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Calculation of positron binding energies of amino acids with the any-particle
molecular-orbital approach
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We report positron binding energies (PBEs) for the 20 standard amino acids in the global minimum, hydrogen-
bonded, and zwitterionic forms. The calculations are performed at the any-particle molecular-orbital (APMO)
Hartree-Fock (HF), Koopmans’ theorem (KT), second-order Möller-Plesset (MP2), and second-order propagator
(P2) levels of theory. Our study reveals that the APMO KT and APMO P2 methods generally provide higher
PBEs than the APMO HF and APMO MP2 methods, respectively, with only a fraction of the computational
costs of the latter. We also discuss the impact of the choice of the positronic center on the PBEs and propose
a simple and inexpensive procedure, based on the condensed Fukui functions of the parent molecules, to select
the most suitable expansion center. The results reported so far indicate that APMO KT and APMO P2 methods
are convenient options for a qualitative or semiquantitative analysis of positron binding in medium to large
polyatomic systems.
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I. INTRODUCTION

The past few decades have witnessed an increasing interest
in the physics and chemistry of positronic systems in the
low-energy regime [1–3]. Major advances in techniques for
accumulating and manipulating positrons [2] have given
rise to fascinating applications such as the production
of antihydrogen [4], positronium (Ps) molecules [5], the
scattering of slow Ps atoms [6,7], and energy-resolved
annihilation measurements [3]. In the latter case, vibrational
resonances leading to very high annihilation rates have
unveiled a very rich physics underlying the formation of
positronic molecules. As the mechanisms for resonantly
enhanced positron annihilation involve the formation of
bound positronic molecules, the positron binding energies
(PBEs) can be obtained from the red shifts of the vibrational
Feshbach resonances with respect to the vibrational spectra
of the isolated molecules [1,2,8]. Accurate theoretical
estimations of these bound states are thus invaluable tools to
better understand resonant annihilation mechanisms.

In recent years there have been significant efforts to develop
theoretical methods to calculate PBEs. Perhaps the most
important conclusion of these studies would be the crucial
contribution from the electron-positron (e-p) dynamical cor-
relation to positron binding. Explicitly correlated Gaussian
methodologies [9–13], Monte Carlo methods [14–16], and full
configuration-interaction methods [17,18] have demonstrated
superior performance in the description of e-p correlation
and estimation of PBEs. Despite their proven accuracy, these
approaches are extremely computationally demanding and
calculations are only feasible for studying relatively small sys-
tems, namely, atoms [19–24], diatomic molecules [23,25–28],
and linear triatomics [19,29]. A notable exception would be the
positron-formaldehyde study by Strasburger [30]. The more
accurate though more demanding multicomponent quantum
Monte Carlo method has also been applied to hydrogen
cyanide by Kita et al. [31].

Since most experiments have addressed larger molecules
of chemical and biological interest, it is desirable to develop

computationally viable theoretical approaches that can be used
to study these polyatomic positronic systems, at least in a
qualitative or semiquantitative manner. Efforts in this direction
have been conducted by Tachikawa and co-workers. They have
calculated positron binding energies for several polyatomic
molecules [27,32–37] by employing the multicomponent
molecular-orbital (MCMO) approach at the Hartree-Fock (HF)
level. Although this method usually underestimates the binding
energies with respect to the experimental data or high-level
calculations [3], it provides a fair qualitative description of
PBEs at a reasonable numerical effort, thus allowing for
applications to a variety of polyatomic systems.

In view of the facts outlined above, the application of
alternative theoretical and computational tools to address
positronic molecules is desirable. To this aim, in this
work we employ the any-particle molecular-orbital (APMO)
method [38] to calculate the PBEs of the 20 standard amino
acids. The APMO method is a multicomponent wave-function
approach to study systems containing any type and number of
quantum species, such as muonic atoms [39,40] or molecules
containing quantum electrons and quantum nuclei [38,41–46].
Our motivation to study amino acids in this application of
the APMO method to positronic systems is twofold. First,
there is an increasing interest in positron interactions with
biomolecules [47–49], motivated by possible applications
in cancer therapy [50], positron emission tomography [51],
and mass spectrometry [52,53]. Second, PBEs for the 20
standard amino acids, in both the global minimum (GM) and
hydrogen-bonded (HB) conformations, were recently obtained
with the MCMO HF method [36].

In the present study, we consider the neutral GM and
HB conformations and also the zwitterionic (ZW) isomers.
We employ the uncorrelated APMO HF method, which is
similar to the MCMO HF approach, as well as different
approximations to the e-p correlation energy within the APMO
framework, namely, the second-order Möller-Plesset (MP2)
perturbation theory [54] and the generalized second-order
propagator (P2) theory [44,55]. We discuss the contribution
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from the e-p correlation to the binding energies, as obtained
from the APMO MP2 and APMO P2 calculations, and we
also propose a simple scheme, based on the condensed Fukui
functions [56], to select the most suitable center to expand the
positron orbital.

This paper is organized as follows. In Sec. II we summarize
the equations of the APMO HF, APMO MP2, and APMO P2
methods. In Sec. III we describe the procedure to choose the
center of the positron basis set and describe how the PBEs are
calculated in each level of theory. In Sec. IV we compare the
PBEs obtained with different positron basis-set centers and
with the different theories, for the whole set of GM and HB
conformers and ZW isomers. A summary and perspectives for
future work are given in Sec. V.

II. THEORY

This section summarizes the working equations of the
APMO HF, APMO MP2, and APMO P2 levels of theory,
as applied to molecular systems containing multiple electrons
and one positron.

A. The APMO HF theory

In the framework of the Born-Oppenheimer approximation,
the molecular Hamiltonian H (in atomic units) of a system
comprised of Ne−

quantum electrons e−, a single positron e+,
and NC classical point-charge nuclei can be written as
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Ne−∑

i

−
⎡
⎣1

2
∇2

i +
NC∑
p

Qp

rip

⎤
⎦ +

⎡
⎣−1

2
∇2

k +
NC∑
p

Qp

rkp

⎤
⎦

+
Ne∑
i

Ne∑
j>i

1

rij

−
Ne∑
i

1

rik

+
NC∑
p

NC∑
q>p

QpQq

rpq

. (1)

Here i and j , k, and p and q are indices for the electrons,
the positron, and the nuclei, respectively, while Qp and Qq

are the nuclear charges. The APMO HF level wave function
for this molecular system �0 is constructed as a product of a
single-configurational electronic wave function �e−

and a spin
orbital for the single positron �e+

,

�0 = �e−
�e+

, (2)

where �e−
and �e+

are built from molecular orbitals ψα
i , which

are obtained by solving the Fock equations given by

f α(i)ψα
i = εα

i ψα
i , α = e−,e+, (3)

where the effective one-particle Fock operators f α(i) for
quantum species e− and e+ are expanded as
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In the above equations hα(i) is the single-particle core
Hamiltonian
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and J α and Kα are Coulomb and exchange operators defined
as
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for α,β = e−,e+.

B. The APMO MP2 theory

The APMO MP2 energy of a molecular system containing
Ne− electrons and one positron is given by [54]

EAPMO MP2 = E(0) + E
(2)
e−e− + E

(2)
e−e+ , (9)

where E(0) is the APMO HF energy, while E
(2)
e−e− and E

(2)
e−e+

are the second-order electron and electron-positron correlation
energies, respectively. Here E

(2)
e−e− is written in the physicist

notation [57,58] of quantum chemistry as

E
(2)
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4
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where Oe−
and V e−

are, respectively, the number of occupied
and virtual electronic orbitals such that ae−

and be−
run over

the occupied electronic orbitals, while re−
and se−

over the
virtual electronic orbitals. The second-order electron-positron
correlation term for a positron in the ground-state orbital ae+

is

E
(2)
e−e+ =

Oe+∑
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V e+∑
re+
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ae−|re+
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, (11)

where ae±
and re±

are occupied and virtual orbitals,
respectively. The second-order correction to the APMO HF
energy has contributions from double electronic excitations,
according to Eq. (10), and from double excitations comprising
single excitations of the electronic and positronic subspaces,
as given in Eq. (11). Both the direct rs and exchange sr

contributions are accounted for in Eq. (10) and the MP2
perturbation potential, namely, the difference between the sum
of the Coulomb interactions and the sum of the single-particle
Fock potentials [57], is implied in the above expressions.

C. The APMO P2 theory

Here we summarize the expressions of the second-order
generalized propagator (APMO P2) for molecular systems
comprising multiple electrons and one positron. A general
formulation of the method can be found elsewhere [44]. At
the APMO HF level of theory, the energy of the pth occupied
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positron orbital εe+
p can be obtained by solving Eq. (5). This

energy provides a first estimate of the PBE,

−PBEKT = εe+
p , (12)

which is equivalent to the Koopmans’ theorem (KT) approx-
imation for the electron binding energies. In the framework
of APMO propagator theory [44], the KT approximation in
Eq. (12) can be improved with the inclusion of the relaxation
and correlation corrections, via the self–energy term 	e+

pp(ωe+
p ),

such that

−PBEP2 = ωe+
p , (13)

where ωe+
p is the optimized orbital energy for pth orbital

obtained by solving the following equation iteratively:
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where ae±
and re±

are occupied and virtual orbitals, respec-
tively.

III. COMPUTATIONAL ASPECTS

The GM and HB structures of the 20 amino acids (isolated
molecules) were optimized at the HF level of theory with
the 6-311++G(d,p) electronic basis set. The ZW structures,
unstable in the gas phase, were optimized at the same level
of theory, though considering water as an implicit solvent
within the polarizable continuum model (PCM) [59,60]. All
optimization calculations were performed with the GAMESS

package [61] and the same optimized geometries were used
for the positronic complexes assuming that relaxation upon
positron binding would be negligible, as pointed out in
Ref. [36].

The APMO HF, APMO MP2, and APMO P2 calculations
for the amino-acid–positron systems were carried out with the
LOWDIN code [46] considering the electrons and the positron
as quantum particles in gas phase. The calculations were
performed with the 6-311++G(d,p)/11s11p11d electron-
positron basis sets. The latter was generated with an even-
tempered scheme αi+1 = b × αi , with α0 = 1 × 10−3 and
b = 3.000 for s-, p-, and d-type Gaussian functions [36].

The condensed Fukui functions f −
k of a molecule with N

electrons are calculated as [56]

f −
k = qk(N − 1) − qk(N ), (16)

where qk(N − 1) and qk(N ) are the electronic populations
of the kth atom in the cationic (N − 1)-electron system and
the neutral N -electron system. At the APMO HF and APMO
MP2 levels of theory, the PBEs EPBE are obtained as the

difference between the energies of the amino acid X and the
corresponding positronic complex e+X,

EHF,MP2
PBE =EAPMO HF,APMO MP2[X]−EAPMO HF,APMO MP2[e+X],

(17)

while APMO KT and APMO P2 PBEs are calculated employ-
ing Eqs. (12) and (14) for the corresponding e+X complex.

IV. RESULTS AND DISCUSSION

A. Positron basis-set center

Ideally, there should be several expansion centers for
positronic basis sets around the molecular region. While this
procedure would be expected to offer a better prediction of
the PBE, it would be impractical for medium- to large-size
molecules. Fortunately, previous studies on polar molecules
have shown that the weakly bound positron occupies a
diffuse orbital around the negative end of the molecular
dipole moment [27,33,35,36]. Therefore, reasonable PBE
estimates can still be obtained with a single basis-set center,
as long as the basis set and the expansion center are suitably
chosen. Electron and positron basis sets should contain
enough polarization and diffuse functions to account for the
polarization and dispersion stabilization of the molecule upon
positron binding. The center of the positron basis set should
in turn be chosen on the basis of some optimization criterion,
for instance, maximizing the PBE.

We propose a simple and computationally inexpensive
procedure to choose the positron basis-set center based on
the condensed Fukui functions f −, given in Eq. (16). Since
positive values of these functions are associated with the ability
of an atom in a molecule to attract positive charges [56], we
place the positron basis set on the atom with the largest value of
f − in the neutral molecule. In view of the variational nature of
the APMO HF theory, improving the basis sets should lower
the total energy of the positronic molecule. One could thus
expect that locating the positron basis set on the atom with the
largest value of the Fukui function should give rise to the lowest
total energy. To verify this assumption, we carried out a series
of APMO HF single-point calculations for glycine, placing the
positron basis set on each of the atoms in the GM, HB, and ZW
conformations. The results are shown in Table I, where the f −
values were obtained with Mulliken atomic charges [57] and
atomic charges from electrostatic potentials using a grid-based
method (CHELPG) [62].

The APMO HF total energies, given as deviations from
the lowest value �E = EHF − Emin

HF , are nearly insensitive
to the choice of expansion center for the GM form, as the
energy variations do not exceed 0.04 meV, consistent with the
calculations of Ref. [36]. In contrast, the positron basis-set
center significantly impacts the total energies of the HB and
ZW structures, with �E ranging from 2.9 to 30 meV and from
14.5 to 270 meV, respectively. In all cases, the largest value
of the Fukui function of the neutral molecule gives rise to the
lowest total energy of the positronic system, in agreement with
the argument given above. The PBEs obtained with the APMO
HF scheme show the same behavior. The binding energy of
the GM form does not vary as the positron basis set is placed
on the different atoms, whereas large deviations are obtained
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TABLE I. Condensed Fukui function f −
k for the atoms of glycine at the GM, HB, and ZW structures. The APMO HF total energies of the

positronic molecules were obtained by placing the positronic basis set on each atom and the results are given as deviations from the lowest
value �E = EHF − Emin

HF . The PBEs were calculated with the APMO HF method using expression (17). Marked in bold are the highest positive
value of the condensed Fukui function, the lowest total energy, and also the highest PBE. The f −(a) are from Mulliken atomic charges and the
f −(b) are from CHELPG atomic charges.

GM HB ZW

�E PBE �E PBE �E PBE
No. Atom f −(a) f −(b) (meV) (meV) f −(a) f −(b) (meV) (meV) f −(a) f −(b) (meV) (meV)

1 C 0.05 −0.04 0.01 −1.8 0.01 −0.09 2.90 54.4 −0.09 −0.19 14.51 548.1
2 C −0.17 −0.48 0.02 −1.8 0.00 −0.14 13.68 43.7 0.04 −0.01 108.99 453.7
3 N 0.54 1.17 0.00 −1.8 0.02 0.04 23.93 33.4 0.00 −0.14 218.87 343.8
4 O 0.09 0.11 0.01 −1.8 0.10 0.22 9.23 48.1 0.20 0.29 61.34 501.3
5 O 0.03 0.15 0.04 −1.8 0.59 0.64 0.00 57.3 0.64 0.69 0.00 562.6
6 H 0.10 0.14 0.02 −1.8 0.05 0.11 18.53 38.8 0.06 0.07 168.38 394.3
7 H 0.10 0.14 0.02 −1.8 0.08 0.10 18.94 38.4 0.06 0.07 169.48 393.2
8 H 0.11 −0.09 0.00 −1.7 0.04 0.04 26.76 30.6 0.02 0.06 229.78 332.9
9 H 0.11 −0.09 0.00 −1.7 0.05 0.06 28.74 28.6 0.02 0.06 234.47 328.2

10 H 0.04 0.00 0.04 −1.8 0.05 0.02 17.60 39.7 0.05 0.10 269.30 293.3

for the HB and ZW isomers, with the largest PBE arising from
the largest value of f −.

B. Structures and dipole moments

The dipole moments were calculated at the optimized
gemeotries, as described in Sec. III. Figure 1 shows the
structures of the glycine isomers, while the structures of the
other amino acids are provided in Ref. [59].

The ZW isomers were considered in the present study in
view of their biological relevance, as they are the most stable
forms in aqueous solution. In addition, the deprotonation of
the carboxyl group gives rise to a full −1 charge that strongly
favors the interaction between the positron and the –COO−
moiety. Local effects, around the carboxylate group, could thus
take place in the positronic molecules built on ZW structures,
while the positron interaction with the dipole moment potential
would be expected to prevail in the GM and HB forms.
Therefore, a comparison of the ZW positronic molecules with
their GM and HB counterparts would be very interesting
in terms of positron binding and e-p correlation. Since the
isolated ZW molecules do not have stable geometries, the
optimization was carried out in solution, within the PCM
framework, and the isolated and positronic ZW systems

were considered at these geometries. This procedure not
only circumvents difficulties related to the description of the
positron-solvent interaction, but also allows for a meaningful
comparison between the PBEs of the ZW forms and those of
the GM and HB forms in the gas phase.

Table II shows the calculated dipole moments of the
amino acids in the GM, HB, and ZW structures. The average
dipole moment magnitudes of the HB and ZW isomers are,
respectively, three and six times as large as those of the GM
structures. Histidine would be the only exception, since it is
more strongly polar in the GM conformation (4.89 D) than in
the HB conformation (3.13 D). According to the well-known
fixed-dipole model [63], dipole-supported bound states should
exist for μ > 1.625 D, with a direct correlation between
the binding energies and the dipole moment magnitudes,
such that one would expect the trend that the ZW PBE is
greater than the HB PBE, which is greater than the GM
PBE. Table II also shows the dipole moments reported by
Koyanagi et al. [36], obtained at the MCMO HF 6-31*G
theory level, for the GM and HB structures. Even though the
overall agreement between our results and those Koyanagi
et al. is fairly good, the observed small deviations are
associated with the use of different basis sets and optimized
geometries.

FIG. 1. (Color online) The HF 6-311++G(d ,p) optimized structures of glycine: global minimum (left), hydrogen bonded (middle), and
zwitterion (right).
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TABLE II. Molecular dipole moments obtained at the HF 6-
311++G(d ,p) level for the standard amino acids in the GM,
intramolecular HB, and ZW conformations. The HF 6-31*G results
of Ref. [36] are given in parentheses for comparison.

μ (D)

Amino acid GM HB ZW

Ala 1.43 (1.40) 5.60 (5.50) 11.93
Arg 2.90 (2.25) 7.40 (6.96) 14.24
Asn 2.62 (2.93) 4.69 (4.64) 10.16
Asp 1.55 (2.28) 4.54 (4.57) 10.74
Cys 1.76 (1.99) 4.13 (4.12) 10.30
Gln 3.61 (3.44) 6.28 (6.44) 14.42
Glu 2.12 (1.89) 6.55 (6.54) 12.85
Gly 1.30 (1.33) 5.76 (5.69) 12.52
His 4.89 (3.91) 3.13 (4.19) 8.78
Ile 1.43 (1.36) 5.48 (5.43) 11.39
Leu 1.26 (1.20) 5.74 (5.62) 11.90
Lys 1.89 (2.43) 4.40 (5.92) 10.56
Met 2.20 (1.84) 4.45 (6.63) 10.69
Phe 1.31 (1.32) 5.61 (5.71) 11.92
Pro 1.85 (1.64) 6.03 (5.85) 12.37
Ser 2.88 (1.96) 4.31 (4.53) 12.50
Thr 2.75 (2.28) 4.43 (3.73) 10.31
Trp 1.19 (4.18) 7.08 (6.40) 13.33
Tyr 2.69 (2.63) 4.97 (3.73) 11.43
Val 1.40 (1.40) 5.31 (5.21) 11.42

In addition, Fig. 2 displays the positronic and electronic
densities for the HB and ZW forms of glycine. It can be clearly
seen that the positronic density gradually localizes around the
negative region of the dipole as it increases its magnitude.

C. Positron binding energies

Positron binding energies calculated with the MCMO HF
method are usually underestimated [36,64], due to the lack
of dynamical e-p correlation. Despite this limitation, these
PBE estimates are useful for (i) a qualitative understanding of
positronic systems and (ii) establishing lower bounds for the
PBEs and hence the cost-benefit relation for the higher-level

methods [3]. As mentioned in the Introduction, while several
potentially accurate methods are available, e.g., the quantum
Monte Carlo and explicitly correlated techniques, their appli-
cations are generally restricted to atoms and small molecules,
in view of their extremely high computational effort.

To proceed beyond the HF level without running into
computer limitations in the present work we improve the
APMO HF results with e-p correlation estimates obtained
at the APMO MP2 and APMO P2 levels. The results for the
60 structures, namely, the GM and HB conformers and ZW
isomers of the 20 standard amino acids, are summarized in
Table III, along with the MCMO HF results of Ref. [36] for the
GM and HB structures. Also, Fig. 3 plots our APMO HF PBE
results for the GM and HB structures and contrast them with
those of the Koyanagi et al. [36]. The major source of differ-
ences in the PBEs reported in Fig. 3 is the use of two very dis-
tinct electronic-positronic basis sets 6-31G(d):11s9p4d2f 1g

and 6-311++G(d,p):11s11p11d as well the use of different
optimized geometries for these calculations.

In general, the HB and ZW forms are capable of binding the
positron, as indicated by their positive PBE values, even at the
APMO HF level. In contrast, the GM structures do not give rise
to bound positronic molecules, except for the APMO P2 results
for Gln, His, and Ser. Although generally higher with respect to
the APMO HF calculations, the PBE estimates obtained from
the APMO MP2 and APMO P2 methods are still expected to
provide lower bounds such that one should not conclude that
the GM structures are not able to bind positrons, based only on
the present calculations. Nevertheless, the results in Table III
indicate significant contributions from the e-p correlation to
the binding energies, even for the strongly polar molecules.
For the HB structures, there is an average increase in the PBE
magnitude of 39.1% (APMO MP2 level) and 105.0% (APMO
P2 level) with respect to the APMO HF results. Even for the
ZW structures, having dipole moment magnitudes around 10
D, the average PBEs are increased by 17.7% and 20.6% in the
APMO MP2 and APMO P2 calculations, respectively. Finally,
the APMO KT estimates of the binding energies, obtained from
Eq. (12), are also generally higher with respect to the APMO
HF binding energies, calculated as the difference between the
total energies of the positronic and isolated molecules. For the

FIG. 2. (Color online) Electronic density (orange) and positronic density (blue) for the hydrogen-bonded (left) and zwitterionic (right)
conformations of the glycine e+ system. The contour value of 0.0001 was used for all densities.
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TABLE III. APMO HF, APMO KT, APMO MP2, and APMO P2 calculated PBEs for the standard amino acids at the GM, HB, and ZW
structures. Calculations were performed with the 6-311++G(d ,p)/11s11p11d electron-positron basis sets. Amino acids are denoted by their
three-letter abbreviations. For contrast, the MCMO HF 6-31*G results from Koyanagi et al. for GM and HB conformations are reported in
parentheses [36].

GM PBE (meV) HB PBE (meV) ZW PBE (meV)

Amino acid HF KT MP2 P2 HF KT MP2 P2 HF KT MP2 P2

Ala −1.7 −1.7 −1.7 −1.6 52.9 (47.8) 64.3 68.1 103.2 531.7 620.2 617.4 752.0
Arg −0.8 −0.8 −0.9 −0.4 70.6 (78.5) 87.3 89.3 129.3 565.2 670.4 652.9 799.9
Asn −0.6 −0.6 −0.6 −0.2 16.9 (17.6) 20.4 29.4 39.7 475.1 564.4 583.5 690.9
Asp −1.7 −1.7 −1.7 −1.6 18.0 (19.3) 21.8 29.4 41.4 448.8 532.2 548.3 653.2
Cys −1.6 −1.6 −1.4 −1.5 14.8 (14.0) 18.7 24.1 38.1 436.5 524.4 525.0 642.9
Gln 0.9 (1.9) 1.0 0.4 2.3 47.8 (54.4) 58.3 66.8 93.2 591.7 696.1 682.2 827.7
Glu −1.4 −1.3 −1.5 −1.1 62.8 (66.4) 76.6 79.4 115.4 529.4 625.4 621.0 752.3
Gly −1.8 −1.8 −1.7 −1.7 57.3 (55.1) 67.8 70.2 105.5 562.6 643.9 641.1 777.3
His 4.8 (14.9) 5.1 7.3 7.0 3.1 (9.5) 4.2 5.5 13.3 412.7 507.5 490.0 624.0
Ile −1.7 −1.7 −1.7 −1.6 48.7 (47.8) 63.1 69.4 104.2 500.1 606.5 596.4 736.1
Leu −1.8 −1.8 −1.8 −1.7 58.1 (55.2) 73.9 79.6 117.2 555.4 662.1 650.4 795.6
Lys −1.6 −1.6 −1.5 −1.5 36.3 (57.4) 48.5 53.5 84.8 518.6 622.0 611.9 752.7
Met −1.4 −1.4 −1.3 −1.2 30.1 (62.0) 39.7 48.0 72.0 510.3 613.4 608.5 741.1
Phe −1.8 −1.8 −1.8 −1.7 50.6 (54.1) 67.6 72.8 107.5 536.4 650.7 633.2 776.3
Pro −1.5 −1.5 −1.4 −1.2 72.0 (67.0) 90.4 94.8 138.4 573.8 678.5 659.1 813.8
Ser −0.2 −0.2 −0.2 0.8 9.3 (23.9) 10.7 12.3 21.6 589.4 681.9 676.1 818.1
Thr −0.8 −0.8 −0.7 −0.4 11.5 (28.5) 13.5 16.0 27.0 379.9 453.9 453.5 564.7
Trp −1.8 (4.0) −1.8 −1.8 −1.7 79.4 (70.7) 105.1 113.8 153.4 597.0 723.2 709.0 851.6
Tyr −1.1 −1.1 −1.0 −0.9 41.0 (13.8) 55.6 63.6 91.9 542.8 659.1 646.5 785.6
Val −1.7 −1.7 −1.7 −1.6 42.3 (36.7) 53.9 60.0 91.3 501.2 603.8 594.5 733.8
average 41.2 52.1 57.3 84.4 517.7 617.0 609.8 744.5

HB conformers and ZW isomers, the average APMO KT bind-
ing energies are increased by 26.4% and 19.1%, respectively.

D. Positron binding energies and dipole moments

Since the fixed-dipole model [63] predicts that molecules
with critical dipole moment magnitudes (μ > 1.625 D) could
bind a positron (or an electron), one would expect some
correlation between the dipole moments and the PBEs. From
the available PBE experimental data [3,8], a linear scaling of
the PBE with respect to both the dipole moment magnitude and

FIG. 3. (Color online) Positron binding energies and molecular
dipole moments μ at the Hartree-Fock level of theory. The results
of Koyanagi et al. are in red and our results are in blue. Circles and
rhombi depict hydrogen-bonded structure data and triangles global
minimum structure data.

the average polarizability has been proposed and the previously
reported PBE estimates for the amino acids (GB and HB
structures) computed at the MCMO HF 6-31*G level [36]
indeed show a linear behavior with respect to the dipole
moments.

Figure 3 plots our APMO HF PBE results for the GM
and HB structures and contrast them with those of Koyanagi
et al. [36]. The major source of differences in the PBEs
reported in Fig. 3 is the use of two very distinct electronic-
positronic basis sets, namely, 6-31G(d):11s9p4d2f 1g and
6-311++G(d,p):11s11p11d, which gives rise to slight dif-
ferences in geometry and dipole moment magnitudes.

Figure 4 plots the presently calculated PBEs against the
dipole moment magnitudes for the HB conformers and ZW
isomers. The results for the GM structures were not included
since most of the species do not form stable positronic
complexes. For the HB structures, the correlation coefficients
R2 obtained from linear regressions were 0.842, 0.814, 0.803,
and 0.773 for the APMO HF, APMO KT, APMO MP2, and
APMO P2 computations, respectively. The larger deviation
from the linear behavior in the higher-level calculations is
not surprising. At the APMO HF level, the dipole interaction
would be expected to drive the binding process, due to the lack
of e-p correlation. As the latter effect is partially included in the
APMO MP2 and APMO P2 calculations, the resulting PBEs
become less correlated with the dipole moment magnitudes.
This is particularly evident for the HB structures with dipole
moments around 4–5 D since the vertical spreading of the
data significantly increases as the theory level is improved
from APMO HF to APMO P2.
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FIG. 4. (Color online) Positron binding energies against the molecular dipole moments μ. The circles indicate the present calculations and
the straight lines are linear regressions. The results obtained with the (a) APMO HF, (b) APMO KT, (c) APMO MP2, and (d) APMO P2
methods are depicted, respectively, for the (1) HB structures and (2) ZW structures.

Critical dipole moment magnitudes can also be inferred
from the extrapolation of the linear regressions to EPBE = 0.
For the HB structures we obtained 3.20, 3.18, 2.98, and
2.80 D for the APMO HF, APMO KT, APMO MP2, and

APMO P2 calculations, respectively. The prediction of the
fixed dipole model (μcrit = 1.625 D) is known to significantly
underestimate the critical dipole moment magnitude of actual
molecules. It has been pointed out that molecules with
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μ � 2.5 D would bind an electron [65], while positron binding
would be ensured for μ � 3.6 D [3], even though molecules
with μ > 2.7 D already show substantial binding energies [8].
The present estimates for the HB structures, μcrit ≈ 3 D, would
thus be consistent with these observations and they also point
out that e-p correlation does play a role in the APMO MP2
and APMO P2 estimates as the corresponding critical dipole
moments are smaller than the APMO HF estimates.

For the ZW structures, also shown in Fig. 4, the regression
coefficients were 0.725, 0.687, 0.692, and 0.679 for the APMO
HF, APMO KT, APMO MP2, and APMO P2 calculations,
respectively. While these results would seem unexpected,
as the more strongly polar molecules show less correlation
between the dipole moment magnitudes and the binding
energies, the intramolecular proton transfer in the ZW forms
gives rise to a full −1 charge on the carboxylate group –COO−.
It is thus possible that the high PBEs of the ZW isomers would
mostly arise from the local interactions of the positron with
the negatively charged carboxylate moiety, namely, virtual
positronium formation, as opposed to the interaction with the
dipole moment potential.

E. Origin of the differences in the calculation of the PBEs

To gain some further insight into the present results, it
would be instructive to analyze the APMO MP2 and APMO P2
corrections to the APMO HF and APMO KT binding energies,
respectively. In the first case, we observe that the APMO HF
level PBE is given by

EHF
PBE = E

(0)
e− − E

(0)
e−,e+ , (18)

where the subscripts denote the quantum species and the
superscripts indicate the type of contribution, while the APMO
MP2 binding energy is expressed as

EMP2
PBE = EAPMO MP2

e− − EAPMO MP2
e−,e+ , (19)

EMP2
PBE = [

E
(0)
e− + E

(2),e−
e−

]−[
E

(0)
e−,e+ + E

(2),e−
e−,e+ + E

(2),e−,e+
e−,e+

]
(20)

= [
E

(0)
e− − E

(0)
e−,e+

] + [
E

(2),e−
e− − E

(2),e−
e−,e+

] − E
(2),e−,e+
e−,e+

(21)

= EHF
PBE + E

(2),e−
relax − E

(2),e−,e+
e−,e+ . (22)

The EMP2
PBE correction to EHF

PBE involves two terms, namely,

E
(2),e−
relax and E

(2),e−,e+
e−,e+ . The first describes the change in the

electron correlation energy arising from positron binding and
the latter accounts for e-p correlation. The decomposition
of the APMO MP2 binding energy according to the above
expressions is given in Table IV for the HB and ZW structures.
The E

(2),e−
relax contribution reduces binding energies, on average,

by 23.1 and 97.6 meV for the HB conformers and ZW
isomers, respectively. The loss of electron correlation in
molecules interacting with external potentials, e.g., fields or
other molecules, is usually attributed to the increase in the
average interelectronic separation [66]. We are led to conclude,
based on the negative values of the E

(2),e−,e+
e−,e+ term, that the

attractive e-p interaction increases the average interelectronic
distance as the molecule attaches the positron, thus leading to

TABLE IV. Energy components (in meV) of Eq. (22) for amino
acids in the HB and ZW forms.

HB ZW

Amino acid EHF
PBE E

(2),e−
relax E

(2),e−,e+
e−,e+ EHF

PBE E
(2),e−
relax E

(2),e−,e+
e−,e+

Ala 52.9 −30.5 −45.7 531.5 −101.0 −186.7
Arg 70.6 −33.8 −52.5 565.0 −107.2 −194.9
Asn 16.8 −8.7 −21.3 474.9 −72.6 −181.0
Asp 18.0 −10.3 −21.8 448.6 −72.8 −172.2
Cys 14.8 −12.6 −21.9 436.3 −85.2 −173.6
Gln 47.8 −22.3 −41.3 591.5 −106.8 −197.3
Glu 62.8 −31.1 −47.7 529.2 −95.5 −187.1
Gly 57.3 −30.6 −43.5 562.4 −103.0 −181.5
His 3.1 −7.3 −9.7 412.5 −98.0 −175.4
Ile 48.7 −29.6 −50.3 499.9 −101.8 −198.0
Leu 58.0 −31.9 −53.4 555.2 −106.0 −200.9
Lys 36.3 −26.5 −43.7 518.4 −101.2 −194.4
Met 30.1 −20.5 −38.4 510.1 −95.4 −193.5
Phe 50.6 −28.7 −50.9 536.2 −101.5 −198.2
Pro 71.9 −36.5 −59.4 573.6 −115.3 −200.5
Ser 9.3 −8.7 −11.7 589.1 −107.2 −193.8
Thr 11.5 −10.1 −14.6 379.8 −83.3 −156.7
Trp 79.4 −31.7 −66.1 596.7 −98.3 −210.3
Tyr 40.9 −23.2 −45.7 542.5 −96.3 −200.1
Val 42.3 −27.2 −44.8 501.0 −103.1 −196.3

electron correlation loss. In addition, the larger absolute values
of E

(2),e−
relax for the ZW structures, in comparison with the HB

counterparts, clearly indicate a more effective distortion of the
electron cloud in the ZW forms.

From Eq. (22) and the data in Table IV, it is evident that
there is always some degree of cancellation between the E

(2),e−
relax

and the E
(2),e−,e+
e−,e+ contributions to the binding energies, as

the former is always negative and the latter always positive,
according to the signs in Eq. (22). Since the loss in electron
correlation tends to decrease the EHF

PBE values, the APMO MP2
increment from APMO HF results arises for the e-p correlation
contribution, which gives rise to a net increase in the PBEs. The
average values of E

(2),e−,e+
e−,e+ in Table IV are 39.2 meV (HB) and

189.6 meV (ZW), being larger in absolute value than the E
(2),e−
relax

averages (in fact, the absolute values of E
(2),e−,e+
e−,e+ exceed those

of E
(2),e−
relax in all cases). Since the e-p correlation would be

favored by the overlap between the electron and positron
densities [3], the larger magnitude of the E

(2),e−,e+
e−,e+ term in

the ZW structures, in comparison with the HB counterparts,
indicates that the positron pulls the electron density away from
the molecule more effectively in the ZW forms.

We now turn attention to the APMO P2 corrections to the
APMO KT binding energies, defined as

EP2
PBE = EKT

PBE − 	e+,e−
pp

(
ωe+

p

)
, (23)

which can be obtained from Eqs. (12)–(14). The self-energy
	e+,e−

pp (ωe+
p ), which accounts for the APMO P2 correction,

can be decomposed into the pair-removal (PR) correlation,
pair-relaxation, and orbital-relaxation (ORX) terms, following
Ref. [44]. However, in the case of a molecular system contain-
ing multiple electrons and a single positron, the contributions
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TABLE V. Decomposition of the APMO P2 level positron
binding energies (in meV), according to Eq. (24). The results are
shown for the 20 standard amino acids, indicated by the three-letter
symbols, in the HB and ZW forms.

HB ZW

Amino acid EKT
PBE TORX TPRM EKT

PBE TORX TPRM

Ala 64.3 −9.7 48.6 620.2 −74.3 206.2
Arg 87.3 −13.9 55.9 670.4 −85.8 215.4
Asn 20.4 −2.9 22.2 564.4 −73.1 199.7
Asp 21.8 −3.2 22.8 532.2 −68.8 189.8
Cys 18.7 −3.3 22.8 524.4 −72.9 191.5
Gln 58.3 −8.9 43.8 696.1 −86.7 218.4
Glu 76.6 −11.9 50.7 625.4 −79.6 206.6
Gly 67.8 −8.6 46.3 643.9 −67.1 200.6
His 4.2 −0.9 10.0 507.5 −76.9 193.5
Ile 63.1 −12.3 53.4 606.5 −89.1 218.7
Leu 73.9 −13.6 56.8 662.1 −88.7 222.3
Lys 48.5 −10.0 46.3 622 −84.1 214.9
Met 39.7 −8.2 40.5 613.4 −86.1 213.9
Phe 67.6 −14.3 54.2 650.7 −93.7 219.4
Pro 90.4 −15.3 63.4 678.5 −86.4 221.8
Ser 10.7 −1.2 12.1 681.9 −77.9 214.2
Thr 13.5 −1.7 15.2 453.9 −61.4 172.3
Trp 105.1 −22.5 70.8 723.2 −104.7 233.2
Tyr 55.6 −12.2 48.6 659.1 −94.9 221.5
Val 53.9 −10.0 47.4 603.8 −86.8 216.9

to the interparticle term reduce to

	e+e−(2)
pp (ωe+

p ) =
Oe−∑
ae−

V e−∑
re−

V e+∑
re+

|〈pe+
ae−|re+

re−〉|2
ωe+

p + εe+
a − εe−

r − εe+
r

+
Oe−∑
ae−

V e−∑
re−

Oe+∑
ae+

|〈pe+
re−|ae+

ae−〉|2
ωe+

p + εe−
r − εe+

a − εe−
a

= TPRM + TORX, (24)

where the PRM term TPRM is associated with the e-p
correlation, while the ORX term TORX is related to the electron
relaxation upon positron detachment. These contributions for
the HB and ZW structures are listed in Table V. It is clear
that the negative TORX values tend to decrease the binding
energies and the positive PRM contributions tend to increase
them. Similarly to APMO MP2, the contribution of the e-p
correlation terms gives rise to a net increase of the EKT

PBE values
in all the cases since the TPRM terms have larger magnitudes.

Finally, we compare the performances of the APMO KT and
APMO HF methods, as well as APMO MP2 and APMO P2.
As shown in Table III, the APMO KT method predicts larger
PBEs than the APMO HF. These higher binding energies result
from the partial cancellation between the missing relaxation
and correlation energies, which have opposite signs, in the
APMO KT calculations. It is also clear in Table III that
the APMO P2 method predicts larger PBEs than the APMO
MP2. These discrepancies are related to the different basis
sets employed in the calculations. The APMO MP2 binding
energies are obtained from two basis sets, namely, one for the

isolated molecule and another one for the positronic system.
The APMO P2 calculations are in turn performed with a single
basis set for the positronic problem. As discussed above,
these differences generally favor the PBEs calculated with
the APMO KT and APMO P2 methods with respect to those
obtained at the APMO HF and APMO MP2 levels.

The computational effort associated with the APMO KT
and APMO P2 methods is lower than those of the APMO
HF and APMO MP2 methods, respectively. Both the EKT

PBE
and EP2

PBE estimates are obtained from a single calculation
for the positronic system, according to Eqs. (12) and (13),
while the EHF

PBE and EMP2
PBE estimates are obtained from separate

calculations for the isolated and positronic molecules, as
indicated in Eq. (17). Moreover, the computational cost of the
APMO P2 calculations scale as N4

b , where Nb is the number of
basis-set functions, while the APMO MP2 calculations scale
as N5

b . In summary, the calculated APMO KT binding energies
are generally higher than the APMO HF counterparts, at half
the computational cost. Similarly, calculated APMO P2 PBEs
are generally higher than the APMO MP2 PBEs at a fraction
of the computational cost.

V. CONCLUSION

We have devised a simple and computationally inexpensive
procedure to select the best center for expanding the positron
basis set, based on the condensed Fukui functions. It was also
found that the choice for the expansion center can significantly
impact the PBEs. We obtained PBEs for the 20 standard amino
acids employing the APMO HF, APMO KT, APMO MP2, and
APMO P2 levels of theory. In all cases, we considered GM,
HB, and ZW structures. Our results indicated that APMO HF
calculations generally provide lower bounds for the PBEs.
These HF estimates can be generally increased with the
inclusion of correlation in the APMO MP2 and APMO P2
schemes and it was also found that a cancellation of errors
makes the APMO KT binding energies superior to those
obtained at the APMO HF level. We have analyzed the origin
of the differences in the calculated PBEs with the different
methods and found that APMO MP2 and APMO P2 results
are generally higher than the APMO HF results due to the
predominance of the e-p correlation over relaxation in the
PBEs. The PBEs obtained with the APMO KT and APMO
MP2 methods have similar quality due to the cancellation of
errors in the former, as mentioned above. Our results for these
systems indicate that APMO KT and APMO P2 results are
generally higher than APMO HF and APMO MP2 results. In
addition, APMO KT and APMO P2 PBE calculations are more
computationally efficient than their APMO HF and APMO
MP2 counterparts. Our results suggest that APMO KT and
APMO P2 methods are convenient options for the qualitative
and semiquantitative analysis of the PBEs of medium- to
large-size molecular systems.

In addition, since a number of relationships have been
proposed to correlate positron binding energies and annihi-
lation rates [3], we are currently deriving third-order MPBT
expressions for calculating annihilation rates along the lines
of Gribakin and Ludlow’s work [67]. Annihilation rate results
employing these expressions will be reported elsewhere.
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