically stable is given in Table I. The left column shows
the increasing trend of V0 (i.e., higher laser intensities are
needed to stabilize higher charge vortices) over S, for fixed
width w of the barrier and number of atoms N . The next two
columns focus on the specific case of S = 5 and again fixed N

and monitor the nonmonotonic dependence of the critical V0,
as the width w of the barrier is increasing. Finally, for fixed
charge S and width w, once again it is intuitively expected
(and shown in the rightmost two columns of the table) that
for stabilization, the maximum energy of the pinning potential
needs to be higher for larger numbers of atoms in the BEC.
These diagnostics yield a sense of the dependencies of the
vortex stabilization barrier parameters, as the beam width,
charge, and atom number in the BEC are varied.

We now turn to the case where the barrier is not centered at
r0 = 0, but rather at a finite distance r0 > 0 from the center,
where we let r0 = (r0,0). For such an off-center pinning beam,
the results are modified as follows. As illustrated in Fig. 4, a
stable vortex for a centered beam becomes unstable at some
critical radius rcr

0 as the beam is moved outward. This radius,
depends on the intensity of the beam and is found to be
larger for fixed intensity as the charge S decreases. Hence,
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FIG. 3. (Color online) Maximal growth rate associated to ener-
getically unstable index κ for a vortex of charge S = 5, with w = 7.42
(equivalent to a 20 μm laser 1/e2 radius) and N = 2 × 106. Notice
the threshold of dynamical stability associated with the vertical line
in the top panel and the energetic stability indicated by the vertical
line in the bottom panel (the energy spectra was computed on a finer
discretization of V0 in order to more precisely determine the threshold
between the plotted data points).

for example, an energetically stable S = 6 vortex (V0 = 146,
w = 7.42, N = 2 × 106) will become energetically unstable
outside radius rcr

0 = 1.8 while the S = 5 vortex for the same
parameters will remain energetically stable until a radius
rcr

0 = 8.8. Finally, in the case of S = 1, we find that rcr
0 = 13.5,

which essentially implies that this state is always stable as it is
transferred off center by the barrier, all the way to the boundary
of the BEC.

Our theoretical analysis is also consistent with experimental
observations. The red squares shown in Fig. 4 show the mean
position of the observed persistent current locus (obtained
without extra hold time after barrier ramp-down, as in
Fig. 2) plotted against mean observed winding number. The
comparison of experimental data and analytically obtained
stability limits does not directly show that beam drift is
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TABLE I. The value of the threshold V0 for energetic stability indicated by the vertical line in the bottom panel of Fig. 3, for various
charges, S (left), beam waists w (center), and number of atoms N (right). Bold values correspond to the vertical line in the bottom panel of
Fig. 3, for comparison. The chemical potential of the BEC with 2 × 106 atoms, w = 7.42, and V0 = 146 is μ ≈ 90 in dimensionless units.

N = 2 × 106,w = 7.42 N = 2 × 106,S = 5 w = 7.42,S = 5

S V0[�ωr ] w[
√

�/2mωr ] V0[�ωr ] N V0[�ωr ]

3 142 0.7 240 1.5 × 106 130
4 144 3.53 140 2 × 106 146
5 146 7.42 146 2.5 × 106 162
6 150 10.6 162
7 154

responsible for the decay of the current. However, the
experimental data are contained within (and show a similar
trend as) the theoretically determined stability limits, lending
support to the predictions of the theoretical results. If the
beam drift is primarily responsible for the decay of the
current, the comparison between theoretical and experimental
data suggests that it is possible that other factors such as
thermal fluctuations and atom number loss may need to
be considered for accurate prediction of persistent current
stability conditions.

Consider a centered beam in between the regimes of ener-
getic stability for successive charge numbers, when charge S is
energetically stable but charge S + 1 is energetically unstable.
In this parametric regime, the S + 1 solution will typically
only be dynamically stable. When such an on-center solution
is shifted just slightly off-center (i.e., perturbed), the energetic
instability manifests immediately, and it becomes dynamically
unstable if the dynamics followed is dissipative (due to the
instability of the remaining anomalous mode as explained
above). Such a setting will still be in the energetic stability

1 2 3 4 5 6
0

5

10

15

S

rc
r 0

[u
ni

ts
of

h̄
/
2m

ω
r
]

FIG. 4. (Color online) Energetic stability threshold radii (rcr
0 ) for

various charge-S currents pinned by the external laser. The (blue)
circles depict the energetic stability obtained from the Bogoliubov-de
Gennes analysis (the resolution in our numerics for rcr

0 is ±0.1). The
(red) squares depict experimental distances at which the indicated
persistent current charges were observed. Error bars represent
statistical uncertainty of the measurement results. All simulations are
performed with (N ,V0, w, ωr , ωz, a, m) corresponding to dimensional
parameters (2 × 106, 146�ωr , 7.42

√
�/2mωr = 20 μm, 2π × 8 Hz,

2π × 90 Hz, 5.5 μm, 87 amu).

regime for the charge S solution, since energetic stability is
robust to such small shifts of symmetry, as displayed in Fig. 4.
To highlight this behavior we introduce phenomenological
dissipation by using the dissipatively perturbed GPE

(i − γ )�̇ = −∇2� + V (r)� + |�|2� − μ�, (4)

where the coefficient γ accounts for the dissipation rate due
to the coupling between the BEC cloud and the noncondensed
(thermal) cloud. The dissipative GPE has been shown to
reliably exhibit the dissipative effects of coupling with the
thermal atoms [23,35–37]. In our present study, the precise
value of the dissipation γ , and its relation with the temperature
of the BEC, is not relevant since any amount of dissipation
will destabilize a dynamically stable but energetically unstable
solution. Therefore, we take a nominal value of γ = 0.001 and
monitor the evolution of a dynamically stable but energetically
unstable S + 1 under the dissipative GPE. One such example
is depicted in Fig. 5, where an initial stationary off-centered
S = 5 state, which is originally dynamically stable under the
Hamiltonian (nondissipative) GPE, is rendered dynamically
unstable by adding dissipation (γ > 0). The instability is
manifested by the ejection of one of the vortices (see vortex
inside the ellipse in the middle panels) that was originally
trapped by the laser. After this vortex is ejected and absorbed
at the edge of the BEC cloud, the remaining S = 4 state, which
is energetically stable for these parameter values, persists
for as long as the dynamical evolution is followed. This
dynamical example corroborates our existence and excitation
spectrum analysis given above and illustrates the significance
of the energetic stability criteria given for the experimental
observability of the different multicharge configurations.

V. CONCLUSIONS AND FUTURE CHALLENGES

In the present work, we described the results of experiments
in which vorticity with winding number up to S = 5 can be
pinned to a laser beam in a BEC. As observed, this topological
charge decreases with time, presumably due to unobserved
depinning of a vortex followed by migration out of the
trapping beam in possible combination with vortex-antivortex
annihilation. Our central question has been to theoretically
study the stability of vortex pinning under our experimental
conditions, including an examination of pinning stability due
to off-center beams. As the beam strength increases, our nu-
merical simulations illustrate that multicharge states become
progressively dynamically stabilized (i.e., no complex-valued
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FIG. 5. (Color online) Snapshots of the density (top row) and phase (bottom row) of the evolution of a perturbed off-center S = 5 state in
the regime of energetic stability for the S = 4 state (w = 7.42, N = 2 × 106, and V0 = 144). The dissipatively perturbed GPE followed here
dynamically destabilizes the S = 5 state by ejecting one vortex (see vortex inside the ellipse in the middle panels) and subsequently (and for
the duration of the dynamical evolution) locks into the energetically stable S = 4 state.

eigenfrequencies) and subsequently energetically stabilized
(i.e., no anomalous modes). Hence, there is no potential for
instability even in the presence of dissipative dynamics due
to the coupling with the thermal cloud. The dependence of
the relevant anomalous modes was highlighted not only as a
function of the laser intensity, but also of its width, the atom
number in the condensate, and the vortex topological charge.
This was done both for the case where the beam was centered
at the center of the parabolic confinement, as well as for the
case where it was off-center.

There are numerous directions that are opening up for
future extensions of the present considerations. Perhaps the
most notable one is to extend the relevant considerations
computationally in three-dimensional settings and use them
as a way of obtaining persistent currents associated with
vortex lines, or perhaps with more complex three-dimensional
configurations carrying vorticity. An additional subject that the
present work facilitates which is of intense recent interest is
that of the study of few-vortex cluster configurations and their
interactions; see, e.g., Ref. [38]. The potential ramp down
of the Gaussian beam may provide ideal conditions for the
examination of the multicharge dynamics and interactions.
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APPENDIX: NUMERICAL METHODS

Our methods extend those in, e.g., Refs. [39–41]. The
spatial discretization in (r,θ ) employs Chebyshev polynomials
to represent r dependence [42]. The Fourier modes used
to represent the θ dependence make the Laplacian operator
diagonal in this direction. To identify stationary states of
Eq. (3), we first obtain an initial estimate via imaginary-
time (i.e., replacing t → −it) integration using an operator
splitting scheme in which the Laplacian is treated with implicit
Euler and the rest of the terms are computed with explicit
Euler with �t = 10−2. We refine the solution obtained from
relaxation using Newton’s method. The linear system arising
at each Newton step is solved using the matrix-free IDR(s)
algorithm [43,44], which requires only the action of the
Hessian. To accelerate inversion, we precondition the system
with the inverse Laplacian, making use of its block diagonal
structure. Hence, we solve the system ∇−2D2H (�n)�n =
∇−2DH (�n) and update �n+1 = �n − �n for n = 0,1, . . ..
Fewer than five Newton iterations usually achieve an accuracy
of ||∇−2DH (�)||l2/||�||l2 < 10−12.

For each stationary solution �, we use the Implic-
itly Restarted Arnoldi algorithm to iteratively compute the
eigenpairs of the linearization JσD2H (�) to a specified
tolerance [45]. In order to find the desired eigenvalues we
use inverse iteration, with the IDR(s) method and inverse
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Laplacian preconditioning to solve the linear systems, as
above. Here the preconditioner is taken to be [Jσ (∇2)]−1,
so that each iteration solves ∇−2D2H (�)vn+1 = −∇−2σJvn.

Finally, the dynamical evolution is carried out using a
standard fourth order Runge-Kutta method in time and finite
differences in space.
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