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Time-dependent R-matrix theory applied to two-photon double ionization of He
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We introduce a time-dependent R-matrix theory generalized to describe double-ionization processes. The
method is used to investigate two-photon double ionization of He by intense XUV laser radiation. We combine a
detailed B-spline-based wave-function description in an extended inner region with a single-electron outer region
containing channels representing both single ionization and double ionization. A comparison of wave-function
densities for different box sizes demonstrates that the flow between the two regions is described with excellent
accuracy. The obtained two-photon double-ionization cross sections are in excellent agreement with other cross
sections available. Compared to calculations fully contained within a finite inner region, the present calculations
can be propagated over the time it takes the slowest electron to reach the boundary.
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I. INTRODUCTION

In the last decade, free-electron laser facilities operating
in the XUV and x-ray regimes have become available for
scientific investigations [1–3]. These facilities have opened
up the research area of laser-matter interactions in intense
high-frequency fields. When a high-frequency laser field
interacts with an atom, electrons from many different shells
can be removed, and hence the response of many electrons in
the atom needs to be considered. For an intense laser field,
absorption of multiple photons can occur, so that a single
laser shot is capable of ejecting many electrons from many
different shells, leading to the creation of highly charged
ions [4,5].

This development in laser technology needs to be replicated
in theory by developing methods capable of providing detailed
understanding of this new area of laser-matter interactions.
For example, great progress has been made in the theoretical
description of sequential ionization processes [6], so that
accurate predictions can be made for the observed ionization
stages. However, for other processes theoretical understanding
has been developed to a much lesser degree.

One of the processes, for which there is an urgent need
for theoretical code development, is the description of nonse-
quential double-ionization processes for general multielectron
atoms in intense laser fields. One of the prototypical problems
for theoretical investigation is two-photon double ionization
of He at photon energies between 40 and 50 eV, which has
been investigated through a wide variety of methods (see,
for just a small subset of methods, [7–13]). Initial studies
of this process obtained two-photon double-ionization cross
sections which varied by over one order of magnitude. More
recently, it has been concluded, however, that accurate cross
sections can be obtained using either exterior complex scaling
(ECS) or through projection onto Coulomb functions, if the
wave function is propagated for sufficiently long times and
sufficiently long distances [13]. Although significant effort
has been devoted to describe multiphoton double-ionization
processes in helium, the accurate description of double
photoionization processes for general multielectron atoms
from first principles is still in its infancy, even after absorption
of only a single photon [14].

Over the last seven years, we have explored the application
of R-matrix theory for general multielectron atoms to time-
dependent processes in intense light fields [15–19]. These
approaches have demonstrated that time-dependent R-matrix
theory has the capability to accurately describe ultrafast dy-
namics, including correlated multielectron dynamics [20] and
multichannel dynamics [21,22] accurately. However, many
processes involving ultrashort high-frequency light pulses
involve the removal of two electrons, either sequentially or
nonsequentially. In order to be able to apply time-dependent
R-matrix theory to these processes, it is necessary to provide
the approach with the capability to describe double-ionization
processes. In the present report, we demonstrate this capa-
bility by applying time-dependent R-matrix theory to study
nonsequential two-photon double ionization of He.

II. METHODS

Of the time-dependent R-matrix approaches available, we
apply its most recent version, R-matrix theory including time
dependence (RMT) [18,19] to study two-photon double ion-
ization of He. The RMT approach provides better performance
for large-scale problems than the previous implementation
of time-dependent R-matrix theory, as it can more efficiently
exploit massively parallel computers. However, so far it has
only been applied in the determination of time delays in Ne
photoionization at high intensities [21].

The RMT approach adopts the standard R-matrix technique
of separating space into two distinct regions, an inner region
in which all interactions between all electrons are taken into
account, and an outer region, in which exchange effects
between the electrons are assumed to be negligible [27]. In the
inner region, the He wave function is described using a large
CI expansion involving R-matrix basis functions confined to
a sphere of radius a. In the outer region the wave function is
described in terms of a combination of a residual-ion state,
which remains confined to the sphere of radius a, and a wave
function associated with the outer electron, which has now
moved beyond this sphere. The approach to describe this outer
electron depends on the nature of the problem. For the current
time-dependent approach, the outer electron is described on
an extensive radial grid.
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The key procedure in the RMT approach is to establish
a highly accurate connection between the wave function in
the inner region and the wave function in the outer region.
The RMT approach adopts a procedure to connect these wave
functions, which differs significantly from other R-matrix
approaches [18,19]. To connect the inner-region wave function
to the outer region, the outer-region grid is expanded into the
inner region, and the inner-region wave function is evaluated
on this expanded grid. The propagation of the outer-region
wave function, including the kinetic-energy terms, can then
proceed entirely on this grid. To connect the outer region to
the inner region, time derivatives of the outer-region wave
function are determined at the boundary of the inner region.
In the inner region, we then determine the time propagation
not only of the initial wave functions but also of these time
derivatives. The final inner-region wave function is then built
by combining all these terms. A detailed description of the
approach is given in [18,19].

In the R-matrix inner region, He is described by a wave-
function expansion in terms of products of box-based He+
eigenfunctions. These eigenfunctions are, in turn, expressed in
terms of B splines. This expansion is similar to the expansion
used for the description of electron-impact excitation of H [23],
and it is also similar to the expansions used by Guan et al. [10]
and Nepstad et al. [12] in their investigations of two-photon
double ionization of He. However, in the present calculations,
all He+ eigenfunctions in the inner region are from the outset
defined as continuum functions. They are eigenfunctions of
Ĥ + L̂b, where Ĥ is the field-free Hamiltonian and L̂b is
the Bloch operator, so that Ĥ + L̂b is Hermitian within the
inner region. All He+ eigenfunctions will therefore have a
nonvanishing amplitude and a nonvanishing first derivative at
the boundary. Basis functions with nonvanishing amplitudes
at the boundary for both electrons are also used in the
intermediate-energy R-matrix approach, which has recently
been employed to investigate double photoionization [24].

The nonvanishing boundary amplitudes for the He+ eigen-
functions affect the subsequent calculations. In order to link the
outer-region wave function to the inner-region wave function,
we need to know the boundary amplitudes of the inner-region
He eigenfunctions. To obtain the inner-region wave function
near the boundary on the expanded outer-region grid, we need
to determine how each He eigenfunction in the inner region
connects to each outer-region channel at the boundary. Since
both electrons are treated as potential continuum electrons,
we take both electrons into account in the determination of the
boundary amplitudes and the wave function in the inner region.

To reduce the size of the calculations, we limit the He basis:
Product basis functions, in which both electrons have both a
field-free energy exceeding 102.2 eV and a small boundary
amplitude, are excluded from the calculations. The angular
momentum of the first electron is restricted to �max = 2, and
we only include total angular momentum up to Lmax = 3. Most
calculations are carried out for an inner-region size of 35 a0,
although additional calculations were carried out for a box size
of 50 a0. In the former box, we use 48 B splines of order 7
with a mixed exponential-linear distribution of knot points. In
the latter box, we use 68 B splines.

The laser field is described by a 14-cycle pulse, with
a five-cycle sin2 turn-on, four cycles at peak intensity of

1014 W/cm2, and a five-cycle sin2 turn-off. For a photon energy
of 42.2 eV, additional calculations were carried by varying the
number of cycles at peak intensity between 0 and 4. Within
RMT theory, the laser field is described in the length gauge.
The wave function is propagated for a time corresponding
to 15 cycles of the laser field. Time propagation is achieved
through an Arnoldi propagator of order 8 with a time-step
size of approximately 0.005 a.u. [25]. The grid spacing in the
outer-region grid is 0.08 a.u. The total number of channels
included in the outer region is 744 for a box size of 35 a0.
The program runs over 3072 processors using both MPI and
OpenMP parallelization.

III. RESULTS

In order to obtain two-photon double-ionization cross
sections for He, we have to analyze the wave function after the
initial 1s2 state has been propagated over the 14-cycle laser
pulse and one additional laser field period in the absence of a
laser field. Figure 1 shows the two-electron wave-function
density at the end of the calculation as a function of the
distance of both electrons from the nucleus for a photon energy
of 42.2 eV. The 1s2 ground state still forms the dominant
contribution to the wave function, 96.8%. The total population
in the outer region is 1.9%. Figure 1 shows great continuity
between the wave function in the inner region and the wave
function in the outer region. This demonstrates that the flow
between the inner and outer regions is described with very good
accuracy, both when the residual electron remains a bound
electron and when the residual electron is a slower escaping
electron.

In the outer region part of Fig. 1, noticeable interference
structures can be seen when both electrons are well distanced
from the nucleus. These structures are quite pronounced for
wave-function densities at the 10−10 level, but have become
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FIG. 1. (Color online) Two-electron wave-function density as a
function of the radial distance for electron 1 (r1) and 2 (r2) for He
after time propagation for 15 cycles for a photon energy of 42.2 eV.
The laser pulse is a 14-cycle pulse with peak intensity of 1014 W cm−2,
and a five-cycle sin2 turn-on and turn-off. The box size is set to 35 a0.
The wave-function density is shown on a base-10 logarithmic scale
with two contour lines per order of magnitude.
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substantially reduced for the contour line at a density of
3 × 10−9. These interference structures should be expected in
the calculations. The fastest electron is allowed to go beyond
the inner region radius. However, the slowest electron is not.
When this electron reaches the inner region radius, it reflects.
This reflection then leads to unphysical interference structures
in the wave-function density. These reflections are not expected
to significantly affect the double-ionization cross sections,
since the outer electron will continue to escape. However,
the interferences will be problematic when one is interested
in more detailed properties of the double-ionization process,
such as angular distributions.

The basis set used in the present calculations can, in
principle, also lead to interference structures within the inner
region. The first electron in the current basis set is restricted to
a maximum angular momentum of 2. For the (�1,�2) = (2,3)
contribution to the 1P wave function, this means that the
residual ion cannot have an angular momentum exceeding 2.
If the fastest electron has �2 = 2, and the slow electron �1 = 3,
the fast electron cannot enter the outer region, as this would
result in a, presently unallowed, residual ion with �1 = 3.
Figure 1 shows no significant sign of interference in the inner
region. Therefore, this limitation on the wave function does
not appear to affect the present calculation significantly.

The effect of reflections of the slowest electron can be
reduced by moving the radius of the inner-region sphere
outwards. Figure 2 shows the wave-function density for the
laser field, but the inner region radius has been increased to
50 a0. This wave-function density is in excellent agreement
with the one obtained for an inner-region radius of 35 a0. For
example, the dip in the density observed at (r1,r2) = (35a0,5a0)
is well reproduced in both calculations. The increase in the
density of states appears to lead to a smoother wave-function
distribution throughout the inner region, and the influence of
the boundary of the box has decreased significantly. This
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FIG. 2. (Color online) Two-electron wave-function density as a
function of the radial distance for electron 1 (r1) and 2 (r2) for He
after time propagation for 15 cycles for a photon energy of 42.2 eV.
The laser pulse is a 14-cycle pulse with peak intensity of 1014 W cm−2,
and a five-cycle sin2 turn-on and turn-off. The box size is set to 50 a0.
The wave-function density is shown on a base-10 logarithmic scale
with two contour lines per order of magnitude.

smoother distribution can be seen in the contour line at
r1,r2 = 20a0.

The calculations demonstrate a significant amount of wave-
function flow into the outer region, especially along the r1

and r2 axes. The capability to describe this single-ionization
flow accurately brings advantages to the method: We can let
the two-electron emission wave packet develop for longer
when compared to a calculation that is confined within the
inner-region sphere. In a box-based calculation, reflection
of the wave function occurs when the first electron reaches
the boundary. In the present calculations, the first electron
can enter the outer region unhindered, and it is only when
the second electron reaches the boundary that reflection of
the wave function occurs. Therefore, we can let the wave
function evolve until the slowest of the two electrons reaches
the boundary of the box. Since the fastest electrons are
those associated with above-threshold single ionization, the
time over which we can let the wave function evolve now
corresponds to a time associated with double ionization, rather
than a time associated with single ionization.

A detailed comparison of the two densities in Figs. 1 and 2
shows that the contour lines in the inner region are smoother
for a box size of 50 a0 than for a box size of 35 a0. This is
likely due to the finer resolution of the He+ eigenfunctions for
the larger box size.

In order to demonstrate the accuracy of the final-state
wave function, we derive two-photon double-ionization cross
sections from these wave functions. The accuracy of different
approaches to obtain these cross sections has been discussed
extensively in the literature (see, for example, [13]). In this
particular calculation, our emphasis is on the initial application
of the RMT approach to double-ionization processes. For
the merits of the different approaches to extract the double
continuum, we refer the reader to [13]. To extract the two-
photon double-ionization cross sections, we adopt different
approaches in the inner region and the outer region to reflect
the different description of the wave function in these regions.
Within the inner region, we adopt an approach similar to the
one used in the investigation of triple photoionization of Li at
high photon energies [26]. First, we only consider the part of
the wave function corresponding to two-electron eigenstates
with a total energy exceeding the double-ionization threshold.
This part of the wave function is coherently transformed back
onto the product basis of He+ box-based eigenstates. We then
sum the population in all product states in which both electrons
are in a He+ eigenstate with an energy greater than 0. To
reduce the dependence on box size, the He+ eigenstate closest
to the He+ ionization threshold for each angular momentum
is assumed to account for both single and double ionization.
The weight of its contribution to either depends on its distance
to the He+ ionization threshold. Within the outer region, the
double-ionization yield is obtained under the assumption that
the outer electron is in a continuum state. Channels associated
with a He+ state below the He+ ionization threshold then
contribute to single ionization and channels associated with
a He+ state above the He+ ionization threshold contribute
to double ionization. Once again, the He+ state closest to
the ionization threshold is assumed to contribute to both
single and double ionization with a weight factor for each
contribution.
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FIG. 3. Two-photon double-ionization cross sections for He as a
function of number of cycles at peak intensity at a photon energy of
42.2 eV as obtained by the RMT approach. Cross sections derived
for a pulse of a given length are shown (solid line, squares). They are
compared to cross sections derived from the difference in ionization
yield obtained for a pulse of given length and for a pulse with zero
cycles at peak intensity (dashed line, circles).

Using this procedure, we have obtained two-photon double-
ionization cross sections for both box sizes. For an inner-region
size of 35 a0, the two-photon cross section is determined
to be 4.64× 10−53 cm4s, whereas for an inner-region size
of 50 a0, the two-photon cross section is determined to be
4.52 × 10−53 cm4s. At a box size of 50 a0, only a small
fraction of the wave function has reached the boundary of the
system, so we estimate that the results for a box size of 35 a0

overestimate the two-photon cross section by about 3%–4%.
Three-photon processes are included in the determination
of the total double-ionization yield. They contribute about
0.2%–0.3%. The three-photon contribution can be eliminated
by restricting the determination of the double-ionization yield
to even-parity states only.

Figure 3 shows how the cross section, determined from the
final ionization yield, depends on the number of cycles the
laser pulse is kept at peak intensity for a photon energy of
42.2 eV. The cross section increases from 4.47 × 10−53 cm4s
for 0 cycles at peak intensity to 4.64 × 10−53 cm4s for a
pulse with four cycles at peak intensity. Alternatively, we can
obtain a cross section of 4.75 × 10−53 cm4s by examining the
difference in ionization yield between a pulse with 0 cycles at
peak intensity and a pulse with n cycles at peak intensity. This
latter cross section varies by 0.02% for n = 2, 3 or 4, whereas
it is about 0.25% smaller for n = 1. We therefore estimate
that the use of a four-cycle pulse length underestimates the
two-photon cross section by about 3%. Combining this with the
observations for a finite box size, we estimate the two-photon
double-ionization cross section to be 4.64 × 10−53 cm4s with
an accuracy of about 5%–10% within the present basis set.

Figure 4 shows the dependence of the two-photon cross
sections on photon energy, and compares the two-photon cross
sections with a selection of other available results [8,9,11,12].
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FIG. 4. Two-photon double-ionization cross sections of He as a
function of photon energy. The present cross sections (RMT, solid
squares) are compared with those obtained using the R-matrix-
Floquet approach (stars) [8], B-spline basis-set calculations (open
diamonds) [12], finite-element discrete variable representation (FE-
DVR) calculations (open triangles) [9], and finite-element discrete
variable representation calculations using exterior complex scaling
(ECS) for a 1-fs pulse (open squares) [11].

The overall agreement between the cross sections obtained
through the methods presented in Fig. 4 is very good, indeed,
with a spread of about 0.1 × 10−52 cm4s. The present cross
sections are in particularly good agreement with the cross
sections obtained using large-scale B-spline basis sets [12] for
photon energies between 41 and 45 eV with differences well
within 1%. This good agreement is fortuitous. As indicated
above, the present cross section changes by a few percent
when longer pulses and larger box sizes are used, but these
changes appear to cancel each other. The difference with
the finite-element discrete-variable-representation (FE-DVR)
calculations [9] is typically about 5%. The agreement with
finite-element discrete-variable representation employing
exterior complex scaling to extract the double continuum
(ECS) [11] may be better than suggested in Fig. 4. The cross
sections shown have been obtained for a pulse length of 1 fs,
for which more data points are available in the present range.
However, cross sections obtained for a pulse length of 2 fs are
smaller by about 10%–20%, which leads to a difference with
the present cross sections of only 0.02 × 10−52 cm4s at 42 and
46 eV.

For photon energies below 41 eV, the differences are
larger: The short pulse length in the present calculation allows
ionization to take place when the central photon energy is
below threshold. This effect is significantly reduced for longer
pulse lengths. For photon energies above 48 eV, the differences
also become noticeable, with a difference of about 15%
observed at a photon energy of 49 eV. In this range of photon
energies, the cross sections become affected by the rapid
increase in the photoionization cross sections above 50 eV. The
short pulse length means that this increase is shifted to smaller
photon energies in the present calculations. The figure shows
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that in this photon energy range, the behaviour of the cross
sections is similar to those observed in the ECS calculations
using a similar short pulse length [11]. Unfortunately, it is
at present not easy to extend the calculations to longer pulse
lengths. Larger box sizes are required, and as a consequence
the basis-set size increases rapidly. Further code development
is needed to enable these calculations.

The comparison with R-matrix-Floquet calculations [8]
shows a difference in the cross sections of about 1.2–
1.8 × 10−53 cm4s across the photon energy range considered.
The origin of this difference is likely to be the different
nature of the calculations. In the Floquet calculations, only
residual-ion states below the two-photon excitation energy can
be populated. In the RMT calculations, the photon energy un-
certainty still allows residual-ion states just above this energy
to be excited. Therefore, some part of the excitation spectrum
may well be missed in the R-matrix-Floquet calculations,
whereas that is not the case in the RMT calculations. In
addition, the R-matrix-Floquet calculations used a smaller
inner region, which reduces the resolution in the energy
spectrum of the residual-ion states.

IV. CONCLUSIONS

In conclusion, we have applied R-matrix theory including
time dependence to the study of double-ionization processes
in intense fields. Two-photon double-ionization cross sections
are obtained for He in close agreement with other sophisticated
calculations, which adopt a similar method to extract the
double-ionization yield. For photon energies between 42 and
48 eV, the cross sections increase from about 0.5 × 10−52 cm4s
to 1.5 × 10−52 cm4s with a spread between the different
calculations of about 0.1 × 10−52 cm4s.

The present calculations demonstrate the stability of the
RMT approach for the large-scale treatment of atoms in intense
fields, and demonstrate that the method can provide reliable
double-ionization yields and double-ionization cross sections.
By combining an R-matrix inner region with an outer region,
the fundamental time constraint on the calculations is given by
the time taken by the slowest electron to reach the boundary
of the inner region, instead of the fastest electron. Double-
ionization processes can thus be studied on the time scale on
which double-ionization processes evolve rather than on the
time scale of single ionization.

The advantage of the RMT method is that it builds upon the
general atomic R-matrix codes [27]. In the present approach,
the time-dependent approach builds upon an inner region
description specific for He. However, the approach can also
be combined with a standard R-matrix approach to describe
multiple ionization for general atoms. The present results
demonstrate that the RMT approach has the capability to
become a useful technique for the accurate determination of
double-ionization processes for general multielectron atoms
in short light fields from first principles.

The RMT approach has been developed specifically for
the treatment of general multielectron systems with full
correlation included. At present, the time propagation of
the wave function is limited to a time determined by the
emission of the slowest electron. To propagate the wave
function for longer times, a two-electron outer region needs
to be combined with the present approach. The escape of a
second electron out of the inner region requires at least two
electrons to be treated as continuum electrons. In this particular
application, we therefore specifically imposed that the wave
function of the slowest electron had to be represented as a
continuum function. The calculations demonstrate that this
change in function type poses no fundamental problem to
the description of time-dependent problems. Adaptation of a
two-electron inner-region code for He requires relatively little
code development. However, significant changes to existing
inner-region R-matrix codes are needed in order to treat general
multielectron atoms.
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