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Multicenter distorted-wave method for fast-electron-impact single ionization of molecules
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A multicenter distorted-wave (MCDW) method for fast-electron-impact single ionization of a molecular system
in the coplanar-asymmetric kinematics is developed. Plane waves are used to describe the fast incoming and
outgoing electrons and the multicenter nature of the molecule is considered by describing the slow ejected electron
with the multicenter distorted wave, which is solved from the anisotropic multicenter potential between the ejected
electron and the ionic molecule. The MCDW method improves the conventional molecular distorted-wave
methods, whose distorted wave is solved from the spherically averaged isotropic potential. The application to the
water molecule shows reasonable agreement with the available experimental data.
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I. INTRODUCTION

It is well known that electron-impact single ionization
is a fundamental process in atomic and molecular physics.
However, a complete understanding of the dynamics is still
one of the biggest challenges in atomic and molecular physics.
Many experimental and theoretical works have been performed
to study this process for atomic and molecular systems [1–7].
When both the incoming and outgoing electrons are fast, the
electrons will quickly leave the target and the interactions
between the electrons and the target could be neglected and
the states of all the free electrons could be well described by the
plane waves. McCarthy and co-workers [1,2,4,6] found that, in
the plane-wave impulse approximation, the triple-differential
cross section (TDCS) for the electron-impact single-ionization
process is proportional to the electron density distribution
of the atomic or molecular ionized electron orbital (Dyson
orbital) in momentum space, which results in the foundation
of the well-known electron momentum spectroscopy or binary
(e, 2e) spectroscopy [1,4–6].

When the incoming and outgoing electrons are not so
fast [8], the interactions between the electrons and the
target become important, plane waves cannot well describe
the states of the free electrons, and the impact ionization
process becomes a pure dynamical process. Different kinds
of theoretical methods have been developed for the atomic
system, such as the distorted-wave impulse approxima-
tion (DWIA) [1,9,10], distorted-wave Born approximation
(DWBA) [9–11], Brauner-Briggs-Klar theory [12–14], B-
spline R-matrix approach [15,16], convergent close-coupling
(CCC) method [17–19], exterior complex scaling (ECS)
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method [20–22], and time-dependent close-coupling (TDCC)
method [23–25]. We note that the ECS, CCC, and TDCC
methods could almost exactly solve the three-body system
(electron plus hydrogen). However, no general and efficient
method has been developed for molecular systems. One big
challenge comes from the anisotropic multicenter nature of the
molecular system, which means that the free electron will be
scattered by the anisotropic multicenter potential. It would be
difficult to describe the complex state of the slow free electron,
especially in the small-r region, where r indicates the position
relative to the center of mass of the molecule.

Nevertheless, there are many progressive theoretical
works [7,26–47]. It is worth mentioning that Champion and
co-workers [29,46] and Madison and co-workers [7,32–36]
have developed atomiclike distorted-wave methods for molec-
ular system; both groups employed the spherically averaged
isotropic potentials to describe the distorted waves of the free
electrons, while the latter authors also tried the spherically
averaged molecular wave function. These methods have suc-
cessfully described the dynamics of the ionization process for
some cases. However, the slow free electron could be strongly
scattered by the anisotropic multicenter nature of the molecule
and an atomiclike distorted wave may not describe the true
state of the slow free electron. Also it should be noted that
more advanced ab initio calculations (TDCC and CCC) have
been performed for some simple diatomic molecules [40–45],
but it would be very difficult to extend them to more complex
molecules. Therefore, the development of some new methods
to study more complex molecules is greatly anticipated and
the multicenter distorted-wave (MCDW) method could be
one of these. It extends the conventional DWBA method
by employing the true anisotropic multicenter potential to
calculate the distorted wave for the slow free electron.

The theory is constructed within the coplanar-asymmetric
kinematics [6] in this work and the incoming and scattered
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electrons are fast in the kinematics. These fast electrons can
be well described by the plane waves and the ionization
dynamics will be sensitive to the ejected slow electron.
Coplanar-asymmetric (e,2e) kinematics could provide a good
test of the present multicenter method. This paper is organized
as follows. The multicenter distorted-wave method for the
coplanar-asymmetric kinematics is presented in the next
section, followed by the application to H2O and a comparison
with the experimental data [31] in Sec. III. A simple summary
is given in Sec. IV. Atomic units are used throughout the paper
unless explicitly stated otherwise.

II. THEORETICAL METHOD

A. General formalism

Generally speaking, the electron scattering process is much
faster than all the possible rotational and vibrational periods
of the molecular system. The closure relation could be applied
to these states and only the pure electronic states play a
role in the transition matrix. The total observables can be
obtained by averaging all the molecular orientations weighted
by the density distributions of the rotational wave packet. To
simplify the notation, rotational and vibrational states will
not be explicitly expressed when describing the states of the
molecules.

The molecular orientation is defined by the Euler angles
� = (α,β,γ ) and � = (0,0,0) corresponds to the initial or
reference molecular orientation. The molecular wave function
ψ�(r) at a given orientation � can be obtained by rotating
the initial wave function ψ�=0(r) as ψ�(r) = R�ψ0(r) =
ψ0(R�r), where R� is the corresponding Euler rotation
operator. The z-y-z convention is employed throughout this
work. The nonrelativistic eightfold-differential cross section
(8DCS) in the first Born approximation reads [28][

d8σ

d�2d�1dE1dαdβdγ
(α,β,γ )

]
= 1

(2π )5

k1k2

k0
|Tf i(α,β,γ )|2,

(1)

where �1 and �2 represent the solid angles of detection for
the scattered and the ejected electrons, respectively, and k0, k1,
and k2 are, respectively, the momenta for the incoming, scat-
tered, and ejected electrons with the corresponding energies
Ei = k2

i /2(i = 0,1,2). The transition matrix Tf i describes the
transition of the total system from the initial state ψi to the final
state ψ

(−)
f through the interaction potential V and is given by

Tf i(�) = 〈ψ (−)
f (R�r)|V (r)|ψi(R�r)〉. (2)

Note that in the coplanar-asymmetric kinematics, the scattered
electron is much faster than the ejected electron. Therefore, the
exchange effect would be small and is neglected in the above
expression. The potential V represents the interaction between
the incident electron and the target and can be written as

V = −
∑

n

Zn

|r0 − Rn| +
ne∑
e

1

|r0 − re| , (3)

where Rn is the position of the nth nucleus with charge Zn and
r0 and re are the positions for incoming electron and the eth
bound electron of the target, respectively.

In the present model, the initial and final states of the total
system are described by the product of two wave functions and
three wave functions, respectively. The former corresponds
to the incoming electron and the molecule, while the latter
corresponds to the scattered electron, the ejected electron, and
the ionic molecule. Within the frozen-core approximation,
the ne-electron problem can be reduced to a one-active-
electron problem. Furthermore, the fast incoming and scattered
electrons can be well described by the plane waves, i.e.,
φj (kj ,rj ) = eikj ·rj (j = 0,1). Employing the Bethe integral∫

eik·r′

|r − r′|dr′ = 4π

k2
eik·r,

the transition matrix element in the laboratory frame can be
rewritten as

T s
if (�) = 〈

φ1(k1,r0)ϕs(−)
2 (k2,R�r1)

∣∣ 1

|r0 − r1|

−
∑

n
Zn

|r0−Rn|∑
n Zn

∣∣φ0(k0,r0)ϕs
i (R�r1)

〉
= 4π

k2
01

〈
ϕ

s(−)
2 (k2,R�r)

∣∣ (eik01·r −
∑

n Zne
ik01·Rn∑

n Zn

)
× ∣∣ϕs

i (R�r)
〉

� 4π

k2
01

〈
ϕ

s(−)
2 (k2,R�r)

∣∣(eik01·r − 1)
∣∣ϕs

i (R�r)
〉
, (4)

where k01 = k0 − k1 is the momentum transfer vector and
ϕs

i (r) and ϕ
s(−)
2 (k2,r) are the wave function of the ionized

molecular orbital s (or Dyson orbital s) and the continuum
wave function of the ejected electron from orbital s, respec-
tively. Note that the last equation of (4) is approximately
achieved by considering the fact that the nuclei are localized
in a small region; however, the effect from the nuclei could
eventually be taken into account in the present theoretical
model. The first and second terms in Eq. (4) represent the
scattering of the incoming electron by the ejected electron
and the residual ion, respectively. The latter reduces to a
Coulomb tail considering the localization of the nuclei [26].
We also note that most of the present distorted-wave (DW)
methods are based on the single-active-electron approximation
and then ϕs

i (r) and ϕ
s(−)
2 (k2,r) will be orthogonal and only

the first term in Eq. (4) contributes to the transition matrix.
However, the orthogonality between ϕs

i (r) and ϕ
s(−)
2 (k2,r)

cannot be achieved if the continuum wave function ϕ
s(−)
2 (k2,r)

is calculated with the spherically averaged potential for the
molecular system. The previous DWBA calculations [26,31]
show that the numerical results depend on the consideration
of the second term of Eq. (4) or the Coulomb tail. The effect
of the Coulomb tail is also studied by the present MCDW. The
evaluation of the transition matrix of Eq. (4) can be simplified
in the molecular frame as

T s
if (�) = 4π

k2
01

〈
ϕ

s(−)
2

(
R−1

� k2,r
)∣∣(eiR−1

� k01·r − 1
)∣∣ϕs

i (r)
〉
, (5)

where R−1
� is the inverse operator of R�. In the molecular

frame, Eq. (5) can simply be understood as rotating the
momentum vectors but fixing their relative geometries, where
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k2 and k01 should be considered as the initial vectors given
in the laboratory frame. Once the transition matrix and 8DCS
for a specific molecular orientation are evaluated, the total
fivefold differential cross section (5DCS) or the generally
named TDCS can be obtained by geometry averaging as [29]

d5σ

d�2d�1dE1
= 1

(2π )5

k1k2

k0

1

8π2

∫
d�

∑
av

|Tf i(�)|2ρR(�),

(6)

where ρR(�) denotes the density distribution of the rotational
wave packet. For the rotationally isotopic target, ρR(�) = 1.
Generally, there is no analytical way to simplify the geometry
averaging or integration in Eq. (6). The 5DCS can be obtained
by averaging the 8DCS for a series of different orientations.
In the implementation, the Euler angles α, β, and γ are
discrete with the Gauss-Legendre integral method, the 8DCS
are calculated for all the discrete Euler angles or orientations,
and the 5DCS is numerically achieved by summing all the
8DCS weighted by the Gaussian weights. Convergence should
be checked by increasing the discrete points of the Euler
angles.

Note that the above formalism is general within the
molecular frozen-core approximation and the fast-electron
plane-wave Born approximation. The main differences among
different theories are the approaches to treat the slow ejected
electron. The present multicenter distorted-wave method will
be presented in the following section.

B. Multicenter distorted wave [8]

The wave function of the ejected electron could be obtained
by solving the Schrödinger equation with the distorted or
model potential Vm = Vst + Vcp + Vmodel exc, where Vst , Vcp,
and Vmodel exc are the static, polarization, and model exchange
potentials, respectively [48]. Note that these potentials are
anisotropic and possess angular distributions. Different meth-
ods can be used to model the polarization potential [49,50]
and the model exchange potential [51–54]. The latter also
depends on the kinetic energy of the ejected electron.
The correlation polarization potential based on the density-
functional theory [49,55] and the modified semiclassical
exchange potential [52,53,55] are used in the present work. The
well-known static potential Vst also possesses the multicenter
nature, explicitly,

Vst (r) = Vee(r) + Ven(r)

=
∫

ρ(s)
1

|r − s|ds −
∑

n

Zn

|r − Rn| , (7)

where ρ(s) indicates the total electron density distributions of
the ionic molecule and when r is large, Vst reduces to the
Coulomb potential −1/r .

To avoid the difficulties in solving the three-dimensional
potential, the conventional DW methods [7,29,32–36,46]
employ the spherical averaging approximation to reduce
the anisotropic potential to the r-dependent-only scalar or
isotropic potential, as

Ṽ m(k2,r) = 1

4π

∫
Vm(k2,r)d r̂.

For example, Ven(r) becomes

Ṽ en(r) = −
∑

n

Zn

R>
n

, (8)

where R>
n = max{r,Rn}. We comment that a great deal of

important information would be lost by spherical averaging,
especially the important angular-dependent multicenter nature
of the potentials, since in Eq. (8) the potential only depends on
the molecular bond length. The molecular anisotropic structure
information is totally lost. We develop a multicenter distorted-
wave method by exactly solving the three-dimensional po-
tentials by employing the single-center expansion (SCE)
techniques [48,55–58].

Generally speaking, any type of angular basis set, e.g.,
spherical harmonics Ylm(θ,ϕ), can be used to expand the
wave function and potential. Bearing in mind that a molecule
possesses point group symmetry in the molecular frame, the
symmetry-adapted angular function X

pu

hl (θ,ϕ) [55,58] would
be the prior choice and is employed in this work, where p and u

label one of the relevant irreducible representations and one of
its components, respectively. Index h labels a specific basis,
at a given angular momentum l, for the pth irreducible rep-
resentations considered [55]. The symmetry-adapted angular
function can be transformed from the spherical harmonics with
the symmetry-dependent transformation matrix [55]. The total
model potential can thus be expanded in the center of mass in
terms of the symmetry-adapted angular functions belonging to
the A1 irreducible representations as [55]

Vm(k2,r) =
∑
lm

V m
lm(k2,r)XA1

lm (θ,ϕ), (9)

where V m
lm(k2,r) is the radial part of the total model potential for

a given (l,m) pair. The expansion of Eq. (9) can be performed
using the published library SCELIB [55–57].

The wave function of the ejected electron φ
s(−)
2 (k2,r) is

obtained with the partial-wave-expansion method as〈
φ

s(−)
2 (k2)

∣∣r〉 = 4π
∑
l′m′

∑
lm

i−l′eiδc
l′
fl′l(k2,r)

k2r
Y ∗

l′m′(k̂2)Ylm(r̂)

=
∑
pu

4π
∑
h′l′

∑
hl

i−l′eiδc
h′ l′

f
pu

h′l′,hl(k2,r)

k2r

×X
pu

h′l′(k̂2)Xpu

hl (r̂), (10)

where δc
l′ = δc

h′l′ = arg �(l′ + 1 + iη) is the Coulomb phase
shift. The summation for l′ and m′ or h′ and l′ in Eq. (10)
are used to consider the coupling for different channels or the
anisotropic property of the model potential in Eq. (9).

The coupled equations can be obtained by substituting
Eq. (10) into the scattering equation:[

d2

dr2
− l(l + 1)

r2
+ k2

2 + 2

r

]
f

pu

h′l′,hl(k2,r)

=
∑
h′′l′′

U
pu

h′l′,h′′l′′ (k2,r)f pu

h′′l′′,hl(k2,r), (11)

where the potential matrix element is

U
pu

h′l′,h′′l′′ (k2,r) = 2
〈
X

pu

h′l′(r̂)
∣∣Vm(k2,r)

∣∣Xpu

h′′l′′(r̂)
〉 + 2

r
δh′h′′δl′l′′ .

(12)
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The coupled equations can further be rewritten in an integral
form or Volterra equation [59] with the standard Green’s-
function technique as [48]

f
pu

h′l′,hl(k2,r)

= δhh′′δll′′Fl(k2r)

+
∑
h′′l′′

∫ r

0
dr ′gl(k2,r,r

′)Uhl,h′′l′′(k2,r
′)f pu

h′′l′′,hl(k2,r
′),

(13)

where the Green’s function

gl(k2,r,r
′) = 1

k2
[Fl(k2r)Gl(k2r

′) − Gl(k2r)Fl(k2r
′)],

with Fl and Gl the regular and irregular Coulomb functions,
respectively. The set of solutions of Eq. (13) can easily be
solved with the numerical methods introduced in Ref. [59].
However, the physical wave function of Eq. (10) can only
be obtained by matching the wave function with the physical
asymptotic conditions [60], i.e.,

f
pu

h′l′,hl(r) =
r→∞ Fh′l′(k2r) + H−

h′l′(k2r)T pu

h′l′,hl

=
r→∞ sin

(
θb
h′l′ + δc

h′l′
)
δh′l′,hl + e−i(θb

h′ l′+δc
h′ l′ )T

pu

h′l′,hl,

(14)

where H−
h′l′(k2r) is the incoming Coulomb function, θb

h′l′ =
k2r − l′π/2 − η ln(2k2r), with η = 1/k2, and δc

h′l′ is the
Coulomb phase shift.

C. Transition matrix for a specific orientation

Similarly, the wave function φs
i (r) of the ionized orbital s is

also expanded in the center of mass with the symmetry-adapted
angular function as

φs(r) = r−1
∑
hl

us
hl(r)Xpsus

hl (θ,ϕ). (15)

The transition matrix for a specific orientation � is evaluated
as

T s
if (�) = 4π

k2
01

〈
ϕ

s(−)
2

(
R−1

� k2,r
)∣∣(eiR−1

� k01·r − 1
)∣∣ϕs

i (r)
〉

= 4π

k2
01

∫
r2dr

∫
d r̂

∑
pu

4π
∑

h1l1h2l2

i−l1e
iδc

h1 l1

× f
pu

h1l1,h2l2
(k2,r)

k2r
X

pu

h1l1

(
R−1

� k̂2
)
X

pu

h2l2
(r̂)

×
[

4π
∑
l4m4

il4jl4 (k01r)Sl4m4

(
R−1

� k̂01

)
Sl4m4 (r̂) − 1

]

× r−1
∑
h3l3

us
h3l3

(r)Xpsus

h3l3
(r̂), (16)

where jl(kr) is the spherical Bessel function and Slm(r̂) is
the real spherical harmonics [55,61]. Equation (16) could be

further simplified as

T s
if (�)

= (4π )2

k2
01k2

∑
pu

∑
h1l1h2l2

i−l1e
iδc

h1 l1 X
pu

h1l1

(
R−1

� k̂2
)

×
⎡⎣4π

∑
l4m4

il4Sl4m4

(
R−1

� k̂i
01

)
A

pu,psus

l4m4,h2l2,h3l3

×
∑
h3l3

B
pu

h1l1,h2l2,h3l3,l4
− δh2h3δl2l3δpps

δuus
C

pu

h1l1,h2l2,h3l3

⎤⎦ ,

(17)

where A, B, and C are defined as

A
pu,psus

l4m4,h2l2,h3l3
=

∫
d r̂ Sl4m4 (r̂)Xpu

h2l2
(r̂)Xpsus

h3l3
(r̂),

B
pu

h1l1,h2l2,h3l3,l4
=

∫
dr f

pu

h1l1,h2l2
(k2,r)jl4 (k01r)us

h3l3
(r),

C
pu

h1l1,h2l2,h3l3
=

∫
dr f

pu

h1l1,h2l2
(k2,r)us

h3l3
(r). (18)

The 8DCS and TDCS can be calculated with relations (1)
and (6), respectively. The application of the present multicenter
distorted-wave method and the numerical results are shown in
the next section.

III. RESULTS AND DISCUSSION

H2O has been extensively studied by both theoretical and
experimental works [26,28,30,31] in the coplanar-asymmetric
kinematics, which serves as a good case to test the present
multicenter distorted-wave method. H2O belongs to C2V

symmetry and its ground-state electronic configuration is
1a2

12a2
11b2

23a2
11b2

1 with bond length RO−H = 1.81 a.u. and
bond angle ∠H−O−H = 104.5°. In the calculation, all the
molecular orbitals (MOs) are first prepared within the Hartree-
Fock level as HF/cc-pVTZ (6D 10F) with GAUSSIAN 03 [62].
Then the MOs are expanded into the center of mass with
the symmetry-adapted angular functions as Eq. (15). Note
that in the present case (C2V ), the symmetry-adapted angular
functions can be reduced to the well-known real-spherical
harmonics Slm(r̂) [61] explicitly. The angular basis for MOs
a1, b1, and b2 satisfies the conditions m = 0,2,4, . . ., m =
1,3, . . . , and m = −1,−3, . . . , respectively. In the SCE, the r

space is discrete from 0 to 8.5 a.u. by a gradually increasing
mesh grid with step size from 0.001 to 0.128 a.u. The
convergence of the SCE is easily reached in the present case
when l is larger than 6. However, the maximum l is chosen
to be 25 to make sure the convergence of the partial-wave
expansion for the slow electron. The radial parts of the SCE
MOs 1b1, 3a1, 1b2, and 2a1 are shown in Fig. 1 for the
first few l. It is interesting to observe that all the MOs 1b1,
3a1, 1b2, and 2a1 are dominated by only one component S1,1,
S1,0, S1,−1, and S0,0, respectively, with more than 97%, 91%,
96%, and 94% of the total charges in each orbital. The MOs
1b1, 3a1, and 1b2 and MO 2a1 look like the atomic p-type
and s-type orbitals, respectively, which would result in quite
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FIG. 1. (Color online) Radial parts of the center-of-mass expanded molecular orbitals 1b1, 3a1, 1b2, and 2a1. Here (l,m) indicates the
angular component Slm( r̂ ).

different dynamic patterns for the differential cross section
(DCS). The one-component-dominated feature of the MOs is
consistent with the fact that oxygen is the only heavy nucleus
in a water molecule and the molecular system with only one
heavy nucleus has been studied with the one-center basis-set
self-consistent field (SCF) by Moccia [63–65].

The TDCS or 5DCS for the present calculations, the exper-
imental measurements, and other theoretical results with the
experimental scattering parameters [31] are shown in Fig. 2.
The incident electron energy E0 is 250 eV, the ejected electron
energy E2 is 10 eV (8 eV if the electron is ionized from orbital
3a1), and the scattering angle ϕ1 is fixed at 15° [31]. The experi-
mental and DWBA results are normalized to the main forward
peak or binary peak of each orbital of the present MCDW
results [the second and first forward peaks for Figs. 2(a)–2(d)
and 2(e), respectively]. As the figure shows, the forward TDCS
for orbitals 1b1, 3a1, 1b2, and 2a1 is dominated by two peaks
at around 40° and 100° and one peak at around 60°, which is
directly related to the orbital natures of p and s types [66,67],
respectively. The present MCDW method better describes
these forward patterns than the conventional DWBA [26]. In-
terestingly, the present MCDW method also predicts a second
forward peak for 2a1 at around 140° and obviously more
precise measurements are required to justify the existence
of this binary peak. There are more uncertainties about the
structures for the backward TDCS [recoil peak(s)]. The DWBA
predicts one big (or one small) backward peak, while the
present MCDW method predicts double-shoulder structures

(or one big peak) for the backward scattering for the p-like
orbitals 1b1, 3a1, and 1b2 (or s-like orbital 2a1). The present
MCDW method also well reproduces the dominant backward
peak for orbital 2a1 at around 240° (a second weaker peak is
also predicted at around 350°). The uncertainties are large for
the available experimental TDCS for backward scattering. It
is difficult to identify the structures for orbitals 1b1, 3a1, and
1b2 and hence more precise measurements are required.

The results for different theories without the Coulomb
tail are also shown in Fig. 2 for comparison. It shows that
the DWBA without a Coulomb tail [31] can well reproduce
the forward peak(s), but predicts no backward structures for
the TDCS. Furthermore, the present MCDW method without a
Coulomb tail basically produces results similar to those of the
present MCDW method, which results from the fact that the
model potential employed to calculate the continuum wave
function for the ejected electron is very similar to the SCF
potential for the ionized bound orbital and no further spherical
averaging approximation is applied for the model potential
when calculating the continuum wave function [see the text
below Eq. (4) for further description]. These results also reveal
the importance of solving the anisotropic distorted potential.
Note that Ref. [26] also shows that the Coulomb wave Born
approximation (CWBA) and the DWBA (with or without a
Coulomb tail) predict very similar TDCS results, together
with the TDCS results from the present MCDW method. We
may learn that for a fixed molecular orbital with the present
scattering kinematics, the forward peaks of the TDCS are more
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FIG. 2. (Color online) The TDCS for the present calculations and experimental measurements and other theoretical results with the same
scattering parameters: The incident electron energy E0 is 250 eV, the ejected electron energy E2 is 10 eV (8 eV if the electron is ionized from
orbital 3a1), and the scattering angle is 15°. The experimental and DWBA results are normalized to the main forwarding peak of each orbital
of the present results (the second and first forward peaks in (a)–(d) and (e), respectively).

related to the pure electron-electron interactions between the
scattering electron and ejected electron; the exact behavior of
the continuum wave function for the small-r region is not so
important. However, the backward structures of the TDCS are
dominated by the continuum wave function and the accuracy
of the continuum wave function in the small-r region greatly
affects the final calculation results.

More interesting information can be obtained from the
orientation-dependent DCS or 8DCS. The scattering kinemat-
ics and the initial molecular orientation of H2O are defined in
Fig. 3, where the x-y plane is chosen as the scattering plane. An
oxygen atom lies in the positive-z axis, while hydrogen atoms
lie in the y-z plane but below the scattering plane. The angles
ϕ1 and ϕ2 are defined as the angles with respect to the incoming
vector or x axis for the scattered and ejected electrons,
respectively. Here we present the 8DCS for two different
molecular orientations, the initial one �1 = (0,0,0) and the
second one �2 = (0,0,90◦). The energies for the incident and
the ejected electrons are 250 and 10 eV, respectively. Figure 4
shows the 8DCS results of the CWBA (with a Coulomb
tail), the CWBA without a Coulomb tail, and the MCDW
method for orbitals 1b1 and 2a1 with scattering angles 0° and
15°. As shown, 8DCS displays complex dynamic structures
for different scattering parameters and different molecular
orientations. It is interesting to observe that the CWBA and

the MCDW method predict similar structures for orbitals 1b1

and quite different structures for orbitals 2a1 for the same
scattering parameters. This would imply that the continuum

FIG. 3. (Color online) Illustration of the initial molecular orien-
tation of H2O and the coplanar-asymmetric kinematics. The molecule
is in the y-z plane and the scattering is in the x-y plane.
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FIG. 4. (Color online) The 8DCS from the CWBA (with Coulomb tail) and CWBA without a Coulomb tail and MCDW for molecular
orientations �1 = (0,0,0) and �2 = (0,0,90◦) for scattering angles of 0° and 15° for orbitals (a) 1b1 and (b) 2a1. The incident electron energy
E0 is 250 eV and the ejected electron energy E2 is 10 eV.
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electron ejected from the HOMO 1b1 does not experience
much distortion compared with the pure Coulomb potential,
but the continuum electron ejected from the inner valence
2a1 interacts with the residual target more strongly, which
experiences a big distortion from the pure Coulomb potential
in the small-r region. When the scattering angle ϕ1 = 0°,
the momentum transfer vector is along the x axis or the
incident vector, the 8DCS could partly reflect the spatial charge
distributions of the molecular orbitals [8,28], especially for
orbital 1b1. When the scattering angle is increased to 15°,
the dynamic structures are highlighted or downplayed by the
electron-electron interactions. It is interesting to point out that
the 8DCS for orbital 2a1 possesses structures similar to its
TDCS when ϕ1 = 15°, which could be related to its s-like
orbital nature. It is also interesting to note that for the two
chosen orientations, when ϕ1 = 0°, the CWBA without a
Coulomb tail predicts quite different structures from the other
two models for orbital 1b1. When ϕ1 = 15°, the CWBA
without a Coulomb tail predicts the main binary peaks, but
no recoil structures, for orbitals 1b1 and 2a1. We also note
that there is a nodal plane for orbital 1b1 (also for orbitals
3a1 and 1b2), the scattering would be exactly in the nodal
plane when � = (α,90◦,0) (α is any angle), and no ionization
would happen at those orientations for orbital 1b1, which is
supported by our calculations but different from the predictions
of Ref. [28].

It could be concluded that the present MCDW method
has been successfully applied to study the (e, 2e) dynamics
of H2O. However, more precise measurements are required
to further check the present method because even for the
TDCS data of the H2O molecule, there are no consistent
conclusions for the structures of the recoil peaks for the first
three orbitals. Recently, the complex Kohn approach (CKA)
was developed for the study of fast-electron-impact single
ionization of molecules [68]. The CKA is also applied to

the water molecule. The main results (the structure of the
TDCS) of the CKA (Fig. 2 of Ref. [68]) are very similar to
those of the present MCDW method (Fig. 2). Note that the
CKA and MCDW method are at the same level by using a
single-configuration SCF target, but the CKA would be more
advanced by including the effect of coupled channels.

IV. CONCLUSION

We presented a universal and inexpensive multicenter
distorted-wave method for electron-impact single ionization
of a molecular system in the coplanar-asymmetric kinematics.
Within this method, the fast incoming and outgoing electrons
are described by the plane waves, while the slow ejected
electron is described by the multicenter distorted wave,
which is solved from the anisotropic multicenter potential
between the ejected electron and the ionic molecule. Note
that the MCDW method improves the conventional molecular
distorted-wave methods, whose distorted wave is solved
from the spherically averaged isotropic potential. The water
molecule, with relatively good available experimental data,
is chosen and studied with the present MCDW method. A
comparison shows that the present MCDW method not only
describes well the forward or binary structures, but also
reasonably predicts the backward or recoil structures of the
TDCS for all the molecular orbitals.
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[38] I. Tóth and L. Nagy, J. Phys. B 43, 135204 (2010).
[39] S. Mohammed, B. Mammar, L. Boumediene, and D. Mevlüt,

J. Phys. B 46, 115206 (2013).
[40] J. Colgan, M. S. Pindzola, F. Robicheaux, C. Kaiser, A. J.

Murray, and D. H. Madison, Phys. Rev. Lett. 101, 233201
(2008).

[41] J. Colgan, O. Al-Hagan, D. H. Madison, C. Kaiser,
A. J. Murray, and M. S. Pindzola, Phys. Rev. A 79, 052704
(2009).

[42] M. S. Pindzola, F. Robicheaux, and J. Colgan, J. Phys. B 38,
L285 (2005).

[43] M. S. Pindzola, F. Robicheaux, S. D. Loch, and J. P. Colgan,
Phys. Rev. A 73, 052706 (2006).

[44] M. S. Pindzola, Sh. A. Abdel-Naby, J. A. Ludlow, F.
Robicheaux, and J. Colgan, Phys. Rev. A 85, 012704 (2012).

[45] M. C. Zammit, D. V. Fursa, and I. Bray, Phys. Rev. A 87, 020701
(2013).

[46] H. Aouchiche, C. Champion, and D. Oubaziz, Radiat. Phys.
Chem. 77, 107 (2008).

[47] O. Al-Hagan, C. Kaiser, D. Madison, and A. J. Murray,
Nat. Phys. 5, 59 (2009).

[48] N. Sanna, I. Baccarelli, and G. Morelli, Comput. Phys. Commun.
180, 2550 (2009).

[49] F. A. Gianturco, A. Jain, and J. A. Rodriguez-Ruiz, Phys. Rev.
A 48, 4321 (1993).

[50] J. K. O’Connell and N. F. Lane, Phys. Rev. A 27, 1893
(1983).

[51] S. Hara, J. Phys. Soc. Jpn. 22, 710 (1967).
[52] F. A. Gianturco and S. Scialla, J. Phys. B 20, 3171 (1987).
[53] F. A. Gianturco, L. C. Pantano, and S. Scialla, Phys. Rev. A 36,

557 (1987).
[54] J. B. Furness and I. E. McCarthy, J. Phys. B 6, 2280

(1973).
[55] N. Sanna and F. A. Gianturco, Comput. Phys. Commun. 128,

139 (2000).
[56] N. Sanna and G. Morelli, Comput. Phys. Commun. 162, 51

(2004).
[57] N. Sanna, I. Baccarelli, and G. Morelli, Comput. Phys. Commun.

180, 2544 (2009).
[58] F. A. Gianturco, D. G. Thompson, and A. K. Jain, in Compu-

tational Methods for Electron Molecule Collisions, edited by
W. M. Huo and F. A. Gianturco (Plenum, New York, 1994).

[59] T. A. Burton, Volterra Integral and Differential Equations,
2nd ed. (Elsevier Science, Amsterdam, 2005).

[60] J. R. Taylor, Scattering Theory: The Quantum Theory of
Nonrelativistic Collisions (Wiley, New York, 1972).

[61] H. H. H. Homeier and E. O. Steinborn, J. Mol. Struct.
(Theochem) 368, 31 (1996).

[62] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A.
Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci,
G. A. Petersson et al., GAUSSIAN 03, Revision A.1 (2003).

[63] R. Moccia, J. Chem. Phys. 40, 2186 (1964).
[64] R. Moccia, J. Chem. Phys. 40, 2164 (1964).
[65] R. Moccia, J. Chem. Phys. 40, 2176 (1964).
[66] L. Q. Chen, X. J. Chen, X. J. Wu, X. Shan, and K. Z. Xu,

J. Phys. B 38, 1371 (2005).
[67] L. Avaldi, R. Camilloni, R. Multari, G. Stefani, X. Zhang, H. R.

J. Walters, and C. T. Whelan, Phys. Rev. A 48, 1195 (1993).
[68] C.-Y. Lin, C. W. McCurdy, and T. N. Rescigno, Phys. Rev. A

89, 012703 (2014).

052711-9

http://dx.doi.org/10.1103/PhysRevA.54.2142
http://dx.doi.org/10.1103/PhysRevA.54.2142
http://dx.doi.org/10.1103/PhysRevA.54.2142
http://dx.doi.org/10.1103/PhysRevA.54.2142
http://dx.doi.org/10.1103/PhysRevA.53.1525
http://dx.doi.org/10.1103/PhysRevA.53.1525
http://dx.doi.org/10.1103/PhysRevA.53.1525
http://dx.doi.org/10.1103/PhysRevA.53.1525
http://dx.doi.org/10.1088/0953-4075/40/7/R01
http://dx.doi.org/10.1088/0953-4075/40/7/R01
http://dx.doi.org/10.1088/0953-4075/40/7/R01
http://dx.doi.org/10.1088/0953-4075/40/7/R01
http://dx.doi.org/10.1103/PhysRevA.73.012717
http://dx.doi.org/10.1103/PhysRevA.73.012717
http://dx.doi.org/10.1103/PhysRevA.73.012717
http://dx.doi.org/10.1103/PhysRevA.73.012717
http://dx.doi.org/10.1063/1.1805506
http://dx.doi.org/10.1063/1.1805506
http://dx.doi.org/10.1063/1.1805506
http://dx.doi.org/10.1063/1.1805506
http://dx.doi.org/10.1103/PhysRevA.63.052720
http://dx.doi.org/10.1103/PhysRevA.63.052720
http://dx.doi.org/10.1103/PhysRevA.63.052720
http://dx.doi.org/10.1103/PhysRevA.63.052720
http://dx.doi.org/10.1103/PhysRevA.65.022710
http://dx.doi.org/10.1103/PhysRevA.65.022710
http://dx.doi.org/10.1103/PhysRevA.65.022710
http://dx.doi.org/10.1103/PhysRevA.65.022710
http://dx.doi.org/10.1063/1.1472513
http://dx.doi.org/10.1063/1.1472513
http://dx.doi.org/10.1063/1.1472513
http://dx.doi.org/10.1063/1.1472513
http://dx.doi.org/10.1103/PhysRevA.69.032701
http://dx.doi.org/10.1103/PhysRevA.69.032701
http://dx.doi.org/10.1103/PhysRevA.69.032701
http://dx.doi.org/10.1103/PhysRevA.69.032701
http://dx.doi.org/10.1103/PhysRevA.72.020701
http://dx.doi.org/10.1103/PhysRevA.72.020701
http://dx.doi.org/10.1103/PhysRevA.72.020701
http://dx.doi.org/10.1103/PhysRevA.72.020701
http://dx.doi.org/10.1103/PhysRevA.72.032721
http://dx.doi.org/10.1103/PhysRevA.72.032721
http://dx.doi.org/10.1103/PhysRevA.72.032721
http://dx.doi.org/10.1103/PhysRevA.72.032721
http://dx.doi.org/10.1063/1.2126971
http://dx.doi.org/10.1063/1.2126971
http://dx.doi.org/10.1063/1.2126971
http://dx.doi.org/10.1063/1.2126971
http://dx.doi.org/10.1088/0953-4075/39/6/002
http://dx.doi.org/10.1088/0953-4075/39/6/002
http://dx.doi.org/10.1088/0953-4075/39/6/002
http://dx.doi.org/10.1088/0953-4075/39/6/002
http://dx.doi.org/10.1063/1.2200339
http://dx.doi.org/10.1063/1.2200339
http://dx.doi.org/10.1063/1.2200339
http://dx.doi.org/10.1063/1.2200339
http://dx.doi.org/10.1063/1.2118607
http://dx.doi.org/10.1063/1.2118607
http://dx.doi.org/10.1063/1.2118607
http://dx.doi.org/10.1063/1.2118607
http://dx.doi.org/10.1088/0953-4075/43/13/135204
http://dx.doi.org/10.1088/0953-4075/43/13/135204
http://dx.doi.org/10.1088/0953-4075/43/13/135204
http://dx.doi.org/10.1088/0953-4075/43/13/135204
http://dx.doi.org/10.1088/0953-4075/46/11/115206
http://dx.doi.org/10.1088/0953-4075/46/11/115206
http://dx.doi.org/10.1088/0953-4075/46/11/115206
http://dx.doi.org/10.1088/0953-4075/46/11/115206
http://dx.doi.org/10.1103/PhysRevLett.101.233201
http://dx.doi.org/10.1103/PhysRevLett.101.233201
http://dx.doi.org/10.1103/PhysRevLett.101.233201
http://dx.doi.org/10.1103/PhysRevLett.101.233201
http://dx.doi.org/10.1103/PhysRevA.79.052704
http://dx.doi.org/10.1103/PhysRevA.79.052704
http://dx.doi.org/10.1103/PhysRevA.79.052704
http://dx.doi.org/10.1103/PhysRevA.79.052704
http://dx.doi.org/10.1088/0953-4075/38/17/L02
http://dx.doi.org/10.1088/0953-4075/38/17/L02
http://dx.doi.org/10.1088/0953-4075/38/17/L02
http://dx.doi.org/10.1088/0953-4075/38/17/L02
http://dx.doi.org/10.1103/PhysRevA.73.052706
http://dx.doi.org/10.1103/PhysRevA.73.052706
http://dx.doi.org/10.1103/PhysRevA.73.052706
http://dx.doi.org/10.1103/PhysRevA.73.052706
http://dx.doi.org/10.1103/PhysRevA.85.012704
http://dx.doi.org/10.1103/PhysRevA.85.012704
http://dx.doi.org/10.1103/PhysRevA.85.012704
http://dx.doi.org/10.1103/PhysRevA.85.012704
http://dx.doi.org/10.1103/PhysRevA.87.020701
http://dx.doi.org/10.1103/PhysRevA.87.020701
http://dx.doi.org/10.1103/PhysRevA.87.020701
http://dx.doi.org/10.1103/PhysRevA.87.020701
http://dx.doi.org/10.1016/j.radphyschem.2007.09.004
http://dx.doi.org/10.1016/j.radphyschem.2007.09.004
http://dx.doi.org/10.1016/j.radphyschem.2007.09.004
http://dx.doi.org/10.1016/j.radphyschem.2007.09.004
http://dx.doi.org/10.1038/nphys1135
http://dx.doi.org/10.1038/nphys1135
http://dx.doi.org/10.1038/nphys1135
http://dx.doi.org/10.1038/nphys1135
http://dx.doi.org/10.1016/j.cpc.2009.07.013
http://dx.doi.org/10.1016/j.cpc.2009.07.013
http://dx.doi.org/10.1016/j.cpc.2009.07.013
http://dx.doi.org/10.1016/j.cpc.2009.07.013
http://dx.doi.org/10.1103/PhysRevA.48.4321
http://dx.doi.org/10.1103/PhysRevA.48.4321
http://dx.doi.org/10.1103/PhysRevA.48.4321
http://dx.doi.org/10.1103/PhysRevA.48.4321
http://dx.doi.org/10.1103/PhysRevA.27.1893
http://dx.doi.org/10.1103/PhysRevA.27.1893
http://dx.doi.org/10.1103/PhysRevA.27.1893
http://dx.doi.org/10.1103/PhysRevA.27.1893
http://dx.doi.org/10.1143/JPSJ.22.710
http://dx.doi.org/10.1143/JPSJ.22.710
http://dx.doi.org/10.1143/JPSJ.22.710
http://dx.doi.org/10.1143/JPSJ.22.710
http://dx.doi.org/10.1088/0022-3700/20/13/024
http://dx.doi.org/10.1088/0022-3700/20/13/024
http://dx.doi.org/10.1088/0022-3700/20/13/024
http://dx.doi.org/10.1088/0022-3700/20/13/024
http://dx.doi.org/10.1103/PhysRevA.36.557
http://dx.doi.org/10.1103/PhysRevA.36.557
http://dx.doi.org/10.1103/PhysRevA.36.557
http://dx.doi.org/10.1103/PhysRevA.36.557
http://dx.doi.org/10.1088/0022-3700/6/11/021
http://dx.doi.org/10.1088/0022-3700/6/11/021
http://dx.doi.org/10.1088/0022-3700/6/11/021
http://dx.doi.org/10.1088/0022-3700/6/11/021
http://dx.doi.org/10.1016/S0010-4655(00)00078-3
http://dx.doi.org/10.1016/S0010-4655(00)00078-3
http://dx.doi.org/10.1016/S0010-4655(00)00078-3
http://dx.doi.org/10.1016/S0010-4655(00)00078-3
http://dx.doi.org/10.1016/j.cpc.2004.06.067
http://dx.doi.org/10.1016/j.cpc.2004.06.067
http://dx.doi.org/10.1016/j.cpc.2004.06.067
http://dx.doi.org/10.1016/j.cpc.2004.06.067
http://dx.doi.org/10.1016/j.cpc.2009.07.009
http://dx.doi.org/10.1016/j.cpc.2009.07.009
http://dx.doi.org/10.1016/j.cpc.2009.07.009
http://dx.doi.org/10.1016/j.cpc.2009.07.009
http://dx.doi.org/10.1016/S0166-1280(96)90531-X
http://dx.doi.org/10.1016/S0166-1280(96)90531-X
http://dx.doi.org/10.1016/S0166-1280(96)90531-X
http://dx.doi.org/10.1016/S0166-1280(96)90531-X
http://dx.doi.org/10.1063/1.1725491
http://dx.doi.org/10.1063/1.1725491
http://dx.doi.org/10.1063/1.1725491
http://dx.doi.org/10.1063/1.1725491
http://dx.doi.org/10.1063/1.1725489
http://dx.doi.org/10.1063/1.1725489
http://dx.doi.org/10.1063/1.1725489
http://dx.doi.org/10.1063/1.1725489
http://dx.doi.org/10.1063/1.1725490
http://dx.doi.org/10.1063/1.1725490
http://dx.doi.org/10.1063/1.1725490
http://dx.doi.org/10.1063/1.1725490
http://dx.doi.org/10.1088/0953-4075/38/8/022
http://dx.doi.org/10.1088/0953-4075/38/8/022
http://dx.doi.org/10.1088/0953-4075/38/8/022
http://dx.doi.org/10.1088/0953-4075/38/8/022
http://dx.doi.org/10.1103/PhysRevA.48.1195
http://dx.doi.org/10.1103/PhysRevA.48.1195
http://dx.doi.org/10.1103/PhysRevA.48.1195
http://dx.doi.org/10.1103/PhysRevA.48.1195
http://dx.doi.org/10.1103/PhysRevA.89.012703
http://dx.doi.org/10.1103/PhysRevA.89.012703
http://dx.doi.org/10.1103/PhysRevA.89.012703
http://dx.doi.org/10.1103/PhysRevA.89.012703



