
PHYSICAL REVIEW A 89, 053603 (2014)

Three-body bound states in a harmonic waveguide with cylindrical symmetry

D. Blume
Department of Physics and Astronomy, Washington State University, Pullman, Washington 99164-2814, USA

and ITAMP, Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, Massachusetts 02138, USA
(Received 5 March 2014; published 5 May 2014)

Highly elongated quasi-one-dimensional cold-atom samples have been studied extensively over the past years
experimentally and theoretically. This work determines the energy spectrum of two identical fermions and a
third distinguishable particle as functions of the mass ratio κ and the free-space s-wave scattering length a3D

between the identical fermions and the distinguishable third particle in a cylindrically symmetric waveguide
whose symmetry axis is chosen to be along the z axis. We focus on the regime where the mass of the identical
fermions is equal to or larger than that of the third distinguishable particle. Our theoretical framework accounts
explicitly for the motion along the transverse confinement direction. In the regime where excitations in the
transverse direction are absent (i.e., for states with projection quantum number Mrel = 0), we determine the
binding energies for states with odd parity in z. These full three-dimensional energies deviate significantly from
those obtained within a strictly one-dimensional framework when the s-wave scattering length is of the order of
or smaller than the oscillator length in the confinement direction. If transverse excitations are present, we predict
the existence of a class of universal three-body bound states with |Mrel| = 1 and positive parity in z. These bound
states arise on the positive s-wave scattering length side if the mass ratio κ is sufficiently large. Implications of
our results for ongoing cold-atom experiments are discussed.

DOI: 10.1103/PhysRevA.89.053603 PACS number(s): 03.75.Mn

I. INTRODUCTION

Ultracold Bose and Fermi gases provide a unique environ-
ment for exploring few-body physics [1–4]. In the ultracold
regime, the de Broglie wavelength is much larger than the
range of the underlying two-body potential, which implies
that the details of the two-body interactions are, to a good
approximation, negligible. To leading order, the interactions
between two particles can be described by a single atomic
physics parameter, the free-space s-wave scattering length a3D.
For a large number of atomic species, the s-wave scattering
length can be tuned to essentially any value experimentally by
varying an external magnetic field in the vicinity of a magnetic
Fano-Feshbach resonance [5]. The ability to tune the s-wave
scattering length to large positive and negative values, or even
to zero, has opened the possibility to systematically map out
the system behavior from the noninteracting regime to the
weakly attractive (weakly repulsive) regime to the strongly
attractive (strongly repulsive) regime [1,6,7].

The fact that the de Broglie wavelength is, in the ultracold
regime, much larger than the van der Waals length of atom-
atom interactions justifies important simplifications in the
theoretical treatment of cold-atom gases. Specifically, the true
atom-atom potential, which typically supports many two-body
bound states, can be replaced by a simple model potential such
as a zero-range pseudopotential or a Gaussian potential, which
supports at most a few two-body bound states. If the free-space
scattering length of the model potential agrees with that of
the true atom-atom potential, then theoretical treatments that
utilize a model potential are, in general, expected to describe
the low-energy physics with good accuracy.

This work determines the bound-state spectrum of two
identical fermions with mass mh and a third distinguishable
particle with mass ml in a harmonic waveguide with cylindrical
symmetry. The identical fermions interact through a simple
two-body model potential with s-wave scattering length a3D

with the third distinguishable particle. Since the scattering
between the identical fermions is, away from a p-wave
resonance or higher partial-wave resonances, suppressed by
the Wigner threshold law, we assume that the identical
fermions do not interact. We determine the bound-state
properties of this three-body system as functions of the
interspecies s-wave scattering length a3D and the mass ratio
κ , where κ = mh/ml ; we consider the regime 1 � κ � 12.
The bound-state properties of fermionic three-body systems
with unequal masses have previously been investigated in
mixed dimensions [8,9]. While atomic three-body systems
in free space share many characteristics with the low-energy
properties of few-nucleon systems [10], three-atom systems
in a harmonic waveguide with cylindrical symmetry have no
direct nuclear analog.

If transverse excitations are absent (i.e., if Mrel = 0) and
if the size of the three-body bound state is much larger
than the harmonic oscillator length aho that characterizes
the confinement in the transverse direction, then a strictly
one-dimensional Hamiltonian with appropriately chosen one-
dimensional coupling constant provides a qualitatively correct
description [11–15]. However, when the size of the three-body
bound state becomes comparable to or smaller than aho, then
the trimer “feels” the full three-dimensional space and we
find, in agreement with what might be expected naively, that a
simple effective one-dimensional Hamiltonian provides a poor
description. We also investigate the properties of states with
|Mrel| = 1 and positive parity in z. This case has, to the best of
our knowledge, not been considered in the literature. At first
sight, it may seem that the excitation in the transverse direction
would prevent the formation of three-body bound states.
Indeed, this is the case for mass ratios not much larger than one.
For sufficiently large κ and positive s-wave scattering length,
however, the attraction is sufficiently large to “outweigh” the
energy increase due to the projection quantum number Mrel

being finite. The existence of three-body bound states on the

1050-2947/2014/89(5)/053603(9) 053603-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.89.053603


D. BLUME PHYSICAL REVIEW A 89, 053603 (2014)

positive s-wave scattering length side is related to the fact that
the three-body system in free space, i.e., in the absence of the
waveguide, supports universal bound states with finite angular
momentum if κ � 8.173 and a3D > 0 [16,17]. Analogous
effects have previously been studied in quasi-two-dimensional
systems [18,19]. Experimentally, the three-body bound states
can potentially be probed via radio-frequency spectroscopy
or detected via loss features due to three-body recombination
processes. For K-Li mixtures [20–24], e.g., the three-body
bound states should have profound effects on the system
dynamics.

The remainder of this paper is organized as follows.
Section II outlines the theoretical framework. Specifically,
Sec. II A introduces the system Hamiltonian and discusses
its symmetry properties; Sec. II B summarizes the numerical
approach used to obtain the three-body spectra; and Sec. II C
reviews a number of key results for two particles in a
waveguide geometry. Section III discusses our results for
different symmetries. Energy spectra are presented and the
dependence of the energies on the range of the underlying
two-body potential is analyzed. Lastly, Sec. IV summarizes.

II. THEORETICAL FRAMEWORK

A. System Hamiltonian and symmetries

We consider three particles with masses mj and posi-
tion vectors �rj = (xj ,yj ,zj ) in a cylindrically symmetric
waveguide with angular trapping frequency ω. Assuming
isotropic interactions VG(rjk) (rjk = |�rj − �rk|) between the
distinguishable particles, the system Hamiltonian Htot reads
as

Htot =
3∑

j=1

(−�
2

2mj

∇2
�rj

+ 1

2
mjω

2ρ2
j

)
+

3∑
j=2

VG(r1j ), (1)

where ρ2
j = x2

j + y2
j . In Eq. (1), ∇2

�rj
denotes the three-

dimensional Laplacian of the j th particle. Our Hamiltonian
assumes that the three particles with masses m1 = ml and
m2 = m3 = mh all feel the same angular trapping frequency.
While this is fulfilled “automatically” for equal-mass systems,
for unequal-mass systems, the realization of equal trapping
frequencies requires some fine tuning [25]. In Eq. (1), VG

denotes a Gaussian model interaction potential with range r0

and depth V0 (V0 > 0):

VG(r) = −V0 exp

[
−

(
r√
2r0

)2]
. (2)

For a fixed range r0, V0 is adjusted such that VG supports no
free-space bound state for a3D < 0 and one free-space bound
state for a3D > 0. We work in the regime where r0 is much
smaller than the harmonic oscillator length aho,

aho =
√

�

2μω
, (3)

where the two-body reduced mass μ is given by mhml/

(mh + ml).
To analyze the symmetry properties of Htot, we introduce

cylindrical coordinates (xj ,yj ,zj ) = (ρj cos ϕj ,ρj sin ϕj ,zj ).
In these coordinates, we have r2

j = ρ2
j + z2

j and r2
jk = ρ2

jk +

z2
jk , where ρ2

jk = (xj − xk)2 + (yj − yk)2 and zjk = zj − zk .
It can be checked readily that Htot is invariant under a rotation
about the z axis and when changing all xj coordinates to
−xj (and similarly for yj and zj ). Correspondingly, we can
find simultaneous eigenstates of Htot, the z component of the
orbital angular momentum operator Ltot,z, the parity operator
Pz (Pz sends all zj to −zj ), and the parity operator P �ρ (P �ρ
sends all xj to −xj and all yj to −yj ).

Another important property of Htot is that it can be written as
a sum of the relative Hamiltonian Hrel and the center-of-mass
Hamiltonian Hc.m.:

Htot = Hrel + Hc.m.. (4)

To write out Hrel and Hc.m., it is convenient to transform to
Jacobi coordinates �rJ1, �rJ2, and �rJ3 [�rJj = (xJj ,yJj ,zJj )], where

�rJ1 = �r1 − �r2, (5)

�rJ2 = m1�r1 + m2�r2

m1 + m2
− �r3, (6)

and

�rJ3 = m1�r1 + m2�r2 + m3�r3

m1 + m2 + m3
. (7)

The center-of-mass Hamiltonian can be written in terms of �rJ3

and the relative Hamiltonian Hrel in terms of �rJ1 and �rJ2.
In the following, we focus on solving the relative

Schrödinger equation

Hrel�(�rJ1,�rJ2) = E3�(�rJ1,�rJ2) (8)

for the eigenstates � with eigenenergy E3. As before,
we employ cylindrical coordinates, i.e., we write �rJj =
(ρJj cos ϕJj ,ρJj sin ϕJj ,zJj ) (j = 1 and 2). To take advantage
of the Hamiltonian’s symmetry, we perform an additional
coordinate transformation, namely, we replace ϕJ1 and ϕJ2 by
� and φ:

� = 1
2 (ϕJ1 + ϕJ2) (9)

and

φ = ϕJ1 − ϕJ2. (10)

It can be checked readily that the interaction potential is
independent of the angle �. It follows that the relative wave
function factorizes,

�(ρJ1,ρJ2,φ,�,zJ1,zJ2)

= ψMrel (ρJ1,ρJ2,φ,zJ1,zJ2) exp(iMrel�), (11)

where Mrel = . . . ,−2,−1,0,1,2, . . . . For Mrel �= 0, each
eigenenergy is twofold degenerate due to the Mrel quantum
number.

In the following, we label our solutions by the quantum
numbers 
 �ρ , Mrel, and 
z, which are defined through the
action of the operators P �ρ , Lrel,z, and Pz on the eigen-
functions �:

P �ρ� = 
 �ρ�, (12)

Lrel,z� = �Mrel�, (13)
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and

Pz� = 
z�. (14)

One finds 
 �ρ = ±1 [in fact, 
 �ρ = (−1)Mrel ] and 
z = ±1.
For Mrel = 0, we can find simultaneous eigenfunctions of
Hrel, P �ρ , Lrel,z, Pz, and Ay , where the reflection operator
Ay sends all yj to −yj [26]. Specifically, for Mrel = 0, we
have

Ay� = ay� (15)

with ay = ±1. We determine the relative eigenenergies E3

and eigenstates � [see Eq. (8)] by expanding � in terms of
explicitly correlated Gaussian basis functions with good 
 �ρ ,
Mrel, and 
z (and, if Mrel = 0, ay) quantum numbers and solve
a generalized eigenvalue equation.

B. Explicitly correlated Gaussian basis-set expansion approach

Explicitly correlated Gaussian basis functions have been
shown to provide accurate descriptions of strongly correlated
systems such as nuclei, molecules, atoms, and quantum dots
[27,28]. They have also been employed to characterize small
dilute atomic gases [28–31]. We write

�(�rJ1,�rJ2) = A
Nb∑
k=1

ckfk(xJ1,yJ1,xJ2,yJ2,Aρ,k,�uρ,k)

×gk(zJ1,zJ2,Az,k,�uz,k), (16)

where A denotes the operator that ensures that the wave
function is antisymmetric under the exchange of the two
identical fermions A = 1 − P23 (P23 exchanges particles 2
and 3). The ck denote expansion coefficients. These linear
variational parameters are determined by solving the gener-
alized eigenvalue problem defined by the Hamiltonian and
overlap matrices. In Eq. (16), Nb denotes the size of the basis
set. The functions fk and gk depend on a set of nonlinear
variational parameters through Aρ,k , �uρ,k , Az,k , and �uz,k

[27,32]. Here and in what follows, underlined symbols denote
matrices.

We consider two different functional forms for gk , one that
is characterized by 
z = +1 (referred to as g

(e)
k ) and one that

is characterized by 
z = −1 (referred to as g
(o)
k ):

g
(e)
k (zJ1,zJ2,Az,k) = exp

(− 1
2 �zT

J Az,k�zJ
)

(17)

and

g
(o)
k (zJ1,zJ2,Az,k,�uz,k) = vz,k exp

(− 1
2 �zT

J Az,k�zJ
)
, (18)

where �zJ = (zJ1,zJ2) and Az,k denotes a symmetric 2 × 2
matrix. The quantity vz,k is defined through

vz,k = �uT
z,k�zJ, (19)

where �uz,k denotes a two-component vector. The elements of
the vector �uz,k and the elements of the symmetric matrix Az,k

are treated as nonlinear variational parameters [27,32].
The functions fk are characterized by the Mrel quantum

number. For Mrel > 0, we use [27]

f
(Mrel)
k (xJ1,yJ1,xJ2,yJ2,Aρ,k,�uρ,k)

= (vx,k + ivy,k)Mrel exp
(− 1

2 �ρT
J Aρ,k �ρJ

)
, (20)

where �ρJ is a two-component vector �ρJ = ( �ρJ1, �ρJ2), with
the components being vector quantities themselves [ �ρJj =
(xJj ,yJj )]. The 2 × 2 matrix Aρ,k is symmetric; the inde-
pendent elements of Aρ,k are treated as nonlinear variational
parameters. The quantities vx,k and vy,k are defined through

vx,k = �uT
ρ,k

(
xJ1

xJ2

)
(21)

and

vy,k = �uT
ρ,k

(
yJ1

yJ2

)
, (22)

where �uρ,k is a two-component vector whose components are
treated as variational parameters. To understand the form of
the prefactor of f

(Mrel)
k , we recall, using x = ρ cos ϕ and y =

ρ sin ϕ, that

[ρ exp(iϕ)]Mrel = (x + iy)Mrel . (23)

The functions given in Eq. (20) describe states with Mrel > 0.
For the interaction model considered in this paper, the energy
depends on |Mrel| and not the sign of Mrel. Correspondingly,
we only treat states with positive Mrel.

To describe states with Mrel = 0 and ay = +1, we use [27]

f
(0,+1)
k (xJ1,yJ1,xJ2,yJ2,Aρ,k) = exp

(− 1
2 �ρT

J Aρ,k �ρJ
)
, (24)

where the superscript indicates the Mrel and ay quantum
numbers. In this work, we do not report results for states
with (Mrel,ay) = (0,−1). States with this symmetry do not
support three-body bound states if the range r0 of the two-body
potential is much smaller than aho.

Compact analytical expressions for the Hamiltonian and
overlap matrix elements can be obtained using the results of
Ref. [27]. Our optimization procedure of the nonlinear varia-
tional parameters is based on a semistochastic approach [32]
and follows the scheme discussed in Ref. [31]. Our calculations
reported in Sec. III use between 600 and 1300 basis functions.
Each basis function is selected from around 4000–8000 trial
functions. The resulting energies provide variational upper
bounds for the exact ground-state and excited-state energies.
The basis-set extrapolation error depends on the system
parameters and is at the subpercent level or smaller.

Section III reports energies for the regime where r0 is much
smaller than aho. In selected cases, the dependence of the
energy on r0 is investigated explicitly and the r0/aho → 0
limit taken. From a numerical point of view, the presence of
three, often vastly different, length scales (i.e., the harmonic
oscillator length aho, the range r0 of the two-body potential,
and the size of the bound state in the z direction) is, in general,
challenging. It has been shown in the literature that the basis
functions employed in this work provide a reliable and efficient
means to describe cold-atom systems that are characterized
by different length scales. Alternatively, one might employ
zero-range interactions and solve the Lippmann-Schwinger
equation [13–15].
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C. Review: Two particles in a harmonic waveguide
with cylindrical symmetry

To place the three-body study into context, this section
reviews a number of key results for the two-body system
in a harmonic waveguide with cylindrical symmetry. The
system Hamiltonian is given by Eq. (1) with the first and
second sum in Eq. (1) running from j = 1 to 2 and from
j = 2 to 2, respectively (instead of from j = 1 to 3 and from
j = 2 to 3). Separating off the center-of-mass motion, the
problem reduces to that of a reduced mass particle that feels
a spherically symmetric short-range potential with s-wave
scattering length a3D. In the zero-range limit, i.e., for r0 = 0,
the two-body scattering and bound-state solutions have been
determined analytically in the seminal work by Olshanii
[11]. Importantly, if the one-dimensional coupling constant
g (see below) and the relative two-body energy are, for a
fixed interaction potential, scaled by �ωaho and �

2/(2μa2
ho),

respectively, then these quantities are independent of the mass
ratio κ .

The outcome of a scattering event between the two particles
in the (
 �ρ,Mrel,
z,ay) = (+1,0,+1,+1) channel is, for r0 =
0, characterized by the effective one-dimensional even-parity
coupling constant g [11],

g

�ωρ aho
= 2a3D

aho

(
1 + ζ (1/2)√

2

a3D

aho

)−1

, (25)

where ζ (1/2) ≈ −1.460 35. Equation (25) shows that the one-
dimensional coupling constant depends on the ratio a3D/aho.
This implies that it can be tuned either by varying the
harmonic oscillator length of the waveguide or by varying
the three-dimensional s-wave scattering length through ap-
plication of an external magnetic field in the vicinity of a
Fano-Feshbach resonance. Specifically, the one-dimensional
coupling constant g diverges when the s-wave scattering length
takes the value a3D ≈ 1.032 63aho. The solid line in Fig. 1(a)
shows the quantity (�ωaho)/g as a function of aho/a3D.

While the two-body system in free space supports a
weakly bound state only for positive s-wave scattering
length, the waveguide supports a two-body bound state
with (
 �ρ,Mrel,
z,ay) = (+1,0,+1,+1) symmetry for all a3D

[11,12]. Note that the two-body system is bound if its relative
energy is less than �ω, i.e., if its relative energy is less
than the zero-point energy of the reduced mass particle in
a two-dimensional harmonic oscillator. The relative binding
energy E2 is, for zero-range interactions, determined by the
implicit eigenvalue equation [11,12]

1√
2
ζ

(
1

2
,− E2

2�ω
+ 1

2

)
= − aho

a3D
, (26)

where ζ (·,·) denotes the Hurwitz zeta function. The solution is
shown by the solid line in Fig. 1(b) as a function of aho/a3D. For
comparison, dashed and dotted lines show the relative binding
energy for the Gaussian model potential with r0 = 0.005aho

and 0.01aho, respectively. These two-body binding energies are
obtained by solving the relative two-dimensional Schrödinger
equation using B splines and are used in Sec. III to analyze
the three-body spectra. The finite-range effects increase as
aho/a3D increases. For aho/a3D = 10, e.g., the finite-range
energies deviate from the zero-range energy by −11% and
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0

3

6

h_
ω
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ho

 / 
g

-10 -5 0 5 10
aho / a3D

-100

-50

0

E 2 / 
(h_

ω
)

0 0.005 0.010.394

0.396

0.398

(a)

(b)

FIG. 1. (Color online) Coupling constant and binding energy for
two particles in a harmonic waveguide with cylindrical symmetry.
(a) The solid line shows the inverse of the effective one-dimensional
coupling constant g [see Eq. (25)] as a function of aho/a3D for r0 = 0.
(b) The solid line shows the relative two-body binding energy E2 [see
Eq. (26)] as a function of aho/a3D for r0 = 0. For aho/a3D → −∞,
E2 approaches �ω. For comparison, dashed and dotted lines show
E2 for r0 = 0.005aho and 0.01aho, respectively. Inset: Symbols show
E2/(�ω) as a function of r0/aho for aho/a3D = 0.

−24% for r0 = 0.005aho and 0.01aho, respectively. The inset
of Fig. 1(b) shows the two-body binding energy as a function
of r0/aho for aho/a3D = 0. For this scattering length, the finite-
range energies lie (slightly) above the zero-range energy. For
sufficiently small r0, channels with Mrel > 0 and/or 
z = −1
do not support a two-body bound state for any a3D.

III. THREE-BODY BOUND STATES

A. General considerations

This section summarizes our search for three-body bound
states in a waveguide with cylindrical symmetry. Throughout,
we focus on parameter combinations for which |a3D| 	
r0 and aho 	 r0. As discussed in Sec. II C, the two-body
system with short-range interactions supports a bound state
with relative energy E2 for all a3D. This work investigates
under which conditions the three-body system supports states
that are stable with respect to the lowest dimer plus atom
threshold, i.e., whose relative energy E3 is smaller than
E2 + �ω. The addition of the third particle has two effects:
(i) The interaction potential VG(r13) introduces an additional
attraction. (ii) The fact that the three-particle wave function
has to be antisymmetric under the exchange of particles 2 and
3 introduces an effective repulsion. Whether or not three-body
bound states exist is determined by the interplay of these two
effects.

For equal masses, the three-body bound states in a waveg-
uide have been characterized in Refs. [13,14]. For unequal
masses, the bound states of three particles in a waveguide
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have been investigated within a strictly one-dimensional
framework, in which the unlike particles interact through a
one-dimensional δ-function potential with effective coupling
constant g [33–35], and not yet within a full three-dimensional
framework. It was found that three-body bound states are
only supported if g is negative, corresponding to aho/a3D �
1/1.032 63 ≈ 0.968 40, 
z = −1, and κ > 1. Specifically, if κ

is infinitesimally larger than 1, an infinitesimally weakly bound
three-body state emerges for g → −∞. For κ ≈ 7.3791, a
second three-body bound state becomes bound.

In addition to this one-dimensional limit, the bound states
of the three-body system in free space [i.e., in the case where
the waveguide is absent (ω → 0)] are known [16]. In this
case, a universal three-body bound state with (L,
) = (1,−1)
symmetry exists if κ � 8.173 and a3D > 0 [16]; here, L

denotes the relative orbital angular momentum of the three-
body system and 
 the parity. In the limit that the three-
dimensional scattering length a3D is smaller than the harmonic
oscillator length aho that characterizes the waveguide, we
expect that the three-body solutions for the waveguide system
show similarities with those for the free-space system. In
this limit, the waveguide can be thought of as introducing a
small perturbation to the free-space solution. Correspondingly,
we expect that three-body bound states exist for sufficiently
large κ , if the symmetry of the waveguide solution is
“consistent” with the (L,
) = (1,−1) symmetry of the free-
space solution that supports a universal three-body bound
state.

Section III B summarizes our results for κ = 1. Our
full three-dimensional calculations for κ = 1 confirm, as
suggested by Refs. [13,14,34], the absence of three-
body bound states in the (
 �ρ,Mrel,
z,ay) = (+1,0, ± 1,+1)
channels. Our calculations for κ > 1 are summarized in
Secs. III C–III E: Section III C discusses our results for
the (
 �ρ,Mrel,
z,ay) = (+1,0,+1,+1) channel, Sec. III D
those for the (
 �ρ,Mrel,
z,ay) = (+1,0,−1,+1) channel, and
Sec. III E those for the (
 �ρ,|Mrel|,
z) = (−1,1,+1) chan-
nel. We find that the (
 �ρ,Mrel,
z,ay) = (+1,0,−1,+1) and
(
 �ρ,|Mrel|,
z) = (−1,1,+1) channels support three-body
bound states in certain regions of the parameter space. These
channels have an overall negative parity, i.e., 
 �ρ × 
z = −1,
and are thus “consistent” with the free-space solution that has
(L,
) = (1,−1) symmetry and supports universal three-body
bound states for sufficiently large κ and positive a3D.

B. Absence of three-body bound states for κ = 1

For equal masses (i.e., for κ = 1), we find that the
Pauli exclusion principle outweighs the energy decrease due
to the attraction. Specifically, for κ = 1, r0 = 0.01aho, and
aho/a3D ∈ [−10,10], we determined the three-body energies
using the approach discussed in Sec. II B and found that
the (
 �ρ,Mrel,
z,ay) = (+1,0,±1,+1) and (
 �ρ,|Mrel|,
z) =
(−1,1,+1) channels do not support three-body bound states.
For a subset of scattering lengths, we decreased the range r0 of
the Gaussian model potential and found no significant change.
We thus believe that three-body bound states are absent also
in the zero-range limit.

-0.02

-0.01

0

(E
3 - 

E 2 - 
h_
ω

) /
 (h_

ω
)

-10 -5 0 5 10
aho / a3D

-1

-0.5

0

(E
3 - 

E 2 - 
h_
ω

 ) 
/ (

h_
ω

)

(a)

(b)

FIG. 2. (Color online) Relative three-body energies for the low-
est state with (
 �ρ,Mrel,
z,ay) = (+1,0,−1,+1) symmetry as a
function of aho/a3D. (a) The symbols show the dimensionless energy
difference (E3 − E2 − �ω)/(�ω) for κ = 3

2 (top curve; exists only
around aho/a3D = −1), κ = 2 (middle curve), and κ = 5

2 (bottom
curve). (b) The symbols show the dimensionless energy difference
(E3 − E2 − �ω)/(�ω) for κ = 4 (top curve), 5, 13

2 , 8, and 10 (bottom
curve). The lines connect the data points as a guide to the eye. The
calculations are performed for r0 = 0.01aho.

C. (� �ρ,Mrel,�z,ay) = (+1,0,+1,+1)

Considering mass ratios up to κ = 12 and inverse scattering
lengths aho/a3D ranging from −10 to 10, we found no three-
body bound states in the (
 �ρ,Mrel,
z,ay) = (+1,0,+1,+1)
channel. Although the calculations were performed for a finite
range (namely, for r0 = 0.01aho), we believe that the results
also hold for three-body systems with zero-range interactions.
This finding is consistent with the results obtained within
the strictly one-dimensional framework [34]. Moreover, the
absence of three-body bound states in the (
 �ρ,Mrel,
z,ay) =
(+1,0,+1,+1) channel for large aho/a3D is consistent with
the fact that the free-space system with positive parity does
not support three-body bound states [36–39].

D. (� �ρ,Mrel,�z,ay) = (+1,0,−1,+1)

Figure 2 shows the three-body energies for the lowest
state with (
 �ρ,Mrel,
z,ay) = (+1,0,−1,+1) symmetry as a
function of aho/a3D for various mass ratios. The results are
obtained for r0 = 0.01aho. As mentioned above, three-body
states are bound with respect to the breakup into a dimer and
an atom if their energy is less than E2 + �ω. Correspondingly,
Fig. 2 shows the quantity (E3 − E2 − �ω)/(�ω).

For r0 = 0.01aho, the system with κ = 3
2 supports three-

body bound states with binding energies around −6.5 ×
10−5

�ω and −2 × 10−4
�ω (these are variational upper

bounds) for aho/a3D = −1.5 and −1, respectively. For the
range of r0 = 0.01aho, we find no three-body bound states for
aho/a3D = −2 and −0.5. While the exact threshold scattering
lengths, i.e., the scattering lengths at which the system
becomes unbound, depend on the range of the underlying
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FIG. 3. (Color online) Range dependence of the relative three-
body energy of the lowest state with (
 �ρ,Mrel,
z,ay) =
(+1,0,−1,+1) symmetry and κ = 5. The symbols show the dimen-
sionless energy difference (E3 − E2)/(�ω) for (a) aho/a3D = 1 and
(b) aho/a3D = 2. The lines show three parameter fits to the scaled
finite-range energies.

two-body potential, our results confirm the existence of weakly
bound states for κ > 1.

For larger mass ratios, the scattering length window for
which three-body bound states are supported increases, espe-
cially on the negative scattering length side. On the positive
scattering length side, the bound state region also increases.
For κ = 5, e.g., three-body bound states are supported for
positive g (i.e., for aho/a3D � 1/1.032 63). To see if this is
a consequence of the finite-range nature of the interactions,
Figs. 3(a) and 3(b) show the scaled three-body energy (E3 −
E2)/(�ω) as a function of r0 for aho/a3D = 1 and aho/a3D = 2,
respectively. Although the binding energy decreases with
decreasing range, Fig. 3 shows that the three-body system
is bound for all r0 considered, including the zero-range limit.
This implies that three-body bound states are, for sufficiently
large κ , not only supported if g is negative but also if g is
positive. This is in contrast to the prediction based on the
purely one-dimensional framework [34], where a positive
g corresponds to a purely repulsive system. The strictly
one-dimensional treatment could be improved, as suggested
in Refs. [11,12], by using the energy-dependent Hurwitz zeta
function instead of the energy-independent zeta function in
the parametrization of the one-dimensional coupling constant
g [see Eq. (25)].

To determine whether the three-body bound states are
universal for larger κ and large |a3D|, Figs. 4(a) and 4(b)
show the range dependence of the scaled three-body energy
for aho/a3D = 0 as a function of r0 for κ = 6 and 10,
respectively. The range dependence is quite small even for
these large mass ratios, suggesting that the three-body bound
states in the (
 �ρ,Mrel,
z,ay) = (+1,0,−1,+1) channel are
rather insensitive to the details of the underlying two-body
potential if aho/a3D � 1, aho/r0 	 1, and |a3D|/r0 	 1. In the

0.866

0.868

0.87

(E
3 - 

E 2) /
 (h_

ω
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0 0.005 0.01
r0 / aho
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(E
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E 2) /
 (h_
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(b)

FIG. 4. (Color online) Range dependence of the relative three-
body energy of the lowest state with (
 �ρ,Mrel,
z,ay) =
(+1,0,−1,+1) symmetry and aho/a3D = 0. The symbols show the
dimensionless energy difference (E3 − E2)/(�ω) for (a) κ = 6 and
(b) κ = 10. The lines show three parameter fits to the scaled
finite-range energies.

regime where aho/a3D 	 1, however, the finite-range effects
are notably more important. As an example, Fig. 5 compares
the scaled energy (E3 − E2 − �ω)/(�ω) for r0 = 0.01aho

(solid lines) and r0 = 0.005aho (dashed lines) for κ = 6, 8,
and 10. While the qualitative behavior is independent of r0,
quantitative differences are visible in the aho > a3D regime.

Lastly, we search for excited states in the
(
 �ρ,Mrel,
z,ay) = (+1,0,−1,+1) channel. As discussed
above, the strictly one-dimensional framework predicts that
excited states are supported if κ is greater than 7.3791 [34].
For κ = 8 and r0 = 0.01aho, we found that the first excited
state is, within our variational treatment, not bound with
respect to the breakup into a dimer and an atom. We did not
investigate how this “negative result” depends on the range

-10 -5 0 5 10
aho / a3D

-1.5

-1

-0.5

0

(E
3 - 

E 2 - 
h_
ω

) /
 (h_

ω
)

FIG. 5. (Color online) Range dependence of the relative three-
body energies for the lowest state with (
 �ρ,Mrel,
z,ay) =
(+1,0,−1,+1) symmetry as a function of aho/a3D. The circles,
squares, and triangles show the dimensionless energy difference
(E3 − E2 − �ω)/(�ω) for κ = 6, 8, and 10, respectively. The di-
mensionless energies are connected by dashed and solid lines for
r0 = 0.005aho and 0.01aho, respectively.
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FIG. 6. (Color online) Relative energy of the first excited three-
body state with (
 �ρ,Mrel,
z,ay) = (+1,0,−1,+1) symmetry as a
function of aho/a3D. The symbols show the scaled energy (E3 −
E2 − �ω)/(�ω) for κ = 9 and r0 = 0.01aho. Lines connect the data
points as a guide to the eye.

of the underlying two-body potential. For κ = 9, however,
the system supports an excited three-body bound state,
as expected from the strictly one-dimensional framework.
Circles in Fig. 6 show the scaled energy of the first excited
state as a function of aho/a3D for κ = 9 and r0 = 0.01aho.
The dependence of the excited states on the s-wave scattering
length seems to be similar to that of the ground state (compare
Fig. 6 with Figs. 2 and 5).

E. (� �ρ,|Mrel|,�z) = (−1,1,+1)

This section explores under which conditions the three-
body system in the (
 �ρ,|Mrel|,
z) = (−1,1,+1) channel
supports bound states that are stable with respect to the lowest
dimer plus atom threshold with energy E2 + �ω. Figure 7
shows the dimensionless energy (E3 − E2 − �ω)/(�ω) for
r0 = 0.01aho as a function of aho/a3D for various κ . For
κ = 1 [top curve in Fig. 7(a)], the scaled energy (E3 −
E2 − �ω)/(�ω) shows a minimum near aho/a3D = 0. As κ

increases, the minimum deepens and moves slightly to the
positive scattering length side. While these systems with κ

not much larger than 1 are bound with respect to the excited
dimer plus atom threshold with energy E2 + 2�ω, they are not
bound with respect to the lowest dimer plus atom threshold
with energy E2 + �ω. For κ = 6 [third curve from the top
in Fig. 7(b)], the scaled energy (E3 − E2 − �ω)/(�ω) drops
below −1 for large aho/a3D. For yet larger κ , the scaled
energy (E3 − E2 − �ω)/(�ω) decreases monotonically with
increasing aho/a3D. For κ = 8–12, the three-body system with
r0 = 0.01aho becomes bound with respect to the lowest dimer
plus atom threshold for aho/a3D between approximately 3 to
0.5.

To investigate the range dependence of the three-body
energies, Figs. 8(a) and 8(b) show the energy difference
(E3 − E2)/(�ω) for aho/a3D = 0 as a function of r0 for
κ = 6 and 10, respectively. The energy difference depends
approximately linearly on the range. Figures 8(a) and 8(b)
show that the range dependence increases with increasing κ .

To obtain a sense of the range dependence on the negative
scattering length side, Fig. 9(a) shows the difference between
the three-body energies for r0 = 0.01aho and 0.005aho for
κ = 6 (circles), 8 (squares), and 10 (triangles). The range

0.6
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1

(E
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E 2 - 
h_
ω

) /
 (h_

ω
)

-10 -5 0 5 10
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 ) 
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(a)

(b)

FIG. 7. (Color online) Relative three-body energies for the low-
est state with (
 �ρ,|Mrel|,
z) = (−1,1,+1) symmetry as a function
of aho/a3D. (a) Symbols show the dimensionless energy difference
(E3 − E2 − �ω)/(�ω) for κ = 1 (top curve), 3

2 , 2, 5
2 , 3, and 7

2 (bottom
curve). (b) The symbols show the dimensionless energy difference
(E3 − E2 − �ω)/(�ω) for κ = 4 (top curve), 5, 6, 7, 8, 9, 10, 11, and
12 (bottom curve). The lines connect the data points as a guide to the
eye. The calculations are performed for a0 = 0.01aho.

dependence is very small on the negative scattering length
side. To visualize the range dependence in the strongly inter-
acting regime (including the positive scattering length side),
Fig. 9(b) shows the scaled energies (E3 − E2 − �ω)/(�ω)
for two different ranges, r0 = 0.01aho and 0.005aho, and
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FIG. 8. (Color online) Range dependence of the relative three-
body energy of the lowest state with (
 �ρ,|Mrel|,
z) = (−1,1,+1)
symmetry and aho/a3D = 0. The symbols show the dimensionless
energy difference (E3 − E2)/(�ω) for (a) κ = 6 and (b) κ = 10. The
solid lines show three parameter fits to the scaled finite-range energies.
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FIG. 9. (Color online) Range dependence of the relative three-
body energy of the lowest state with (
 �ρ,|Mrel|,
z) = (−1,1,+1)
symmetry as a function of aho/a3D. (a) The circles, squares, and
triangles show the energy difference [E3(r0 = 0.01aho) − E3(r0 =
0.005aho)]/(�ω) for κ = 6, 8, and 10, respectively. The lines connect
the data points as a guide to the eye. (b) The circles, squares, and
triangles show the quantity (E3 − E2 − �ω)/(�ω) for κ = 6, 8, and
10. The dimensionless energies are connected by dashed and solid
lines for r0 = 0.005aho and 0.01aho, respectively.

three mass ratios κ = 6, 8, and 10. Roughly speaking, the
range of the two-body potential becomes important when
aho/a3D � −1.

As pointed out earlier, the states with (
 �ρ,|Mrel|,
z) =
(−1,1,+1) symmetry considered here are consistent with
the (L,
) = (1,−1) symmetry of the three-dimensional free-
space system. For mass ratios κ > 8.173 and zero-range
interactions, the energy of the free-space system in the (1,−1)
channel is directly proportional to (a3D)−2. Thus, we expect
that the three-body energies for the waveguide Hamiltonian
for positive a3D scale in the same way. We find that this is only
approximately true for the parameter regime explored in this
work. The requirement that a3D should be less than aho and
larger than r0, combined with large finite-range effects, make
it challenging, at least for the numerical approach employed
in this work, to reach the regime where the energies for
the waveguide Hamiltonian approach those for the free-space
Hamiltonian with zero-range interactions.

IV. SUMMARY

This paper determined the bound states of two identi-
cal heavy fermions and one light particle in a harmonic
waveguide for short-range interspecies s-wave interactions.
Our calculations accounted for the full dynamics along the
direction of the harmonic confinement as well as along the
direction of the waveguide, i.e., coupling between the degrees
of freedom along these directions was treated explicitly.
Comparisons with predictions based on an effective one-

dimensional Hamiltonian were presented. We investigated
three different symmetries:

(i) For states with (
 �ρ,|Mrel|,
z,ay) = (+1,0,+1,+1)
symmetry, no three-body bound states were found for the mass
ratios investigated. This finding is in agreement with what is
expected based on results for an effective one-dimensional
Hamiltonian and the three-dimensional free-space results for
(L,
) = (0,+1) symmetry.

(ii) For states with (
 �ρ,|Mrel|,
z,ay) = (+1,0,−1,+1)
symmetry, three-body bound states were found for κ > 1 in
the strongly interacting regime. For sufficiently large κ , three-
body bound states exist not only on the negative scattering
length side, but also on the positive scattering length side.
While the bound states on the positive scattering length side
are absent in the strictly one-dimensional treatment, their
existence for sufficiently large κ is expected since free-space
systems with (L,
) = (1,−1) symmetry support universal
three-body states for positive a3D and κ > 8.173 [16].

(iii) For states with (
 �ρ,|Mrel|,
z) = (−1,1,+1) sym-
metry, three-body bound states were found for sufficiently
large κ . This is a class of bound states that has, to the
best of our knowledge, not been considered before. The
antisymmetry of the corresponding eigenstates is ensured by
placing an excitation into the angular degrees of freedom,
allowing the solution along the waveguide axis to have
positive parity (i.e., 
z = +1) and no nodes. The three-body
bound state first emerges on the positive scattering length
side.

A variety of unequal-mass systems have been trapped
and cooled to the degenerate or near-degenerate regime over
the past 10 years or so, and the creation of effectively
one-dimensional confining geometries is fairly standard by
now. Recent experiments on K-Li mixtures with mass ratio
κ ≈ 6.5 [24], e.g., investigated the effects of the L = 1
states on the positive s-wave scattering length side on the
collision dynamics in the three-dimensional regime. It would
be very interesting to extend these experimental studies to
the effectively one-dimensional regime, where the strength of
the confinement can be used to tune the interaction strength.
By changing ω, the ratio aho/a3D and, correspondingly,
the position of the three-body bound state relative to the
lowest dimer plus atom threshold can be tuned. It would
be interesting to monitor the three-body recombination rate
and to thus indirectly search for signatures of the three-
body bound states in the (
 �ρ,|Mrel|,
z,ay) = (+1,0,−1,+1)
and (
 �ρ,|Mrel|,
z) = (−1,1,+1) channels. Alternatively, it
would be interesting to probe the three-body bound states
directly by radio-frequency spectroscopy. In the future, it will
be interesting to extend the studies presented here to other
confinement geometries, to other particle symmetries, and to
larger systems.
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