
PHYSICAL REVIEW A 89, 053604 (2014)

Inhomogeneous BCS-BEC crossover for trapped cold atoms in optical lattices
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The BCS-BEC (Bose-Einstein condensation) crossover in a lattice is a powerful paradigm that describes how
a superconductor deviates from the Bardeen-Cooper-Schrieffer physics as the attractive interaction increases.
Optical lattices loaded with binary mixtures of cold atoms allow one to access this phenomenon experimentally
in a clean and controlled way. We show that, however, the possibility to study this phenomenon in actual
cold-atoms experiments is limited by the effect of the trapping potential. Real-space dynamical mean-field theory
calculations show indeed that interactions and the confining potential conspire to pack the fermions in the center
of the trap, which approaches a band insulator when the attraction becomes sizeable. Interestingly, the energy
gap is spatially more homogeneous than the superfluid condensate order parameter. We show how this physics
reflects in several observables, and we propose an alternative strategy to disentangle the effect of the harmonic
potential and measure the intrinsic properties resulting from the interaction strength.
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I. INTRODUCTION

The experimental advances in handling and probing cold
atoms in optical lattices open a new path towards the
understanding of condensed-matter lattice models [1]. While
the repulsive Fermi-Hubbard model and its Mott insulating
phase [2,3] are the first natural goal because of their relation
with high-temperature superconductivity, the experimental
realization [4] of the attractive Fermi-Hubbard model (AHM)
is an equally sensible target. The quantum simulation of the
AHM has at least a twofold motivation: besides its direct
significance to describe superconductors, it has been proposed
as a simpler path to investigate the repulsive model, exploiting
an exact mapping between the two models [5].

At low temperature the AHM describes a superfluid
(SF) state, whose properties evolve continuously from a
weak-coupling Bardeen-Cooper-Schrieffer (BCS) regime to
a Bose-Einstein condensation (BEC) of preformed pairs as
the attractive interaction is increased. The lattice counterpart
of the BCS-BEC crossover [6] has been proposed as an
effective description of high-temperature superconductors,
and it displays significant differences with the crossover of
dilute Fermi gases [7] including a pronounced maximum for
intermediate pairing strength of the critical temperature, which
vanishes for large attraction and a characteristic dependence
on the lattice density, i.e., the number of fermions (N ) per
lattice site n = N/Ns .

The description of the lattice BCS-BEC crossover requires
nonperturbative approaches, among which dynamical mean-
field theory (DMFT) [8] can be particularly useful, as it
correctly reproduces the exact solution both in the weak-
coupling limit and in the strong-coupling limit [9,10] as well
as the evolution of the normal state from which superfluidity
is established [11,12]. DMFT also recovers the familiar BCS-
BEC crossover for a Fermi gas in the dilute limit [13,14].

The main purpose of this paper is to study the effect of
the harmonic potential which traps the atoms in cold-atom
experiments on the BCS-BEC crossover. In order to take into
account the broken translational invariance we need to use
the so-called real-space DMFT (RDMFT), which extends the

DMFT to inhomogeneous systems. The same method, with a
different impurity solver (see below), has been used in Ref. [15]
to identify the coexistence of SF and density waves. While
our focus is different, we mention that we did not observe a
tendency to density ordering, in agreement with the quantum
Monte Carlo results of Ref. [16].

Our zero-temperature calculations show that increasing the
attraction strength leads to a compression of the cloud, with a
central region populated by two fermions of opposite spin
per lattice site, as in a band insulating state, leading to a
packed cloud with reduced pairing amplitude. This collapse
as a function of the interaction prevents us from reaching the
actual BEC regime of the AHM, where local pairs are formed,
but they do not coalesce in the same region of space. Indeed,
the anomalous expansion of the cloud observed in experiments
[4] does not overcome this limitation, as it is essentially due to
adiabatic heating [17], an effect which introduces a further
obstacle to the observation of the BCS-BEC crossover by
effectively increasing the temperature at fixed entropy. We
characterize the hidden crossover with observables which are
accessible in current cold-atom experiments, like the mo-
mentum distribution function and the single-particle spectral
functions. Finally, we propose a simple way to experimentally
reduce the impact of the cloud compression and unveil the
“homogeneous” BCS-BEC crossover compensating the effect
of the inhomogeneous potential.

The paper is organized as follows. Section II presents our
model and method of solution. In Sec. III we briefly review the
main results for the homogeneous model. Section IV contains
the results about the same physics in the trapping potential,
while Sec. V is dedicated to the spectral information. Sec-
tion VI discusses the approach we propose to experimentally
access the BCS-BEC crossover, and Sec. VII contains our
conclusions.

II. MODEL

In all the calculations we consider an attractive Fermi-
Hubbard model on a two-dimensional square optical lattice

1050-2947/2014/89(5)/053604(6) 053604-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.89.053604


A. AMARICCI, A. PRIVITERA, AND M. CAPONE PHYSICAL REVIEW A 89, 053604 (2014)

subject to a harmonic trapping potential,

H = −t
∑

〈i,j〉σ
c
†
iσ cjσ − U

∑

i

ni↑ni↓ +
∑

iσ

Viniσ , (1)

where t is the hopping parameter between neighboring sites.
The second term describes the local attractive interaction
between opposite-spin fermions on the same optical lattice
minimum. Finally, the last term Vi = V0

2 (ri/a)2 is the harmonic
trapping potential, which we assumed to have spherical
symmetry; a is the the lattice spacing and ri is the distance
of the site i from the trap center.

We solve Eq. (1) on a lattice of Ns sites, using RDMFT
[18–20], an extension of the DMFT [8] introduced to treat
inhomogeneous system. The key approximation is to assume a
local, albeit site-dependent, self-energy �̂ij = �̂iδij . In order
to deal with the superconducting phase, we recast the method
in the Nambu spinor formalism [15], introducing anomalous
(pair) Green’s functions and self-energy components Fi and
Si , respectively. The existence of a nonzero anomalous Green’s
function and of a correspondent SF condensate order parameter
is the fingerprint of spontaneous U (1) symmetry breaking.
Each local self-energy is obtained by solving an impurity
problem defined by a site-dependent bath described by the
function Ĝ−1

0i . This latter is determined self-consistently by
requiring that the single-particle Green’s function Gi of
each local impurity model coincides with the corresponding
diagonal term of Ĝ−1 = Ĝ−1

0 − �̂, where
[
Ĝ−1

0

]
ij

(z) = [z − (Vi − μ)]δij − t̂2D
ij

are the components of the noninteracting Green’s function and
t̂2D
ij is the tight-binding hopping matrix of the two-dimensional

square optical lattice. The number of independent impurity
models can be reduced by exploiting the C4v symmetry of the
lattice.

We solve the impurity problems at zero temperature using
iterated perturbation theory (IPT) [8,21], extended to deal
with the superconducting formalism [9,22]. The IPT method
provides an accurate and computationally cheap solver which
gives direct access to dynamical properties including the local
spectral functions ρi(ω) = −ImGi(ω)/π and hence to the
local spectral gap E

g

i . This information can be experimentally
accessed by a spectroscopic technique able to probe the local
value of the gap (see, e.g., Ref. [23] for a cold-atom analog of
the scanning tunneling microscopy used in condensed matter).
We compare our calculations with local-density approximation
(LDA) results where the local observables on each site are
those obtained within the DMFT for a homogeneous system
with the chemical potential μi = μ − Vi .

III. BCS-BEC HOMOGENEOUS CROSSOVER:
A REMINDER

We briefly recall the main properties of the SF phase of
the homogeneous Hubbard model and their evolution as a
function of the coupling strength U . At zero temperature the
system is always SF at every band filling n = 1/Ns

∑
i ni ≡

1/Ns

∑
iσ 〈c†iσ ciσ 〉. At half-filling n = 1 an extra symmetry

makes the SF degenerate with a commensurate charge density
wave. The zero-temperature SF condensate order parameter

φ = 1/Ns

∑
i φi = 1/Ns

∑
i〈ci↑ci↓〉 and the spectral gap Eg

monotonically increase as a function of U , while the critical
temperature is an increasing function of U only for weak and
moderate coupling, it reaches a maximum for intermediate
coupling and eventually decreases for intermediate and large
U . This reduction of Tc while the gap increases is a signature
of the lattice BEC regime whose fingerprints are present also at
zero temperature. The large pairing strength locks the fermions
in strongly bound local pairs, moving only through virtual
processes of order t2/U (a small number if U � t), making it
harder and harder to establish phase coherence over the whole
system. In this regime the critical temperature is controlled
by the SF stiffness, which in turn is proportional to t2/U and
decreases rapidly, as opposed to the weak-coupling regime,
where the standard result Tc ∝ φ is recovered. It is worth
noting that, in this strong coupling regime, pairing without
phase coherence results in a normal state with a pseudogap in
the spectrum.

This evolution is the lattice BCS-BEC crossover, which
has been proposed as a qualitative description of the doping
evolution of the superconducting phase of high-temperature
superconductors [24] and of other superconductors that
display a “domelike” behavior as a function of a control
parameter [25].

The BEC side of the crossover is characterized also by a
kinetic-energy gain which stabilizes the SF state at the critical
temperature, in contrast with the weak-coupling regime, where
a potential-energy gain leads to the SF in agreement with the
BCS theory [10].

We finally note a simple result that will be important in the
following. The lattice periodicity introduces a nonmonotonic
dependence of the SF properties on the density. φ is maxi-
mum at half-filling n = 1 where the system is particle-hole
symmetric, and it vanishes for empty and completely filled
lattices.

IV. BCS-BEC INHOMOGENEOUS CROSSOVER

In Fig. 1 we show the evolution of the density profile
ni and of the local pairing amplitude φi for increasing U

along the yi = 0 axis for N =200 fermions on a lattice of
Ns = 29 × 29 sites. As pointed out in Ref. [15], defining a
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FIG. 1. (Color online) Left panel: Local density ni profiles along
the yi =0 axis of the lattice for N = 200 fermions, V0 = 0.03t , Ns =
29 × 29 sites and increasing attraction U . Right panel: Evolution of
the corresponding superfluid amplitude φi surface. Data for U = 4t

(bottom), U = 6t (center), and U = 8t (top).
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typical radius rc such that V0
2 (rc/a)2 = t and rescaling the

density profiles in units of rc, the results for fixed μ and
increasing rc, i.e., increasing N and decreasing V0, collapse
on the same curve. Thus our results are directly relevant for
current experiments in ultracold gases as they can be easily
extrapolated to actual system size and number of particles.

The density profiles for moderate and large U show that the
confining potential and the interaction concur in pushing the
fermions towards the trap center and in squeezing the cloud
size. This effect is clearly triggered by the presence of the
harmonic potential, which favors a higher occupation of the
central region. In the presence of an attractive interaction, this
tendency is further enhanced by the energy gain associated
with doubly occupied sites. This leads, as the interaction
grows, to a packing of the central region, in which most of
the fermions are confined, which approaches a local density of
n = 2 (as for a band insulator), giving rise to a more compact
cloud with sharper boundaries with respect to a repulsive case,
in which the interaction spreads the fermions in space.

The local SF amplitude φi (see Fig. 1) has a nontrivial
evolution. For weak interaction φi is maximum at the trap
center and decreases monotonously moving towards the edges
of the condensate. By increasing the interaction, for U = 6t ,
the maximum at the center turns into a minimum while a
shallow maximum develops at a distance from the center. By
further increasing the interaction the maximum moves greater
distances, while the whole pairing profile decreases.

This behavior can be qualitatively traced back to the
nonmonotonic behavior of φ as a function of filling, which
is symmetric around a maximum at half-filling. In a LDA
scheme, increasing the local density beyond half-filling is
therefore expected to lead to a decrease of φ. For our
number of electrons, which would correspond to a density
of n 	 0.238 in a homogeneous system, at weak coupling the
cloud compression due to trap and interaction is not strong
enough to raise the local density n0 in the trap center above
1. In this case φi is maximum in the trap center and decreases
monotonously as a function of the distance from the trap center.
At large U instead the cloud compression becomes strong
enough to have n0 > 1, and, although the attraction is larger,
the order parameter in the trap center is suppressed and the
SF order amplitude acquires a ring shape, with a maximum
amplitude around the line where the local density crosses
ni = 1. We anticipate that, while the SF order parameter is
indeed reasonably well described by an LDA approximation,
the spectral gap does not closely follow the local density, and
it is much more homogeneous.
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FIG. 2. (Color online) Evolution of the momentum distribution
nk as a function of the increasing attraction U . The model parameters
are as in Fig. 1.

It is important to notice that, besides the peculiar spatial
pattern of the pairing amplitude, the collapse of the fermionic
cloud significantly reduces the all the SF properties with
respect to a homogeneous system with the same interaction
strength and number of fermions. This is associated with the
proliferation of empty and doubly occupied sites, configura-
tions that share a vanishing pairing amplitude. Therefore the
BCS-BEC crossover we would observe in a homogeneous
system is hidden by this effect, which starts already for
intermediate coupling.

The same physics is reflected in the momentum
distribution function nk = 〈c†kck〉, which is easily ac-
cessible in time-of-flight measurements. Our RDMFT
results, shown in Fig. 2, spotlight a rapid evolution from a BCS
regime, characterized by ballistic expansion of the fermions
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FIG. 3. (Color online) Spectral function evolution of the trapped
system for U = 4t (a), U = 6t (b), and U = 8t (c), from the trap
center (bottom of each panel) to the edge (top) along the x axis
(yi = 0). The other model parameters are as in Fig. 1. The figure
underlines the larger homogeneity of the low-energy part of the
spectral functions.
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and a clearly visible remnant Fermi surface to an intermediate
coupling in which most fermions are gathered in the center of
the trap and the momentum distribution becomes very broad
while the Fermi surface is washed out by the reduction of the
single-particle coherence.

V. SPECTRAL DENSITY AND ENERGY GAP

One of the most valuable features of the DMFT and
related methods is that it provides direct access to dynamical
properties, including the local spectral function ρi(ω) =
−1/π ImGi(ω+), which contains the information about the
excitation of the system. An inspection of these observables in
our inhomoegeneous trapped system provides further informa-
tion about the interplay between the interaction physics and the
effect of the potential, showing that the local spectral gap E

g

i is
much more homogeneous than the condensate order parameter.

In Fig. 3 we report the evolution of the local single-particle
spectral function ρi(ω) along a cut parallel to the x axis from
the trap center (bottom of each panel) to the lattice edge (top
of each panel), for three different values of U . Notice that the
discrete nature of the spectral function is a genuine feature due
to the finite lattice and the trapping potential and it does not
result from the RDMFT treatment or from numerics.

The main feature of all the plots is that the evolution of the
spectral functions as we move from the center to the boundary
of the trap is dominated by the change in the local density. Near
the trap center, where the highest value of density is attained,
the spectral density is largely concentrated below the Fermi
level. This imbalance is further enhanced at a larger value
of the attraction. Upon moving towards the trap boundary
the local density is reduced and we observe a transfer of the
spectral weight to higher energy.

The most interesting physical result is, however, that the
low-energy part of the spectrum does not change much as
we move along the lattice, and the energy gap E

g

i appears
much more uniform than the whole spectral function. This
behavior is reflected also in the observables that characterize
the superfluid state.

In order to further substantiate this analysis we show in
Fig. 4 the local gap E

g

i and order parameter φi as a function
of the lattice site i along the x axis (the y variable is set at
the center of the trap). For the sake of comparison, E

g

i is
divided by U , so that it can be more closely compared with

φi (in the BCS regime Eg = Uφ). We show for comparison
(dashed lines) LDA results in which the local properties are
those obtained within the DMFT for a homogeneous system
with a chemical potential corrected by the local trap potential.
In the inset of each figure we plot the same observables as a
function of the local density.

Even if the global change in the curves going from the
center to the edge of the trap may suggest that the RDMFT
results are reasonably reproduced by the LDA, significant
deviations appear in the most delicate border region (notice
that the center of the trap hosts an essentially trivial state).
As we mentioned above, the spectral gap shows the most
significant deviations with respect to the LDA. E

g

i remains
indeed essentially uniform in space also in the proximity of
the cloud edge, while φi vanishes as predicted by the LDA.
This leads to a strong deviation from the BCS proportionality
between the two observables. As a matter of fact, the boundary
of the cloud behaves like a phase-disordered superconductor
with a finite spectral gap and no actual condensate order
parameter. This bifurcation in the behavior of the gap and of
the order parameter is connected to the dynamical nature of the
RDMFT solution. Indeed φi can be computed as an integral of
the whole frequency range of the anomalous Green’s function,
while E

g

i is extracted from the low-frequency part. Our results
therefore show that the low-energy part of the spectrum is
much more homogeneous than the high-energy part. We can
understand this result in terms of the different natures of the
two kind of excitations. Low-energy excitation are essentially
delocalized in space, and they are therefore less sensitive to
the local density, while the high-energy features are associated
with essentially local excitation processes, which are therefore
controlled by the local density.

Interestingly, a similar behavior is indeed observed
in Ref. [26] in the context of chemically disordered
superconductors, suggesting that the bifurcation between low-
and high-energy physics can be a general explanation of the
behavior of inhomogeneous superconductors independently
of the nature of the underlying inhomogeneity.

VI. OPTIMIZED PROTOCOL TO DETECT THE
BCS-BEC CROSSOVER

Our RDMFT solution of the AHM in a trapping potential
prompts that, in order to reveal the full BCS-BEC crossover in
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FIG. 4. (Color online) Energy gap E
g

i and order parameter φi evolution along the x axis (yi = 0) for U = 4t (left), U = 6t (center), and
U = 8t (right). The other model parameters are as in Fig. 1. Insets: The order parameter φi and the gap E

g

i as a function of the density ni . The
arrows indicate the large discontinuity at the border of the cloud.
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FIG. 5. (Color online) Average superfluid amplitude φav as a
function of interaction U . Data from different protocols for the BCS-
BEC crossover obtained by fixing N = 50 and trap center density
n0 = 0.75 (open circles); N = 200 and V0 = 0.03t (diamonds);
and N = 300 and V0 = 0.05t (squares). Dashed line indicates the
homogeneous solution with the same average density nav as in the
N = 50 and n0 = 0.75 case.

a lattice, it is not sufficient to increase the interaction keeping
the trapping potential fixed, instead a more careful protocol
must be considered. In particular one needs to compensate
the cloud compression due to the increased interaction and
keep the density as uniform as possible and, most importantly,
independent of U . The simplest knob we can use to this end is
the strength of the trapping potential. When U increases, we
can decrease V0 and compensate for the cloud compression.
As a matter of fact, it turns out that a suitable change of V0 is
sufficient to reproduce an essentially constant density pattern
for a wide range of U . This compensation protocol avoids the
collapse of the cloud and allows for a sensible comparison
between different values of U .

In Fig. 5 we show the performance of this compensa-
tion protocol. We define the average density nav and order
parameter φav performing the average over the region with
local density larger than ni > 0.001 (i.e., over the whole
cloud). We perform calculations for different values of U ,
choosing V0 in order to keep constant the central density
n0 = 0.75. This simple requirement makes also the average
density in the cloud nav essentially constant as U goes
from 2 to 12 and the whole density profile depends very
weakly on U .

The success of this choice in revealing the properties of
the BCS-BEC crossover is demonstrated by Fig. 5, where
we compare φav for calculations at fixed V0 and for fixed
n0 with a homogeneous solution for n = nav. It is apparent
that calculations at fixed V0 fail in describing the monotonic
increase of φav as the interaction grows. On the other hand,
the compensated protocol is perfectly able of reproducing the
qualitative trend of the homogeneous crossover. Therefore this
protocol is expected to reveal all the relevant features of the
BCS-BEC crossover, including the opening of the pseudogap
above the critical temperature on the BEC side.

VII. CONCLUSIONS

We have studied the two-dimensional attractive Fermi-
Hubbard model in the presence of a trapping potential in order
to describe fermionic atoms trapped in optical lattices. We
have shown that the detection of the BCS-BEC crossover
in the AHM in this system is not straightforward. Using
a fixed trapping potential and increasing the value of the
attractive potential U , we do not reach a proper BEC
regime because the fermionic cloud collapses into a packed
“band-insulating” state with two fermions per site. This
physics is reflected in measurable quantities, including spectral
functions, energy gaps, and momentum distribution functions.
Interestingly, the energy gap is more homogeneous than
the superfluid condensate order parameter and significantly
deviates from the LDA. The limitations introduced by the
trapping potential can be overcome by tuning the strength
of the potential in order to keep the density at the center
of the trap independent of the value of U . This simple
choice leads to an essentially interaction-independent density
pattern which allows one to recover the main features of the
lattice BCS-BEC crossover. A similar protocol should also be
used to study more complex situations with population [27]
and/or mass [28,29] imbalance between the two fermionic
species in order to reveal new exotic phases such as Sarma
states and Fulde-Ferell-Larkin-Ovchinnikov superfluidity
[30–32].
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