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Persistent currents in two-component condensates in a toroidal trap
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The stability of persistent currents in a two-component Bose-Einstein condensate in a toroidal trap is studied
in both the miscible and the immiscible regimes. In the miscible regime we show that superflow decay is related
to linear instabilities of the spin-density Bogoliubov mode. We find a region of partial stability, where the flow is
stable in the majority component while it decays in the minority component. We also characterize the dynamical
instability appearing for a large relative velocity between the two components. In the immiscible regime the
stability criterion is modified and depends on the specific density distribution of the two components. The effect
of a coherent coupling between the two components is also discussed.
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I. INTRODUCTION

Persistent currents are dissipationless flows representing
one of the strongest signatures of superfluidity. They are
topological long-lived metastable states of quantum fluids
which are described by a macroscopic wave function (order
parameter in Bose-Einstein condensates). Persistent currents
become unstable above a certain velocity threshold [1]. In the
absence of a weak link, their decay is a complex, stochastic
process mediated by phase slips [2] and is related to the
existence of energy barriers for the excitations to cross the
bulk superfluid [3–5].

The versatility of gaseous Bose-Einstein condensates
(BECs) and the experimentalists’ ability to control their
properties offer new scenarios to probe superfluidity. One of
the most intriguing systems that can be realized nowadays
is the spinor condensate, which is described by a vectorial
order parameter. The simplest example is the two-component
condensate, where spin exchange can be implemented by a
coherent coupling between internal levels of the atoms. This
system has recently acquired new relevance as the basis for
BECs with spin-orbit coupling.

In the absence of coherent coupling, a two-component con-
densate is usually referred to as a binary mixture. Such a system
shows two possible ground states with different symmetries,
depending on whether the mixture is miscible (homogeneous
phase) or immiscible (phase separated). Whereas the features
of the phase transition have been deeply studied both theo-
retically and experimentally, the superfluid properties of the
mixture are still controversial, especially regarding the stability
of persistent currents. Indeed, existing theoretical predictions
[6–10] do not explain the recent experimental observations in
[11]. Also, very recently the dynamics of the persistent currents
have been numerically simulated using spin-1 Gross-Pitaevskii
equations [12], but a deep theoretical understanding of the
results in [11] is missing. Furthermore, arguments related to
the continuous twisting of the order parameter [13] can be
applied neither to the mixture configuration nor in the presence
of coherent coupling because in both cases the Hamiltonian is
generally not invariant under SU(2) transformations.

In this work we study the microscopic mechanism that
triggers the decay of persistent currents and we build the

stability diagram in a quasi-two-dimensional (2D) ring ge-
ometry. In the miscible regime our theoretical analysis is
based on the solution of Bogoliubov excitations and it is
addressed numerically both with imaginary-time and real-time
simulations. We show that there exists a regime of partial
instability where the minority component could lose angular
momentum without affecting the majority component. The
existence of this regime is the main result of this work and
could be at the origin of the experimental observations in [11],
although to test it fully new experiments should be carried
out with different parameters. We also discuss the stability
conditions in the phase-separated regime and in the presence
of a coherent coupling between the two components.

The article is organized as follows. In Sec. II we describe
the system under consideration and we settle the theoretical
framework. In Sec. II A we derive the dispersion relations of
Bogoliubov excitations for a binary mixture, which are at the
basis of the stability criterion. In Sec. II B we calculate the main
correction to the sound velocity due to confinement. Section III
is devoted to the stability of persistent currents in the miscible
regime of the mixture. We present the stability diagram of
persistent currents predicted by imaginary-time simulations
of the Gross-Pitaevskii equations in Sec. III A. The physical
origin of the partially stable region is discussed in Sec. III B
using a linear stability analysis, which we confirm with real-
time dynamics simulations. In Sec. III C we characterize the
dynamical instability known as counterflow instability. The
stability of persistent currents in the phase-separated regime
is analyzed in Sec. IV, and the effect of adding a coherent
coupling is discussed in Sec. V. Finally, the conclusions are
drawn in Sec. VI.

II. SYSTEM DESCRIPTION AND THEORETICAL
FRAMEWORK

We consider a two-component condensate strongly con-
fined along the longitudinal direction, z, such that the dynamics
is effectively 2D. For concreteness we assume a harmonic
confinement in this direction, Vz = mω2

zz
2/2, with ωz the

trapping frequency and m the atomic mass. In the 2D limit
we are considering, �ωz must be much larger than all the
other energy scales. At the mean-field level, this system is
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described by two wave functions (order parameters), �a and
�b, normalized to the number of particles in each species,
respectively Na and Nb. The wave functions satisfy the coupled
Gross-Pitaevskii (GP) equations

i�
∂

∂t
�a =

[
− �

2

2m
∇2

⊥ + V + ga|�a|2 + gab|�b|2
]

�a, (1)

i�
∂

∂t
�b =

[
− �

2

2m
∇2

⊥ + V + gb|�b|2 + gab|�a|2
]

�b, (2)

where V is a ring-shaped external potential obtained as the
sum of harmonic and Gaussian potentials,

V = 1
2mω2

⊥r2
⊥ + V0e

−2r2
⊥/σ 2

0 , (3)

with ω⊥ the radial trapping frequency, r2
⊥ = x2 + y2 the radial

coordinate, σ0 the beam waist, and V0 the strength of the laser
beam, which is proportional to its intensity. This choice for
the potential follows the experiments [14–16]. A different
choice—as for instance in [2,11]—might slightly change our
results quantitatively, but not qualitatively. The interatomic
interactions are characterized by the intraspecies (ga , gb) and
interspecies (gab) coupling constants. They are given in terms
of the three-dimensional (3D) s-wave scattering lengths, a3D ,
through g/(�ω⊥a2

⊥) = √
8πλ a3D/a⊥, where λ = ωz/ω⊥ is

the trap aspect ratio and a⊥ = √
�/mω⊥ is the transverse

harmonic oscillator length.
Since particle exchange is forbidden in Eqs. (1) and (2) the

number of particles in components a and b is fixed externally. It
is then convenient to introduce the polarization of the mixture,
Pz = (Na − Nb)/N , with N = Na + Nb the total number of
atoms. Different polarizations are achieved experimentally by
coherently coupling the two components for a controlled time
(see for instance Ref. [11]). Throughout this work we analyze
the stability properties in terms of the polarization Pz.

The above GP equations admit stationary solutions
�σ (r,t) = e−iμσ t/�ψσ (r), with σ = a,b. The chemical po-
tentials μa and μb generally differ because Na and Nb are
conserved separately. A first-order phase transition at gc

ab =√
gagb separates two possible ground states: For gab < gc

ab the
mixture is miscible and both gases occupy the same volume,
whereas when gab > gc

ab the two components a and b separate
into spatial domains (phase-separated or immiscible regime).
In the latter case, the density distribution depends on the
geometry of V , as well as the mass ratio and the interaction
ratio ga/gb (see, for instance, [17]). In Bose gases like 87Rb,
with nearly equal intra- and interspecies interaction strengths,
the system is usually on the verge of instability.

Unless otherwise stated, we consider the following pa-
rameters in the numerical simulations: N = 105, V0/�ω⊥ =
220, σ0/a⊥ = 6, ga = gb = g, gab/g = 0.97 (gab/g = 1.02
in phase separation). These values of g would correspond in
the case of 87Rb to a3D

a = a3D
b ≈ 100.0aB and a3D

ab ≈ 97.3aB

(a3D
ab ≈ 101.7aB in phase separation), where aB is the Bohr

radius, for a trapping potential with λ ≈ 88, with ω⊥ =
2π × 50 Hz. All simulations have been carried out in a mesh
of 256 × 256 points with a grid spacing hx = hy ≈ 0.2a⊥.
The algorithm we have used for real-time propagation is based
on the split-operator method, and the kinetic term is treated
in Fourier space. We have also run simulations based on a
Hamming’s algorithm (predictor-corrector-modifier) initial-
ized by a fourth-order Runge Kutta, and we have found very
good agreement between the two methods.

A. Bogoliubov excitations in uniform medium

Since there exist two regimes (miscible and phase sepa-
rated) with different spatial properties, their excitation spectra
will be different, and also the corresponding stability criteria.
Indirectly, this has been seen in the theoretical analysis of [18],
where the miscible-immiscible transition was scanned in the
presence of rotation.

In the ground state of the phase-separated regime, there
are two single-species condensates separated by a domain
wall. Excluding the modes localized in the vicinity of the wall
[19,20], the Bogoliubov excitation spectrum in the bulk is that
of the single component. As we discuss in Sec. IV the stability
of persistent currents in the immiscible regime is related to the
appearance of a barrier created by the minority component.

In the miscible regime, in contrast, the stability of persistent
currents is closely related to the Bogoliubov spectrum. In this
section we calculate it for a uniform (V = 0) system and the
effect of the transverse degrees of freedom will be incorporated
in Sec. II B. Since we are interested in the stability of states
with superfluid currents we need to calculate the Bogoliubov
spectrum above a mean-field state where components a and b

move at velocities va and vb, respectively,

�σ (r,t) = [ψσ + δ�σ (r,t)] e−iμσ t/�e−imvσ ·r/�, (4)

where μa = mv2
a/2 + gana + gabnb is the chemical potential

for component a (μb is the corresponding expression for
component b). The superfluid velocities vσ are related to the
phase of the order parameters, Sσ , as vσ = �/m∇S, where
σ = a,b. To find the equations for the (small) perturbations
δ�σ , we substitute Eq. (4) into the GP Eqs. (1) and (2) and
linearize them. The perturbations can be decomposed in a
plane-wave basis as

δ�σ ∼ Uσ ei(k·r−ωt), (5)

δ�∗
σ ∼ Vσ ei(k·r−ωt). (6)

After some algebra an eigenvalue equation is reached,

�ω

⎛
⎜⎝
Ua

Va

Ub

Vb

⎞
⎟⎠ = L

⎛
⎜⎝
Ua

Va

Ub

Vb

⎞
⎟⎠ , (7)

where the linear operator L is given by

L =

⎛
⎜⎝

ha − �va · k gana gab

√
nanb gab

√
nanb

−gana −ha − �va · k −gab

√
nanb −gab

√
nanb

gab

√
nanb gab

√
nanb hb − �vb · k gbnb

−gab

√
nanb −gab

√
nanb −gbnb −hb − �vb · k

⎞
⎟⎠ (8)
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and where we have defined hσ = �
2k2/(2m) + gσnσ , with

σ = a,b. Diagonalization of L gives four eigenvalues and
four corresponding eigenvectors. Notice that since the linear
operator is not Hermitian the frequencies might be complex
(indeed, when they become complex they give rise to a
dynamical instability, which is further discussed in Sec. III C).
In general, two of the eigenvalues have a positive norm,
defined as |Ua|2 − |Va|2 + |Ub|2 − |Vb|2, while the other two
have a negative norm. The relative sign of the amplitudes Ua

and Ub (and correspondingly Va and Vb) determines whether
the modes are in phase (density mode) or out of phase
(spin-density mode). For real frequencies, both modes are
gapless and soundlike at low k and are characterized by the
density and the spin speeds of sound. The full spectrum of (8)
has been solved in several references [21–24], with different
scopes, and the general expression is cumbersome.

Let us review here two physical situations where the
frequencies acquire a simple analytical form (the general
solutions are discussed in Secs. III B and III C). The first case
corresponds to vσ = 0, that is the binary mixture at rest, and
the dispersion relation takes the well-known form [25]

�ωd(s) =
√

�2k2

2m

(
�2k2

2m
+ 2mc2

d(s)

)
, (9)

where the density (d) and spin (s) speeds of sound are given
by

c2
d(s) =

gana + gbnb ±
√

(gana − gbnb)2 + 4nanbg
2
ab

2m
, (10)

where nσ = |�σ |2 are the equilibrium densities of the two
components σ = a,b, and the + and − signs correspond
to cd and cs , respectively. From Eq. (9) one sees that,
as already mentioned above, the excitation frequencies of
both modes assume a linear dispersion ωd(s) = cd(s)k at low
quasimomentum k. For repulsive interactions, which is the
case under consideration, we have cd � cs . Figure 1 shows the
behavior of cd and cs as a function of Pz. For completeness
the single-component speeds of sound, cσ = √

gσnσ /m, for
σ = a,b, are also shown. To plot these velocities, the densities
entering Eq. (10) have been calculated using a Thomas-Fermi
approximation (see Appendix). In the limit of Pz → 1 the

FIG. 1. (Color online) Spin, density, and single-component
speeds of sound. For concreteness, the densities have been calculated
in Thomas-Fermi approximation (see the Appendix).

FIG. 2. (Color online) Bogoliubov excitation spectrum for den-
sity (ωd ) and spin (ωs) modes. The symbols correspond to the
discretized values of k (see text) arising from the ring geometry. For
concreteness, the densities have been calculated in Thomas-Fermi
approximation (see the Appendix).

density mode is dominated by the majority component and
ca → cd , while the spin mode is dominated by the minority
component and cb → cs . Notice also from Eq. (10) that at
the demixing transition point, i.e., gab = gc

ab, the spin speed
of sound vanishes for any polarization Pz, or equivalently the
susceptibility of the mixture diverges. Stability of persistent
currents in this critical regime has been addressed in Refs. [6,8]
for a 1D ring and in Ref. [7] in two dimensions.

The second case is for va = vb = v. It is easy to see this
gives rise to a shift in the frequencies by the quantity v · k,
which has the role of a classical Doppler shift. An example of
the behavior of the dispersion relations in this case is shown
in Fig. 2, calculated for Thomas-Fermi density profiles (see
the Appendix). It can be seen that since the density mode
is higher in energy, the effect of a nonzero velocity is small
for our close-to-critical situation. In contrast, the dispersion
relation of the spin mode is much more sensitive, and adding a
nonzero velocity has strong consequences. In particular, for a
large-enough velocity the energy of the excitation can become
negative, leading to an energetic instability, which as shown
in Sec. III is responsible to a great extent for the decay of
the persistent currents. Notice that in Fig. 2, for convenience,
we show the spectrum for velocity values |v| = v = 2πκ�/m,
corresponding to the quanta of circulation, κ , one would have
in a ring geometry.

B. Corrections to the speed of sound due to confinement

In the last paragraph we derived the speeds of sound for a
uniform medium. When the system is confined the excitations
still have a soundlike character provided the width of the cloud
is large enough in the propagation direction and small enough
in the transverse directions [26,27]. In this section we discuss
the corrections to the frequencies [Eq. (9)] that arise from a
2D ring geometry.

The first correction comes from the discretization of
quasimomentum due to the multiply connected geometry,
according to k = �/R0, with � the quantization number of the
quasimomentum (k = �/R0) and R0 the radius of the ring. To
exemplify this correction, the discrete values of k accessible to
the system are represented as symbols in Fig. 2. The effect of
this correction on the stability criterion for persistent currents
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has been studied in Refs. [6,8]. For the configuration that is
addressed in this work this correction is negligible unless the
polarization is very large. Indeed, we have checked that the
correction is less than 1% for Pz < 0.9 and less than 10% for
Pz < 0.99.

The second and most important correction to the speeds
of sound Eq. (10) is brought about by the transverse (ra-
dial) degrees of freedom. For a single component in a 3D
harmonic trap the renormalizing factor ranges from unity in
the noninteracting limit to 1/

√
2 in the Thomas-Fermi limit

[28–31]. This correction depends only on the geometry and
the density structure, not on the nature of the mode (spin or
density) or the number of components (provided the mixture is
miscible). A ring trap (with 2πR0 larger than the radial width)
can be thought of as a very long prolate trap with periodic
boundary conditions, with the periodicity entering only as the
discretization of k discussed above. On the other hand, the
density in the Thomas-Fermi limit for two components takes
the same inverted parabola structure as for one component (see
Appendix). Therefore, without loss of generality, we calculate
the Thomas-Fermi correction factor to the sound velocity for
a single-component condensate confined in a 2D prolate trap
and apply it to the two-component case.

To derive the correction factor of the speed of sound, we
follow Ref. [30] and write the hydrodynamic equations for the
density and the velocity in a 2D system,

∂n

∂t
+ ∇⊥(vn) = 0, (11)

m
∂v
∂t

+ ∇⊥

[
Vh + gn − �

2

2m
√

n
∇2

⊥
√

n + 1

2
mv2

]
= 0,

(12)

where Vh = 1
2mω2

xx
2 + 1

2mω2
yy

2. We have in mind a situation
satisfying ωy 	 ωx , which is the relevant one for a toroidal
trap, where the y coordinate corresponds to the azimuthal
angle around the trap axis. Neglecting the quantum pressure
term (∼∇2

⊥
√

n) the ground state at rest is characterized by an

inverted parabola profile that extends between Y = ±
√

2μ

mω2
y

(and analogously along the x axis). The system forms an
ellipse on the xy plane with minor and major axis respectively
given by X and Y . The chemical potential is given by
μ = �ωy

√
Ng̃/(πλ⊥), where g̃ = g/(�ωya

2
y) with g the 2D

coupling constant defined above and ay = √
�/(mωy) and

where we have introduced λ⊥ = ωy/ωx .
By linearizing the hydrodynamic equations and combining

them, one finds the eigenvalue equation

ω2δn = −∂x

[
μ − Vh

m
∂xδn

]
− ∂y

[
μ − Vh

m
∂yδn

]
, (13)

where δn = n − n0, with n0 the unperturbed density. Notice
that we have assumed a temporal dependence of the per-
turbations δn ∼ eiωt/� (analogously for the perturbation of
the velocity). We are interested in finding the lowest-energy
excitations, which, consistently with our assumption ωy 	 ωx ,
will mainly come from the y-dependent part of the eigenvalue
equation above. Neglecting thus all dependence of δn on x,
that is δn = δn0(y), and integrating the whole equation with

respect to x, we find

ωδn0 = − 1
3ω2

y(Y 2 − y2)∂2
y δn0 + 2ω2

yy∂yδn0. (14)

For the excitations localized at the center (y ≈ 0) this yields

ω2 = 1

3
ω2

yY
2k2 = 2

3

μ

m
k2. (15)

Using the well-known result c0 = √
μ/m for the sound

velocity in a uniform BEC we recover the dispersion relation
ω = ck with

c =
√

2

3
c0. (16)

The correction factor to Eqs. (10) due to radial confinement is
thus

√
2/3. Notice that there might exist a small correction due

to the anharmonicity of the trapping potential considered in the
numerical results, Eq. (3), and of the bending introduced by
the ring geometry. These corrections, however, do not seem to
have any appreciable effect in the simulations presented below.
The main deviation from this factor would come from a density
profile that was not close enough to the Thomas-Fermi limit
(see, for instance, the results of [28] in 3D).

III. PERSISTENT CURRENTS IN THE MISCIBLE REGIME

We have discussed in Sec. II that Bogoliubov modes
show that if the superfluid flows at a finite velocity the
dispersion relation bends due to the Doppler shift (see Fig. 2).
Consequently, when the flow velocity equals the stationary
speed of sound, the dispersion relation touches the axis ω = 0,
triggering an energetic Landau instability [32]. Since this
instability appears first in the spin channel, it leads to the
following criterion for the stability of persistent currents in
mixtures: When the flow velocity is larger than the spin speed
of sound, the currents become (energetically) unstable and thus
decay. In this section we explore this criterion numerically.

A. Stability diagram

In order to discuss the stability diagram of the persistent
currents and test the above criterion we have solved the GP
equations with a vortexlike ansatz for the initial wave function
[33],

�σ (τ = 0) = ψσ

(
x + iy√
x2 + y2

)κσ

, (17)

with σ = a,b, τ the imaginary-time variable, and κa = κb =
κ . The system is then allowed to evolve freely in imaginary
time until convergence is reached. For all simulations the
initial trial wave functions, ψσ , have been built from both
random density and phase distributions in order to prevent
the algorithm from reaching false metastable states. We have
checked that the virial theorem for the trapping potential (3)
is always fulfilled when convergence is reached, namely,∑

σ=a,b

(2Ekin,σ − 2Etrap,σ + 2Eint,σ + δEσ ) + 2Eint,ab = 0,

(18)
where Ekin, Etrap, and Eint are, respectively, the kinetic,
trapping, and nonlinear interaction energy terms, and δE
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FIG. 3. (Color online) Stability diagram in the miscible regime as
obtained from imaginary-time simulations. The solid line represents
the spin speed of sound cs [see Eq. (10)] computed at the density
maxima by taking into account the corrective factor for 2D geome-
tries. The upper dashed line represents the boundary for dynamical
instability when vb = 0, as obtained from Bogoliubov analysis.

comes from the anharmonicity of potential (3) and is given
by

δEσ = 2
∫

dr⊥|�|2V0

(
1 + 2r2

⊥
σ 2

0

)
e−2r2

⊥/σ 2
0 . (19)

After convergence, we calculate the expectation
value of the angular momentum per particle,
L(σ )

z = 〈�σ | − i�∂ϕ|�σ 〉 /Nσ , and the circulation integral,
�σ = ∮

vσ · d�, with vσ the velocity field and with the integral
evaluated in a closed circuit around the central hole.

The results are shown in Fig. 3 as a function of Pz. The
left y axis shows the initial velocity and the right y axis the
initial angular momentum per particle, which is quantized in
multiples of κ . The metastability of the initial states is shown
as different shaded regions, corresponding to different stability
regimes. The supercurrent is stable (dark region) if the velocity
at the density maximum is smaller than the spin sound velocity
(black solid line), in good agreement with the above criterion
relating supercurrent instability to the Landau instability of the
spin mode (see also [8]). The spin speed of sound has been
renormalized by the factor

√
2/3 that takes into account the

effect of the transverse width of the condensate (Sec. II B).
Furthermore, the numerical simulations allow us to distin-

guish between two unstable regions: (i) a partially stable one,
where the current in the majority component is stable, while it
decays in the minority component; (ii) an unstable one, where
both currents are unstable. While the boundary between the
partially stable and the stable region is determined by the spin
speed of sound, the boundary between the partially stable and
the unstable regions is not fixed by any universal criterion and
its exact position depends on the geometry of the system, as
discussed in the next paragraph.

B. Partially stable region

The presence of the partially stable region is in agreement
with the fact that the spin mode is dominated by the minority
component in the limit of Pz → 1 (see also Fig. 1). In
physical terms, the minority component is more sensitive to

FIG. 4. (Color online) Lines of energetical instability for vb =
�κb/mR0 for different κb. The instability corresponds to the maxi-
mum velocity for the a component that leads to a positive spin-mode
frequency.

spin excitations, whereas the majority component becomes
more stable, being less affected by spin-density excitations. In
mathematical terms, further insight is provided by considering
the case where the two components have different velocities,
va �= vb (notice that the velocities have nonzero components
mainly in the azimuthal direction, since they show a vortex
structure). It is easy to prove that once the minority component
has lost a part of its initial angular momentum, the dispersion
relation is no longer given by Eq. (10) and a nonlinear Doppler
shift is originated by the velocity difference. As a result, the
system becomes more stable.

An example of this analysis is shown in Fig. 4. This figure
shows the maximum velocity that component a can carry
for a fixed (quantized) initial velocity of b, such that the
energy of the spin excitations, ω in Eq. (7), remains positive.
The different curves have been obtained by diagonalizing the
operator L [see Eq. (8)], with the parameters and the densities
taken from the ground state of the GP equations in the absence
of currents. Also, the factor

√
2/3 (see Sec. II B) has been

applied to all curves. For comparison, we have also plotted
the spin sound velocity for equal flow velocities, cs , and the
line of dynamical instability for vb = 0 (see Sec. III C). We
see from the figure that, at fixed Pz, as the velocity difference
grows (that is, κb decreases), the allowed maximum velocity
for component a is larger. This means that the superflow can
be stabilized by losing velocity in one of the components (in
this case the minority component b). This argument justifies
the presence of the partially stable region in Fig. 3.

To test it further and to avoid any spurious effects of
imaginary time, we have run real-time simulations in the
partially stable region, adding a dissipation term in Eqs. (1)
and (2) in analogy to what has been done in Ref. [12]. We have
also added a very small random noise to the potential to make
the energetic instability appear in a shorter time scale (we have
checked that the same result is obtained without this random
noise). The wave functions have been renormalized at every
time step to the initial number of particles, following what was
done in Ref. [34], and the dissipation parameter has been taken
to be γ = 0.08, as in [12]. We show the results in Fig. 5. In
the left panel the time evolution of the angular momentum of
components a and b is shown. While the currents in component
a remain stable throughout all the dynamics, the currents
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FIG. 5. (Color online) (Left panel) Time dependence of angular momentum of components a (dashed line) and b (solid line) in real-time
dynamics in the partially stable region. (Right panels) Density snapshots of components a (top row) and b (bottom row) at times t = 260ω−1

⊥
in panels (a) and (b), t = 305ω−1

⊥ in panels (c) and (d), and t = 560ω−1
⊥ in panels (e) and (f). The density (in units of a−2

⊥ ) is represented in the
color scale. For this case Pz = 0.8 and κ = 7.

in component b decay. This decay is indeed induced by the
crossing of vortices across the ring, as can be seen in the
density snapshots of Fig. 5, for the majority (upper row) and
the minority (lower row) components. These snapshots show
the dynamical process explained above very clearly: First, the
spin instability kicks in as out-of-phase density oscillations in
the azimuthal direction, as seen in panels (a) and (b); since the
minority component is more sensitive to this perturbation, its
density oscillations grow enough to allow the penetration of
vortices inside the ring, panels (c) and (d); finally, after losing
angular momentum, the system is stabilized through the new
stability criterion shown in Fig. 4, panels (e) and (f).

Before ending our discussion of the partially stable region,
let us comment on the 1D limit. In this case the solutions of
Eq. (7) are exact, in the sense that there is no renormalization
factor accounting for the external degrees of freedom. The
effect of going to the 1D limit is to increase the width of the
partially stable region. This can be seen in Table I, where we
compare the width obtained from numerical simulations of the
1D GP equations with that of the 2D GP equations (in units of
the corresponding sound velocities at Pz = 0). Therefore, the
partially stable region is not a feature of an extended geometry,
but it is present also in 1D systems. The universality of the 1D
limit makes this result relevant to coupled Luttinger liquids
(see, e.g., [35,36]).

C. Dynamical instability

The energetic instability discussed above, although being
the relevant one when the two superfluids have the same

TABLE I. Width of the partially stable region.

Pz �1D/c1D
s �/cs

0.10 0.2398 0.0000
0.20 0.2398 0.0000
0.30 0.4797 0.1911
0.60 0.9594 0.5734
0.90 1.4391 0.9557
0.95 1.6789 1.5291

velocity, is not the only mechanism that can trigger decay of
persistent currents in a binary mixture. Indeed, when |va − vb|
exceeds some threshold the eigenfrequencies corresponding to
the spin-density mode acquire an imaginary part, leading to an
exponential growth of the spin excitations that makes the flow
dynamically unstable. The existence of a dynamical instability
for different flow velocities is a more general result and it is due
to the breaking of Galilean invariance. This has been recently
discussed in spin-orbit coupled condensates [37]. In the context
of binary mixtures, this instability is known as counterflow
instability and has been addressed both experimentally [38,39]
and theoretically [21–24]. The structure of the complex eigen-
frequencies is illustrated in the top panels of Fig. 6: The real
part (left panel) is nonzero in the limit of small k, in contrast
to the case of the demixing instability driven by interspecies
interaction.

To better characterize how the dynamical instability appears
in a toroidal trap, we have performed real-time simulations of
Eqs. (1) and (2), imposing initial winding numbers κa = 20,
κb = 0, which correspond to a velocity va much larger than the
critical velocity (Fig. 3, dashed line). The initial state consists
of the converged solutions of the GP equations describing the
mixture at rest, to which we have added an initial vortexlike
phase following Eq. (17).

Selected snapshots of the majority component density
are shown in Fig. 6, showing three different regimes: a
first stage, with radial breathing (as recently discussed in
[16] for a one-component BEC); a second stage, where
the spin instability kicks in and deforms the condensates;
and a third stage, in which vortices enter the BECs and
stabilize the angular momentum at L(a)

z = L(b)
z = Lz/2. The

maxima in the density of one component coincide with the
minima in the other, thus confirming that the instability is
driven by the spin-density mode. Notice that in absence
of dissipation the total angular momentum is conserved;
however, adding a small imaginary term in the left-hand side
of Eqs. (1) and (2) we obtain dissipative dynamics where
both energy and angular momentum decrease in time and
vortices are then able to fully cross the torus (after a certain
time).
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FIG. 6. (Color online) Dynamical instability for κa = 20, κb =
0. (Top row) Real and imaginary parts of the dispersion relation for the
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t = 57.4 ms (c).

IV. PERSISTENT CURRENTS IN THE
IMMISCIBLE REGIME

The physics of persistent current decay is very different
in the phase-separated regime. Since here simple analytical
arguments cannot be used and the results strongly depend
on the geometry of the system, we only rely on numerics.
The parameters are the same as in the miscible case, but
gab/g = 1.02. The insets of Fig. 7 show the density of
the majority component for two different polarizations. The
minority component (not shown) occupies the empty regions
of the ring. When Pz is small, the two components occupy two

FIG. 7. (Color online) Stability diagram in the phase-separated
regime for the majority component, for different values of the
polarization and as a function of the imaginary time, τ . The color
scale represents the value of the circulation. In the insets, we have
plotted the final density of the majority component for Pz = 0.95
(top) and Pz = 0.6 (bottom).

sectors of the ring whose length is determined by the value of
Pz (bottom inset). Conversely, when Pz is large, the minority
component occupies only a small region, creating a barrier (or
weak link, depending on the value of the penetration length)
for the majority component (top inset). These two kinds of
density distributions correspond, respectively, to ground states
characterized by μa = μb and by μa > μb.

In the phase-separated regime the current in the minority
component is always unstable, since it occupies a simply
connected region in the torus. The persistence of the current
in the majority component depends instead on satisfying two
conditions: (i) it occupies a multiply connected region and (ii)
the barrier formed by the minority component is small enough
to prevent vortices from escaping (similarly to what happens
in weak-link systems [14,15,40] and in dipolar condensates
[33]). Such conditions are fulfilled only for high polarizations,
as illustrated in Fig. 7, where the circulation of the majority
component is shown in color scale as a function of Pz and of the
imaginary time. Despite not being real time, imaginary-time
evolution gives an idea of whether the system reaches its
ground state, or else remains blocked in a metastable state.
Qualitatively similar behavior is expected in an experiment
due to dissipative effects. In the present situation, we identify
three regimes: For Pz > 0.9 persistent currents are stable, for
0.6 < Pz < 0.9 decay consists in a series of jumps through
states with integer circulation, and for Pz < 0.6 decay is
continuous.

The situation is different when the intraspecies coupling
constants ga and gb are different. In this case the ground
state consists of two concentric rings, similar to what is
found in purely harmonic traps (see, for instance, [17]). In
this configuration our simulations show that the persistent
flow is maintained to a higher degree. However, a systematic
numerical analysis is complicated by the formation of domain
walls that produce quasidegenerate configurations whose
energy difference is smaller than the numerical precision.

V. PERSISTENT CURRENTS FOR COHERENTLY
COUPLED BECS

For the sake of completeness, we briefly discuss the case
in which particle exchange is allowed by the presence of
a linear coupling ��b (��a) in Eq. (1) [Eq. (2)]. The
miscible-immiscible transition is replaced by a second-order
one, which takes place at gc

ab = g + 2�/n and which separates
a neutral from a polarized regime (see [41] and references
therein). A gap opens in the spin-density mode and the Landau
critical velocity becomes larger than in the binary mixture.
Consequently, the spinor two-component condensate becomes
stable in configurations where the mixture was unstable.
Stability is reinforced by the presence of �, which ensures
Pz = 0. This has been numerically checked for values of the
parameters corresponding to a miscible mixture (gab < g) as
well as to an immiscible one (g < gab < g + 2�/n). This
result fully agrees with the experimental observations of [11].
In the polarized regime, the criterion for stability is more
complex since the neutral and polarized phases always coexist
in the trap [41]. However, phase coherence still guarantees that
the two species decay together.
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VI. CONCLUSIONS

We have studied the stability of persistent currents in
two-component condensates, in both the miscible and the
immiscible regimes. In general terms, in the miscible regime
persistent currents decay when the flow velocity is larger than
the spin speed of sound (see also [6–8]). At a first glance,
this criterion seems to predict a behavior opposite to the
experimental results [11]. However, as we have argued in
this article, a more careful analysis shows that a new region
in the stability diagram is present, which would point in
the right direction to explain the results of [11]. Indeed, by
analyzing the metastable states of the system and performing
a linear stability analysis on them, we have found that for
high-enough polarizations there exists a partially stable region
where the superflow in the minority component decays while
in the majority component it remains stable. This is compatible
with the experimental results in [11], where the population in
the minority component for high polarizations could not be
determined in a precise way: The system could end up in the
partially stable regime but be detected as fully stable. This
mechanism is physically justified by the fact that the spin-
density mode affects more strongly the minority component
than the majority component, and we have seen that it is
indeed what happens in a real-time dynamics in the presence
of dissipation. In an indirect way, this mechanism was seen
in the numerical work of [12], where the majority component
stabilizes at a nonzero value of the angular momentum, while
the minority component loses it completely. The geometry
of the trap can change to a great degree the shape of the
partially stable region, making it steeper for high polarizations,
as seen from Table I. Therefore, to explore the accuracy of
our predictions and understand the full physical picture, more
experiments should be carried out, especially for different
initial circulations.

Let us remark here that while in our semiclassical treatment
persistent currents remain stable for an infinite time in the
absence of dissipation, quantum and thermal fluctuations can
drive their decays. However, while the dynamics of the decay
toward the ground state will be affected by those fluctuations
(see, for instance, the experiment [2]), the stability properties
of the states will not be significantly modified. Thus, the main
features of the results presented in this article will be recovered
in a more sophisticated analysis taking into account also those
effects.

In this article, we have also discussed the dynamical insta-
bility arising from a large velocity difference between the two
components. On the other hand, we have analyzed the stability
criterion of persistent currents in the immiscible regime, where
(for the equal mass and equal interspecies interactions) the
results depend strongly on the density structure. For high
polarizations, the minority component acts as a small barrier
and the majority component can stabilize the currents.

Finally, we have discussed that the presence of a coherent
coupling stabilizes persistent currents, since a gap in the spin
channel opens and the energetic instability appears at higher
values of the flow velocity. These results are in agreement with
the observations in [11] when the coherent coupling was kept
on during the experiment.
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APPENDIX: THOMAS-FERMI APPROXIMATION
IN A RING TRAP

In this Appendix we characterize the Thomas-Fermi (or
local density approximation) solution of a two-component
BEC in a ring trap. This provides with simple analytical
results that can be used to obtain an approximation to various
quantities. To this aim, it is convenient to assume a confining
potential that is a displaced harmonic trap, as has been done
in [7],

V (r⊥) = 1
2mω2

⊥ (r⊥ − R0)2, (A1)

where m is the atomic mass, ω⊥ is the trapping frequency,
r⊥ =

√
x2 + y2 is the radial coordinate, and R0 is the position

of the potential minimum. Neglecting the quantum pressure
term in the GP equations (local density approximation), and
assuming equal intraspecies scattering lengths (ga = gb = g),
the densities for components σ = a,b are given by

nσ = n0

[
1 −

(
r⊥ − R0

RT F

)2
]

± δn, (A2)

with ± corresponding respectively to a and b. In the last
expression we have used the central density, the Thomas-Fermi
radius, and the density difference, given respectively by

n0 = μa + μb

g + gab

, (A3)

R2
T F = μa + μb

mω2
⊥

, (A4)

δn = μa − μb

g + gab

. (A5)

The quantity RT F corresponds to the Thomas-Fermi radius of
the total density. Since the two components can be differently
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FIG. 8. (Color online) Thomas-Fermi density profiles for a two-
component mixture in a displaced harmonic trap. Dashed line, Na =
Nb; solid lines, Pz = 0.4.
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populated, the radial extent of the corresponding clouds can
also be different, which allows us to define inner (+) and outer
(−) radii,

Ra
± = R0 ± RT F

√
1 + δn

n0
, (A6)

Rb
± = R0 ± RT F

√
1 − δn

n0
. (A7)

Normalization of the densities to Na and Nb gives chemical
potentials

μa = μ0

g + gab

[
g

(
2Na

N

)2/3

+ gab

(
2Nb

N

)2/3
]

, (A8)

μb = μ0

g + gab

[
gab

(
2Na

N

)2/3

+ g

(
2Nb

N

)2/3
]

, (A9)

where μ0 is given by

μ0 = 1

2
�ω⊥

[
3

16π

g + gab

�ω⊥a2
⊥

a⊥
R0

N

]2/3

(A10)

and corresponds to the chemical potential of the symmetric
mixture (Na = Nb). An example of what this density profile
looks like is given in Fig. 8, where the relevant parameters are
indicated.
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