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Sped-up protocols that drive a system quickly to the same populations that can be reached by a slow adiabatic
process may involve Hamiltonian terms which are difficult to realize. We use the dynamical symmetry of the
Hamiltonian to find, by means of Lie transforms, alternative Hamiltonians that achieve the same goals without the
problematic terms. We apply this technique to three-level systems (two interacting bosons in a double well, and
beam splitters with two and three output channels) driven by Hamiltonians that belong to the four-dimensional
algebra U3S3.
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I. INTRODUCTION

“Shortcuts to adiabaticity” are manipulation protocols that
take the system quickly to the same populations, or even the
same state, that can be reached by a slow adiabatic process [1].
Adiabaticity is ubiquitous in preparing a system state in
atomic, molecular, and optical physics, so many applications
of this concept have been worked out, in both theory and
experiment [1]. Some of the engineered Hamiltonians that
speed up the adiabatic process in principle may involve terms
which are difficult or impossible to realize in practice. In
simple systems the dynamical symmetry of the Hamiltonian
can be used to eliminate the problematic terms and provide
instead feasible Hamiltonians. Examples are single particles
transported or expanded by harmonic potentials [2,3], or
two-level systems [4–6]. In this paper we extend this program
to three-level systems whose Hamiltonians belong to a four-
dimensional dynamical algebra. This research was motivated
by a recent observation by Opatrný and Mølmer [7]. Among
other systems they considered two (ultracold) interacting
bosons in a double well within a three-state approximation.
Specifically the aim was to speed up a transition from a
“Mott-insulator” state with one particle in each well, to a
delocalized “superfluid” state. The reference adiabatic process
consisted in slowly turning off the interparticle interaction
while increasing the tunneling rate. To speed up this process
they applied a method of generating shortcuts based on adding
a “counterdiabatic” (cd) term to the original time-dependent
Hamiltonian [4,8,9], but the evolution with the cd term turns
out to be difficult to realize in practice [7]. In this paper we shall
use the symmetry of the Hamiltonian (its dynamical algebra)
to find an alternative shortcut by means of a Lie transform,
namely, a unitary operator in the Lie group associated with
the Lie algebra. Since other physical systems have the same
Hamiltonian structure the results are applicable to them
too. Specifically, the analogy between the time-dependent
Schrödinger equation and the stationary-wave equation for
a waveguide in the paraxial approximation [10–15] is used to
design short-length optical beam splitters with two and three
output channels.

In Sec. II we describe the theoretical model for two bosons
in two wells. In Sec. III we summarize the counterdiabatic or
transitionless tracking approach and apply it to the bosonic

system. Section IV sets the approach based on unitary Lie
transforms to produce alternative shortcuts. In Sec. V we
introduce the insulator-superfluid transition and apply the
shortcut designed in the previous section. In Sec. VI we apply
the technique to generate beam splitters with two and three
output channels. Section VII discusses the results and open
questions. Finally, in the Appendix some features of the Lie
algebra of the system are discussed.

II. THE MODEL

An interacting boson gas in a two-site potential is described
within the Bose-Hubbard approximation [16,17] by

H0 = U

2

2∑
j=1

nj (nj − 1) − J (a1a
†
2 + a

†
1a2), (1)

where aj (a†
j ) are the bosonic particle annihilation (creation)

operators at the j th site and nj is the occupation number
operator. The on-site interaction energy is quantified by the
parameter U and the hopping energy by J . They are assumed
to be controllable functions of time. For two particles the

Hamiltonian in the occupation number basis |2,0〉 =
(

1
0
0

)
,

|1,1〉 =
(

0
1
0

)
, and |0,2〉 =

(
0
0
1

)
is given by [7]

H0 =
⎛
⎝ U −√

2J 0
−√

2J 0 −√
2J

0 −√
2J U

⎞
⎠ = UG4 − 4JG1, (2)

where

G1 = 1

2
√

2

⎛
⎝0 1 0

1 0 1
0 1 0

⎞
⎠ , G4 =

⎛
⎝1 0 0

0 0 0
0 0 1

⎞
⎠ . (3)

This Hamiltonian belongs to the vector space (Lie algebra)
spanned by G1, G4, and two more generators,

G2 = 1

2
√

2

⎛
⎝0 −i 0

i 0 i

0 −i 0

⎞
⎠ , G3 = 1

4

⎛
⎝1 0 1

0 −2 0
1 0 1

⎞
⎠ ,

(4)
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with nonzero commutation relations

[G1,G2] = iG3, [G2,G3] = iG1, [G3,G1] = iG2,
(5)

[G4,G1] = iG2, [G2,G4] = iG1.

This four-dimensional Lie algebra, U3S3 [18], is described in
more detail in the Appendix. To find the Hermitian basis we
calculate [G1,G4], and then all commutators of the result with
previous elements. This operation is repeated for all operator
pairs until no new, linearly independent operator appears.

To diagonalize the Hamiltonian (2) it is useful to
parametrize U and J as [7]

U = E0 cos ϕ, J = E0

4
sin ϕ, (6)

where E0 = E0(t) and ϕ = ϕ(t), so that

H0 = E0

⎛
⎜⎝

cos ϕ − 1
2
√

2
sin ϕ 0

− 1
2
√

2
sin ϕ 0 − 1

2
√

2
sin ϕ

0 − 1
2
√

2
sin ϕ cos ϕ

⎞
⎟⎠ . (7)

The instantaneous eigenvalues are

E1 = E0

2
(cos ϕ − 1), (8)

E2 = E0 cos ϕ, (9)

E3 = E0

2
(cos ϕ + 1), (10)

corresponding to the normalized eigenstates

|φ1〉 =

⎛
⎜⎝

1
2

√
1 − cos ϕ

1√
2

√
1 + cos ϕ

1
2

√
1 − cos ϕ

⎞
⎟⎠ , (11)

|φ2〉 = 1√
2

⎛
⎝ 1

0
−1

⎞
⎠ , (12)

|φ3〉 =

⎛
⎜⎝

1
2

√
1 + cos ϕ

− 1√
2

√
1 − cos ϕ

1
2

√
1 + cos ϕ

⎞
⎟⎠ . (13)

III. COUNTERDIABATIC OR TRANSITIONLESS
TRACKING APPROACH

For the transitionless driving or counterdiabatic approach
formulated by Demirplak and Rice [8] or equivalently by
Berry [9], the starting point is a time-dependent reference
Hamiltonian

H0(t) =
∑

n

|n0(t)〉E(0)
n (t)〈n0(t)|. (14)

The approximate time-dependent adiabatic solutions are

|ψn(t)〉 = eiξn(t)|n0(t)〉, (15)

where the adiabatic phase reads

ξn(t) = −1

�

∫ t

0
dt ′E(0)

n (t ′) + i

∫ t

0
dt ′〈n0(t ′)|∂t ′n0(t ′)〉. (16)

Defining now the unitary operator

A(t) =
∑

n

eiξn(t)|n0(t)〉〈n0(0)|, (17)

a Hamiltonian H (t) = i�ȦA† can be constructed to drive the
system exactly along the adiabatic paths of H0(t) as

H (t) = H0(t) + Hcd(t),

Hcd(t) = i�
∑

n

[|ṅ0(t)〉〈n0(t)|

− 〈n0(t)|ṅ0(t)〉|n0(t)〉〈n0(t)|], (18)

where Hcd(t) is purely nondiagonal in the {|n0(t)〉} basis and
the overdot represents the time derivative.

For our system [|n0(t)〉 → |φn〉], the counterdiabatic term
takes the form

Hcd = i�(|φ̇1〉〈φ1| + |φ̇3〉〈φ3|). (19)

Taking into account Eqs. (11), (12), (13), and their respective
time derivatives we get

Hcd = −�ϕ̇G2. (20)

Implementing this interaction is quite challenging as discussed
in detail in [7]. In particular, a rapid switching between G1

and G4, to implement G2 through their commutator, is not a
practical option [7]. Our goal in the following is to design an
alternative Hamiltonian to perform the shortcut without G2.

IV. ALTERNATIVE DRIVING PROTOCOLS
VIA LIE TRANSFORMS

The main goal here is to define a shortcut different from
the one described by i�∂tψ(t) = H (t)ψ(t), where H (t) =
H0(t) + Hcd(t). A wave function ψI (t), which represents
the alternative dynamics, is related to ψ(t) by a unitary
operator B(t),

ψI (t) = B†(t)ψ(t), (21)

and obeys i�∂tψI (t) = HI (t)ψI (t), where

HI (t) = B†(t)[H (t) − K(t)]B(t), (22)

K(t) = i�Ḃ(t)B†(t). (23)

These are formally the same expressions that define an
interaction picture. However, in this application the “inter-
action picture” portrays a different physical setting from the
original one [6]. In other words, HI is not a mathematical
aid to facilitate a calculation in some transformed space, but
rather a physically realizable Hamiltonian different from H .
Similarly, ψI represents in general different dynamics from ψ .
The transformation provides indeed an alternative shortcut if
B(0) = B(tf ) = 1, so that ψI (tf ) = ψ(tf ) for a given initial
state ψI (0) = ψ(0). Moreover, if Ḃ(0) = Ḃ(tf ) = 0 also the
Hamiltonians coincide at initial and final times, H (0) = HI (0)
and H (tf ) = HI (tf ). These boundary conditions may be
relaxed in some cases as we shall see.

We carry out the transformation by exponentiating a
member G of the dynamical Lie algebra of the Hamiltonian,

B(t) = e−iαG, (24)
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where α = α(t) is a time-dependent real function to be
determined. This type of unitary operator B(t) constitutes a
“Lie transform.” Lie transforms have been used for example
to develop efficient perturbative approaches that try to set the
perturbation term of a Hamiltonian in a convenient form in
both classical and quantum systems [19,20].

Note that K in Eq. (23) becomes −�α̇G and commutes
with G. Then, HI , given now by

B†(H − K)B = eiαG(H − K)e−iαG

= H − �α̇G + iα[G,H ] − α2

2!
[G,[G,H ]]

− i
α3

3!
[G,[G,[G,H ]]] + · · · , (25)

depends only on G, H , and its repeated commutators with G,
so it stays in the algebra. If we can choose G and α so that
the undesired generator components in H cancel out and the
boundary conditions for B are satisfied, the method provides

a feasible, alternative shortcut. In the existing applications of
the method [1,6], and in this paper we proceed by trial and
error, testing different generators. In the present application
we want the Hamiltonian HI to keep the structure of the
original one, with nonvanishing components proportional to
G1 and G4. We may quickly discard by inspection G1, G2,
and G3 as candidates for G. Choosing G → G4 in Eq. (24),
and substituting into Eqs. (22) and (25), the series of repeated
commutators may be summed up. HI becomes

HI = (E0 cos ϕ − �α̇) G4

− (E0 sin ϕ cos α + �ϕ̇ sin α) G1

− (E0 sin ϕ sin α − �ϕ̇ cos α) G2. (26)

To cancel the G2 term, we choose

α(t) = arccot

[
E0(t)

�ϕ̇(t)
sin[ϕ(t)]

]
. (27)

Substituting Eq. (27) into Eq. (26) we have finally

HI =
[

cos ϕE3
0 sin2 ϕ + �

2 sin ϕĖ0ϕ̇ + �
2E0(2 cos ϕϕ̇2 − sin ϕϕ̈)

E2
0 sin2 ϕ + �2ϕ̇2

]
G4 −

[
E0 sin ϕ

√
1 + �2 csc2 ϕϕ̇2

E2
0

]
G1, (28)

which has the same structure (generators) as the reference
Hamiltonian but different time-dependent coefficients.

V. INSULATOR-SUPERFLUID TRANSITION

On changing the U/J ratio, the system may go from a
Mott-insulator (the two particles isolated in separate wells) to a
superfluid state (in which each particle is distributed with equal
probability in both wells). From Eq. (11), the Mott-insulator
ground state is |φ1〉 = |1,1〉 and in the superfluid regime the
ground state becomes |φ1〉 = 1

2 |2,0〉 + 1√
2
|1,1〉 + 1

2 |0,2〉. To
design a reference process (one that performs the transition
when driven slowly enough) we consider polynomial functions
for E0(t) and ϕ(t). Since we want to drive the system from |1,1〉
to 1

2 |2,0〉 + 1√
2
|1,1〉 + 1

2 |0,2〉, we impose in Eq. (11)

ϕ(0) = 0, ϕ(tf ) = π/2. (29)

To have the wells isolated at t = 0 but connected (allowing the
particles to pass from one to the other) at t = tf we also set

E0(0) = 0, E0(tf ) �= 0, (30)

so that J (0) = U (0) = 0 and J (tf ) �= 0. Moreover, for a
smooth connection with the asymptotic regimes (t < 0, t > tf )
we set

ϕ̇(0) = 0, ϕ̇(tf ) = 0. (31)

This implies that Hcd(0) = Hcd(tf ) = 0; see Eq. (20). The
condition

ϕ̈(tf ) = 0 (32)

is also needed to implement alternative shortcuts, in particular,
to satisfy Ḃ(tf ) = 0. At intermediate times, we interpolate
the functions as E0(t) = ∑1

j=0 aj t
j and ϕ(t) = ∑4

j=0 bj t
j ,

where the coefficients are found by solving Eqs. (29)–(32).
These functions are shown in Fig. 1. In this and other figures
τ = Emax

0 t/�, where Emax
0 is the maximum value of E0(t).

The actual time evolution of the state

|
(t)〉 = c1(t)|2,0〉 + c2(t)|1,1〉 + c3(t)|0,2〉 (33)

is given by solving Schrödinger’s equation with the different
Hamiltonians. For this particular transition, |
(0)〉 = |φ1(0)〉
and the ideal target state is (up to a global phase factor)
|
(tf )〉 = |φ1(tf )〉.

The dynamics versus time τ is shown in Fig. 2 for τf = 2.
For this short time H0(t) fails to drive the populations to 1/2
and 1/4, whereas when Hcd(t) is added the intended transition
occurs successfully. As for the alternative Hamiltonian in
Eq. (28), with B = e−iαG4 , and α in Eq. (27), we find

B(tf ) = 1, Ḃ(0) = Ḃ(tf ) = 0 (34)

0 1 20

0.5

1

τ

E 0
E 0
m
ax

0 1 2
0

π
4

π
2

τ

(a) (b)

FIG. 1. Functions in HI (t): (a) E0(t) and (b) ϕ(t). Parameters:
τ = Emax

0 t/� where Emax
0 is the maximum value of E0(t) and τf = 2.
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FIG. 2. (Color online) Bare-state populations for (a) H0(t); (b)
H (t) and HI (t). |c1(t)|2 (red circles), |c2(t)|2 (short-dashed blue line),
and |c3(t)|2 (solid black line). Parameters: τ = Emax

0 t/� with Emax
0 the

maximum value of E0(t), τf = 2.

[Eq. (32) is necessary to have α̇(tf ) = 0 and consequently
Ḃ(tf ) = 0], whereas

B(0) =
⎛
⎝e−iπ/2 0 0

0 1 0
0 0 e−iπ/2

⎞
⎠ �= 1. (35)

However B†(0)|1,1〉 = |1,1〉 so ψI (0) = ψ(0) and HI pro-
vides the desired shortcut.

Solving numerically the dynamics for HI (t) we obtain a
perfect insulator-superfluid transition [see Fig. 2(b)]. Notice
that, as G4 is diagonal in the bare basis, the bare populations are
the same for the dynamics driven by H and HI ; see Fig. 2(b).

In order to compare our approach with other protocols we
reformulate HI as

HI =

⎛
⎜⎝

UI −√
2J I 0

−√
2J I 0 −√

2J I

0 −√
2J I UI

⎞
⎟⎠ = UIG4 − 4J IG1.

(36)
Comparing Eqs. (36) and (28) we find that

UI = 1

(E0)2 sin2 ϕ + �2(ϕ̇)2 {cos ϕ(E0)3 sin2 ϕ

+ �
2 sin ϕĖ0ϕ̇ + �

2E0[2 cos ϕ(ϕ̇)2 − sin ϕϕ̈]},

J I = 1

4
E0 sin ϕ

√
1 + �2 csc2 ϕ(ϕ̇)2

(E0)2 . (37)

Figure 3 shows the functions UI and JI . We have set HI (tb) =
H0(tb), for tb = 0,tf , since Hcd(tb) = 0 and Ḃ(tb) = 0. In the

0 1 20

1

2

τ

U
E 0
m
ax
,U

I
E 0
m
ax

0 1 20

0.2

0.4

τ

J
E 0
m
ax
,J
I
E 0
m
ax(a) (b)

FIG. 3. (Color online) (a) Interaction energy for the reference
Hamiltonian H0 (solid green line) and for HI (short-dashed green
line). (b) Hopping energy for H0 (solid magenta line) and HI

(short-dashed magenta line). The same parameters as in Fig. 1.

FIG. 4. Schematic representation of a 1:2 beam splitter.

same way as Eq. (6) we can rewrite the above energies as

UI = EI
0 cos ϕI , J I = EI

0

4
sin ϕI , (38)

where EI
0 = EI

0 (t) and ϕI = ϕI (t). The inverse trans-
formation is

ϕI = arctan

(
4

J I

UI

)
, EI

0 = UI

cos ϕ′ . (39)

Consider a simple protocol with E0(t) = EM
0 (t) = const and a

linear ϕM (t) from 0 and π/2 [7]. Setting the value of EM
0 so that∫

EM
0 dt = ∫

EI
0dt , it is found that the simple protocol needs

τf = 18.8 to perform the transition with a 0.9999 fidelity.
In other words, the protocol based on HI is 9.4 times faster
according to this criterion.

VI. BEAM SPLITTERS

The three-level Hamiltonian (2) describes other physical
systems apart from two bosons in two wells. For example
it represents in the paraxial approximation and substituting
time by a longitudinal coordinate three coupled waveguides
[10–15], where J is controlled by waveguide separation and
U by the refractive index. In particular J and U may be
manipulated to split an incoming wave in the central waveguide
into two output channels (corresponding to the external
waveguides) or three output chanels [14,15]. The Hamiltonian
also represents a single particle in a triple well [21], where U

plays the role of the bias of the outer wells with respect to the
central one and J the coupling coefficient between adjacent
wells. The beam splitting may thus depict the evolution of the
particle wave function from the central well either to the two
outer wells or to three of them with equal probabilities.

For three-well or three-waveguide systems1 the minimal
channel basis for left, center, and right wave functions is |L〉 =(

1
0
0

)
, |C〉 =

(
0
1
0

)
, and |R〉 =

(
0
0
1

)
.

A. 1:2 beam splitter

To implement a 1:2 beam splitter (see Fig. 4), the goal
is to drive the eigenstate from |φ1(0)〉 = |C〉 to |φ1(tf ) =

1√
2

(|L〉 + |R〉). As in the previous section we use polynomial
functions for E0(t) and ϕ(t) to set a reference process. We
impose

ϕ(0) = 0, ϕ(tf ) = π (40)

1The Hamiltonian (2) also describes a three-level atom under
appropriate laser interactions; see [13].
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FIG. 5. (a) E0(t) and (b) ϕ(t). τ = Emax
0 t/� where Emax

0 is the
maximum value of E0(t). τf = 2.

in Eq. (11). The wells (waveguides) should be isolated at the
initial and final times. If moreover all wells are at equal heights
at those times we set

E0(0) = E0(tf ) = 0, E(tf /2) �= 0 (41)

to satisfy H0(0) = H0(tf ) = 0. We also impose

ϕ̇(0) = 0, ϕ̇(tf ) = π (42)

to smooth the functions at the time boundaries and make
Hcd(tb) = 0. In addition

ϕ̈(tf ) = 0 (43)

is imposed to satisfy Ḃ(tf ) = 0. At intermediate times E0(t) =∑2
j=0 aj t

j and ϕ(t) = ∑4
j=0 bj t

j , with the coefficients de-
duced from Eqs. (40)–(43). These functions are shown in
Fig. 5.

Figure 6 shows the dynamics for τf = 2. This time
(corresponding to the splitter length in the optical system)
is too short for the reference Hamiltonian H0(t) to drive the
bare-basis populations to 0 and 1/2. On adding Hcd(t) the
transition occurs as desired. As in Sec. IV, we construct an
alternative shortcut HI (t) without G2 using the transformation
B = e−iαG4 . With α in Eq. (27), Ḃ(0) = Ḃ(tf ) = 0, whereas

B(0) = B(tf ) =
⎛
⎝e−iπ/2 0 0

0 1 0
0 0 e−iπ/2

⎞
⎠ . (44)

This is enough for our objective as B†(0)|C〉 = |C〉 and
B†(tf )|ψ(tf )〉 = −i|ψ(tf )〉.

Solving numerically the dynamics for HI (t) we obtain a
perfect 1:2 beam splitting [see Figs. 7 and 6(c)].

To compare the present shortcut and the simple ap-
proach with EM

0 = const and ϕM (t) = t
tf

π , we set
∫

EM
0 dt =

0 1 2
0

1
2

1

τ

Po
pu
la
tio
n

0 1 2
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1

τ

Po
pu
la
tio
n

(a) (b)

FIG. 6. (Color online) Bare-state populations for (a) H0(t), and
(b) H (t) and HI (t). |c1(t)|2 (red circles), |c2(t)|2 (short-dashed blue
line) and |c3(t)|2 (solid black line). Parameters: τ = Emax

0 t/� with
Emax

0 the maximum value of E0(t), and τf = 2.

0 1 21.4

0

1.4

τ
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E 0
m
ax
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I
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m
ax
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0.4
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τ
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E 0
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I
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m
ax(a) (b)

FIG. 7. (Color online) (a) Interaction energy for H0 (solid green
line) and HI (short-dashed green line). (b) Hopping energy for H0

(solid magenta line) and HI (short-dashed magenta line). The same
parameters as in Fig. 5.

∫
EI

0dt . The constant-E0 protocol needs τf � 18.6 to achieve
0.9999 fidelity, so the protocol driven by HI is 9.3 times faster.

B. 1:3 beam splitter

We also describe briefly a 1:3 beam splitter; see Figs. 8–11.
The aim is to drive the system from |φ1(0)〉 = |C〉 to equal
populations in |L〉, |C〉, and |R〉. To design a reference
protocol we use polynomial interpolation for E0(t) and ϕ(t)
(see Fig. 9), with the same boundary conditions as for the 1:2
splitter but with ϕ(tf ) = 0.608 17π = arccos(−1/3) and the
additional condition Ė0(tf ) = 0 [to satisfy UI (tf ) = U (tf ) so
that HI (tf ) = H0(tf )]. The Lie transform may be applied as
before on the protocol with the counterdiabatic correction; see
Fig. 10(b).

A simple protocol with EM
0 and ϕ(t) = t

tf
0.608 17π needs

τf = 22, if
∫

EM
0 dt = ∫

EI
0dt , for a 0.9999 fidelity, so the

protocol based on HI is 11 times faster.

VII. DISCUSSION

We started with shortcuts to adiabaticity for three-level
systems with U3S3 symmetry (a four-dimensional Lie algebra)
that include Hamiltonian terms which are difficult to imple-
ment in the laboratory. Alternative shortcuts without them
have then been found by means of Lie transforms. These
transformations are formally equivalent to interaction picture
(IP) transformations. However the resulting IP Hamiltonian
and state represent a different physical process from the
original (Schrödinger) Hamiltonian and dynamics. We have
set shortcuts for different physical systems. For two particles
in two wells we have implemented a fast insulator-superfluid
transition. For coupled waveguides or a particle in a triple
well we have implemented fast beam splitting with one input
channel and two or three output channels. In all cases the IP
Hamiltonian involves only two realizable terms (generators).

In a companion paper a related method has been worked
out [22]. Both approaches rely on Lie algebraic methods

FIG. 8. Schematic representation of the 1:3 beam splitter.
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FIG. 9. (a) E0(t) and (b) ϕ(t). τ = Emax
0 t/�, where Emax

0 is the
maximum value of E0(t). τf = 2.

and aim at constructing shortcuts to adiabaticity. However,
we do not use dynamical invariants explicitly in the current
approach, whereas the bottom-up approach in [22] engineers
the Hamiltonian by making explicit use of its relation to
dynamical invariants. In contrast, we start here from an
existing, known shortcut—for example the one generated by
a counterdiabatic method; then, a Lie transform is applied to
generate alternative, feasible, or more convenient shortcuts,
as in [6]. A connection between the transformation method
and dynamical invariants is sketched briefly in the Appendix
but it deserves a separate study. We note that the dynamics
of all our examples takes place in a degenerate eigenspace
of an algebraic invariant which is not proportional to the unit
matrix and commutes with all members of the algebra. The
degeneracy is required to produce nontrivial dynamics, so
identifying degenerate subspaces of nontrivial invariants, as
well as the conditions allowing the cancellation of certain
generators will be instrumental in finding further applications
in systems described by other Lie algebras.

Optimal control theory (OCT) offers an alternative way to
generate fast dynamics [23,24]. In this paper no optimization
has been attempted, but the combination of shortcut-to-
adiabaticity techniques offering multiple exact protocols with
perfect fidelity, such as the one based on Lie transforms,
and OCT, has been shown to be fruitful [25–27]. OCT may
select among the protocols generated the ones that optimize a
physically significant variable [25–27].

Within the scope of the algebra U3S3, other physical
systems that could be treated are in quantum optics (three-level
atoms) [28,29], nanostructures (triple wells or dots) [30], op-
tics (mode converters) [31,32], or Bose-Einstein condensates
in an accelerated optical lattice [33].
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FIG. 10. (Color online) Bare-state populations for (a) H0(t), and
(b) H (t) and HI (t). |c1(t)|2 (red circles), |c2(t)|2 (short-dashed blue
line), and |c3(t)|2 (solid black line). Parameters: τ = Emax

0 t/� with
Emax

0 the maximum value of E0(t), and τf = 2.
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FIG. 11. (Color online) (a) Interaction energy for H0 (solid green
line) and HI (short-dashed green line). (b) Hopping energy for H0

(solid magenta line) and HI (short-dashed magenta line). The same
parameters as in Fig. 9
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APPENDIX: LIE ALGEBRA

The algebra of this three-level system is a four-dimensional
Lie Algebra U3S3 according to the classification of four-
dimensional Lie algebras in [18]. (For comparison with that
work it is useful to rewrite the generators in the skew-Hermitian
base G̃k = −iGk , k = 1,2,3,4.) U3S3 is a direct sum of the
one-dimensional algebra spanned by the invariant G4 − G3,
that commutes with all members of the algebra, and a three-
dimensional SU(2) algebra spanned by {G1,G2,G3}. Notice
that this realization of the three-dimensional (3D) algebra is
not spanned by the matrices

Jx = 1√
2

⎛
⎝0 1 0

1 0 1
0 1 0

⎞
⎠ ,

(A1)

Jy = 1√
2

⎛
⎝0 −i 0

i 0 −i

0 i 0

⎞
⎠ , Jz =

⎛
⎝1 0 0

0 0 0
0 0 −1

⎞
⎠ ,

which correspond, in the subspace |2,0〉,|1,1〉,|0,2〉, to the
operators

Jx = 1
2 (a†

1a2 + a
†
2a1), (A2)

Jy = 1
2i

(a†
1a2 − a

†
2a1), (A3)

Jz = 1
2 (a†

1a1 − a
†
2a2). (A4)

In particular we cannot get the matrices for Jy or Jz by
any linear combination of our Gk matrices [see Eqs. (3)
and (4)]. A second-quantized form for the Gk consistent with
the matrices includes quartic terms in annihilation and creation

053408-6



SHORTCUTS TO ADIABATICITY IN THREE-LEVEL . . . PHYSICAL REVIEW A 89, 053408 (2014)

operators:

G1 = 1
4 (a†

1a2 + a
†
2a1),

G2 = 1
4i

[a†
1a

†
2(a1a1 + a2a2)

− (a†
1a

†
1 + a

†
2a

†
2)a1a2],

G3 = 1
8 [(a†

1a
†
1 + a

†
2a

†
2)a1a1 − 4a

†
1a

†
2a1a2

+ (a†
1a

†
1 + a

†
2a

†
2)a2a2],

G4 = 1
4 (a†

1a1 − a
†
2a2)

2
. (A5)

These second-quantized operators do not form a closed
algebra under commutation but their matrix elements for two
particles do.

An invariant (defined in a Lie-algebraic sense) commutes
with any member of the algebra. There are generically
two independent invariants for U3S3 [34]. For the matrix
representation in Eqs. (3) and (4) they are

I1 = G2
1 = G2

2 = G2
3 = 1

8

⎛
⎝1 0 1

0 2 0
1 0 1

⎞
⎠ ,

(A6)

I2 = G4 − G3 = 1

4

⎛
⎝ 3 0 −1

0 2 0
−1 0 3

⎞
⎠ .

I1, which is not in the algebra, has eigenvalues

λ
(2)
1 = 1, λ

(1,3)
1 = 1

2 , (A7)

and I2, a member of the algebra, has eigenvalues

λ
(2)
2 = 0, λ

(1,3)
2 = 1

4 . (A8)

The two invariants have the same eigenvectors,

|u(1)〉 = 1√
2

(|2,0〉 + |0,2〉),

|u(2)〉 = 1√
2

(|2,0〉 − |0,2〉), (A9)

|u(3)〉 = |1,1〉,
with |u(1)〉 and |u(3)〉 spanning a degenerate subspace.

Lie-algebraic invariants constructed with time-independent
coefficients satisfy as well the equation

i�
∂I1,2

∂t
+ [H (t),I1,2] = 0 (A10)

so they are also dynamical invariants [35] [i.e., operators that
satisfy Eq. (A10) whose expectation values remain constant].
The degenerate subspace of eigenvectors allows the existence
of time-dependent eigenstates of time-independent invariants.
In particular, in all the examples in the main text, the dynamics
takes place within the degenerate subspace: the initial state
is |u(3)〉 at t = 0 and ends up in some combination of |u(1)〉
and |u(3)〉 at tf . The specific state as a function of time

is known explicitly, |ψI (t)〉 = eiα(t)G4e−i
∫ t

0 E1dt ′ |φ1(t)〉; see
Eq. (21). Note that |φ1〉 and |φ3〉 in Eqs. (11) and (13)
are two orthogonal combinations of |u(1)〉 and |u(3)〉. Also
|u(2)〉 = |φ2〉; see Eq. (12). In the nondegenerate subspace
spanned by |u(2)〉 “nothing evolves,” other than a phase factor,
but the initial states in the examples do not overlap with it.
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[2] E. Torrontegui, S. Ibáñez, X. Chen, A. Ruschhaupt, D. Guéry-
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