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Electron-nucleus correlation functional for multicomponent density-functional theory
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An electron-nucleus Colle-Salvetti-type correlation functional for multicomponent density-functional theory
is proposed. We demonstrate that our correlation functional quantitatively reproduces the quantum mechanical
effects of protons; the mean absolute deviation value is 2.8 millihartrees for the optimized structures of hydrogen-
containing molecules, and the effective potential energy curve of the hydrogen molecule is well reproduced.
Since this functional is derived without any unphysical assumption, the strategy taken in this development
will be a promising recipe to make new functionals for the potentials of other particles’ interactions, such as
electron-positron and electron-muon.
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Density-functional theory (DFT) [1–3] has become one of
the most successful and powerful approaches to calculate the
electronic structure of atoms, molecules, and solids, in the
general areas of physics and materials and life sciences. Using
the Born-Oppenheimer approximation, DFT is constructed on
the Hohenberg-Kohn theorem, which establishes the one-to-
one correspondence of density to the electrostatic potential
of clamped fixed nuclei [1]. Therefore, the quantum effects
of nuclear motions have been basically neglected in the
conventional DFT calculations. Many recent studies, however,
have reported [4,5] that nuclear quantum effects significantly
contribute to various phenomena such as proton tunneling,
hydrogen bonding, and so on. To adequately include such
effects in DFT calculations, nuclear quantum effects should
be explicitly taken into consideration in the functionals
used.

Multicomponent DFT (MCDFT) is one of the main straight-
forward strategies for incorporating nuclear quantum effects
in DFT. Capitani and co-workers first proposed MCDFT by
proving the Hohenberg-Kohn theorem for multicomponent
systems [6], and nowadays several groups have developed
MCDFT methods based on this theorem [7–14]. In MCDFT
calculations, Gross and co-workers [9,10] have found the
qualitative reproduction for the structures of small molecules
using a simple electron-nuclear correlation functional based on
the Hartree approximation. They, however, failed to describe
the effective potential energy curve of simple hydrogen
molecules without an approximation for the conditional
density based on the scaled atomic orbital approach [10].
Hammes-Schiffer and co-workers [11–14] also proposed an
electron-proton correlation functional that uses the pair density
obtained in the nuclear-electronic orbital explicitly correlated
Hartree-Fock (NEOXCHF) calculations [14], for the MCDFT
method. We have also developed a MCDFT method for
qualitatively reproducing the geometric H-D isotope effects
of porphyrin and porphycene molecules [15]. No “electron-
nucleus (en)” correlation functional, however, has been used
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in the practical calculations of our previous MCDFT method.
We have highly confirmed that the en correlation, as well as
the electron-electron correlation, is indispensable for giving
quantitatively accurate results for multicomponent systems. To
incorporate such en correlation effects, we have already pro-
posed perturbation and configuration interaction approaches
beyond the mean-field approximation [16,17]. In spite of the
accurate en correlation, however, we should address here that
these approaches incur enormous computational cost from
the practical point of view. In this paper, we thus propose
an en correlation functional using the physical model of the
Colle-Salvetti (CS)-type correlation functional [18].

In MCDFT methods, the Fock operators of the Kohn-Sham
equation for electrons (e) and nuclei (n) are defined as

f̂ MCDFT
e = ĥe +

Ne∑
i

Ĵi −
Nn∑
n

Ĵn + V MCDFT
XC(ee) + V MCDFT

C(en) , (1)

f̂ MCDFT
n = ĥn +

Nn∑
n

Ĵn −
Ne∑
i

Ĵi + V MCDFT
XC(nn) + V MCDFT

C(en) , (2)

where ĥe, Ĵi , and Ĵn are one-electron, electronic Coulomb, and
nuclear Coulomb operators, and Ne and Nn are the number
of electrons and nuclei, respectively. Although many types
of functionals have been proposed for electron-electron (ee)
exchange-correlation potential, V MCDFT

XC(ee) [19–21], only a few
types of functionals have been given for en correlation poten-
tial, V MCDFT

C(en) , and nucleus-nucleus (nn) exchange-correlation
potential, V MCDFT

XC(nn) , as far as we know. To construct the
correlation functional for V MCDFT

C(en) , we adopt the physical
model of the CS-type ee correlation functional [18].

The CS-type functional for the electron-nucleus (en) cor-
relation is derived from the correlated wave function �en

CS,
which is the Kohn-Sham (KS) wave function containing
electron-electron correlations, �KS, multiplied by a Jastrow
factor,

�en
CS = �KS

∏
i,n

[1 − φen(ri ,rn)], (3)

φen(ri ,rn) = exp
(−β2

enr
2
){

1 − �en(R)
[
1 + ηen

cuspr
]}

, (4)
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where φen is the CS correlation factor for the en correlation,
ri and rn are the position vectors of electrons and nuclei,
respectively. r = |ri − rn|, R = αri + (1 − α) rn ≈ rn, and
ηen

cusp is the constant from cusp condition: e.g., −Zn for
electron-nucleus case, where Zn is the nuclear charge of
nucleus n. The original CS-type ee-correlated wave function
satisfies two physical conditions: (a) for electrons far apart
from each other, the ee-correlated wave function should be
reduced to the ee-uncorrelated Hartree-Fock wave function,
and (b) for electrons close to each other the wave function
should satisfy the correlation cusp condition. These physical
conditions are applicable to the en correlations. Note that the
en-correlated wave function should reproduce the KS wave
function for electrons far apart from nuclei, and that electrons
undergo only the electrostatic attractions from nuclei in the
KS wave function. Therefore, the CS correlation factor, φen,
in Eq. (4) is now written as

φen (ri ,rn) = exp
(−β2

enr
2
){1 − �en(rn)[1 − Znr]}. (5)

In the case that the electron and nucleus are close to each
other, the en-correlated wave function should satisfy the en
cusp condition:

∂�en

∂r

∣∣∣∣
r=0

= −Zn�
en|r=0. (6)

Therefore, Zn in Eq. (5) is determined to be the nuclear
charge to obey the en cusp condition. In Eq. (5), the function
�en is given by assuming that the KS first-order reduced
density matrix is a reasonable approximation of the exact
one [18]. Recently, Imamura and co-workers also proposed
a CS-type correlation functional for en correlations [8]. In
developing this functional, �en was derived to obey the
normalization condition. This �en, however, unfortunately
causes a singularity in this functional due to the minus nuclear
charge term, −Zn.

For determining the en CS correlation factor, φen in Eq. (5),
it is interesting to note that similar Jastrow factors have been
used in the correlated wave functions of quantum Monte Carlo
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FIG. 1. The electron-proton correlation factor of the Jastrow factor given by multicomponent quantum Monte Carlo (MCQMC) calculations
and the original Colle-Salvetti (CS) correlation factor for (a) H atom and (b) LiH molecule, and that given by MCQMC calculations and our
CS correlation factor for (c) H atom and (d) LiH molecule. The Jastrow factor for LiH molecule was obtained considering electron-electron
correlations.

052519-2



ELECTRON-NUCLEUS CORRELATION FUNCTIONAL FOR . . . PHYSICAL REVIEW A 89, 052519 (2014)

rep (Å)

C
or

re
at

io
n 

fa
ct

or

FIG. 2. Optimized Jastrow correlation factor for electron-proton
correlation in H− atom.

(QMC) calculations. We have therefore optimized the Jastrow
factor by the multicomponent QMC (MCQMC) method [22]
and have fitted the electron-proton (ep) CS correlation factor to
the optimized Jastrow factor in Fig. 1. This figure displays the
fitted CS correlation factor and the optimized Jastrow factor for
(a) the H atom and (b) the LiH molecule. In Fig. 1(a), we found
that the original CS correlation factor appropriately reproduces
the Jastrow factor only for the short ep distance up to about
1.8 Å in the H atom. On the other hand, Fig. 1(b) shows that
the original CS factor gives correct ep correlations for the long
ep distance in the LiH molecule. This, however, provides zero
ep correlation factor around 2.0 Å due to the insufficiency of
the first-order Taylor-expanded CS correlation factor. This may
cause a serious problem in reproducing correct ep correlations,
because ep correlations affect for the ep distance longer than
2.0 Å as mentioned later. Comparing Figs. 1(a) and 1(b) also
shows that the CS correlation factor shows smaller curvature
for Hδ− in the LiH molecule than that for the H atom.

Figure 2 compares the optimized Jastrow factors of the
electron-proton correlations for the H− anion in MCQMC
calculations: The solid line corresponds to the optimized
Jastrow factor for incorporating both the ee and ep correlations,
and the dashed line indicates the factor for including only the
ep correlations. In this figure, we found that the ep correlations
contribute to the long ep distance more than 8.0 Å if ee
correlations are combined, though the ep correlations with
no ee correlations are efficient only for the short ep distance
up to about 4.0 Å. This result is in contrast to the conclusion
in the study of Hammes-Schiffer and co-workers [14] that
the ep correlations are uncoupled with the ee correlations and
provide only additive effects to the total energy. As shown in
the present result, the ee correlations significantly affect the
distribution of the ep correlation. The impact distances (4.0
and 8.0 Å) are much longer than the range of the distance

where the original CS factor gives zero ep correlation (around
2.0 Å) mentioned above. To extend the effective region of the
CS factor, we have reformulated the original CS correlation
factor for electron-nucleus correlations, φen in Eq. (5), by using
the third-order Taylor expansion as

φen (ri ,rn) = exp
(−β2

enr
2
){

1 − �en(rn)

× [
1 − Znr + 1

2Z2
nr

2 − 1
6Z3

nr
3
]}

, (7)

where Zn is the nuclear charge. Figures 1(c) and 1(d) display
the CS correlation factor, in which βen is optimized in
Eq. (7). In these figures, the CS correlation factor is confirmed
to reproduce the Jastrow factor correctly up to about 2.8 Å.

What remains is to determine the exponent βen in Eq. (7),
which corresponds to the amplitude of correlation region.
In the original paper of the CS correlation functional [18],
Colle and Salvetti assumed for ee correlations that the volume
of the region, in which the function for the ee correlations,
φee(ri ,rj ), is appreciably different from zero, is proportional
to the Wigner’s exclusion volume [23,24]. Consequently, they
obtained the relation of βee = qρ

1/3
e , where ρe is electronic

density and q is a fitted parameter. According to Becke’s
definition of correlation length, Tsuneda and Hirao [25]
proposed an approach for determining βee in the CS correlation
factor that the volume of the ee exchange hole is proportional
to that of the correlation hole. Note that these previous
approaches are not applicable to the case of en correlations,
because en correlations have no straightforward relation with
electronic exchange interactions. Instead, we assumed that the
volume of the en correlation hole is proportional to that of the
ee correlation hole, because we consider that the en correlation
energy, which increases the electronic density near atomic
nuclei, is balanced with the ee correlation, which decreases
the electronic density near nuclei, on the basis of the different
sign of Zn in Eq. (6). This assumption is also supported by
the fact that the effective region of the correlation factor for
en correlation is found to be significantly short by excluding
ee correlations in many-electron systems, as mentioned above.
As mentioned later, the en correlations turn out to be related
to the ee exchange interactions through the ee correlations.

The en correlation functional is derived following the devel-
opment of the one-parameter progressive (OP) ee correlation
functional [21]. The volume of the ee correlation hole in the
OP functional is presumed to be proportional to the volume of
the ee exchange hole, which is determined by the exchange
functional used together. Since the volume of the en correlation
hole should be assumed to be proportional to that of the ee
correlation hole, the former is also taken to be proportional to
that of the exchange hole. Therefore, we determine the volume
of the ee correlation potential [25] in our correlation functional
similarly to that in the OP functional as

V ee
CS = const.

(
4π

3

) (zee

2

)3
, (8)

where zee is the Becke correlation length [26]. Colle and
Salvetti [18] suggested that the volume of the correlation hole,
V ee

CS, where the correlation energy differs appreciably from

052519-3



TARO UDAGAWA, TAKAO TSUNEDA, AND MASANORI TACHIKAWA PHYSICAL REVIEW A 89, 052519 (2014)

TABLE I. The sum of the Kohn-Sham BOP energies and the corresponding zero-point vibrational energies (EBOP + EZPE) (hartree), sum
of MCBOP and electron-proton correlation energies (EMCBOP + EEPC) (hartree), and deviations (EDev) (millihartree) are displayed for various
systems. The mean absolute deviation value is 2.8 millihartrees.

H2 HeH+

EBOP + EZPE –1.16148 –2.96621
EMCBOP + EEPC –1.16130 –2.97605
EDev 0.1 –9.8

LiH BeH2 BH3 CH4 NH3 H2O FH NeH+

EBOP + EZPE –8.07197 –15.88387 –26.55590 –40.43552 –56.47276 –76.34735 –100.37958 –128.95422
EMCBOP + EEPC –8.06673 –15.87819 –26.55287 –40.44337 –56.47904 –76.35237 –100.38158 –128.95672
EDev 5.2 2.8 1.0 –2.0 –2.1 –2.5 –2.0 –2.5

NaH MgH2 AlH3 SiH4 PH3 H2S HCl ArH+

EBOP + EZPE –162.82428 –201.19665 –244.12415 –291.76988 –343.03396 –399.29519 –460.72476 –527.58919
EMCBOP + EEPC –162.81851 –201.18783 –244.11501 –291.76319 –343.03200 –399.29530 –460.72569 –527.59295
EDev 5.8 4.4 3.0 1.7 0.7 –0.1 –0.9 –3.8

zero, is expressed as

V ee
CS = 4π

∫ ∞

0
exp

(−β2
eer

2
)
r2dr =

(
π1/2

βee

)3

. (9)

By assuming that the volume of the en correlation hole,
V en

CS, where βee in Eq. (9) is substituted by βen, is proportional
to V ee

CS in Eq. (8), the exponential coefficient βen can be given
by

βen = qen

(
1

ρ
1/3
α Kα

+ 1

ρ
1/3
β Kβ

)−1

, (10)

where qen is a parameter, ρσ is the electronic density, and Kσ is
defined in the usual ee exchange functional formulation [21],

Ex = −1

2

∑
σ

ρ4/3
σ Kσd3r. (11)

Using the volume of the en correlation hole proportional
to that of the ee correlation hole, the en correlation energy is
supposed to be well balanced with the ee correlation energy.

Using Eqs. (3), (7), and (10), we analytically derived a
CS-type en correlation functional in a similar way to the one-
parameter progressive (OP) ee correlation functional [21]. As
a result, we obtained a CS-type en correlation energy, EENC,
as

EENC = −4π

∫
d3rnρeρn

{
− 3

4β3
en

+ 32β3
en + (8

√
2π − 32

√
π )Znβ

2
en + 24Z2

nβen + (
√

2π − 8
√

π )Z3
n

64β5
en

�en(rn)

+ 384β6
en − 192

√
2πZnβ

5
en + 384Z2

nβ
4
en − 96

√
2πZ3

nβ
3
en + 112Z4

nβ
2
en − 15

√
2πZ5

nβen + 8Z6
n

1536β8
en

�en(rn)2

}
, (12)

where ρn and Zn are nuclear density and charge, respectively.
The CS-type en correlation energy is determined by specifying
Zn and βen in Eq. (12).

In this study, we took the quantum nature of only protons
into account for the nuclei, as well as electrons, and there-
fore, only electron-proton (ep) correlations arose. The only
parameter, βen (=βep in this case), is determined by fitting
the sum of the ep correlation (EPC) energy given by our en
correlation functional, EEPC, and the energy of MCDFT using
the Becke electronic exchange [19] +OP correlation (BOP)
functional, EMCBOP, to the sum of the BOP energy given in the
conventional DFT, EBOP, and the zero-point vibrational energy
(ZPE), EZPE, for H2, LiH, and HeH+ systems, in which the
H atom is neutral, anionic, and cationic, respectively [8]. The
6-31G electronic basis set and [1s1p1d] Gaussian-type basis
function are employed. Consequently, we obtained qen = 18.0.
For the fitting and all benchmark calculations below, we have
used the development version of the GAUSSIAN 03 program
package [27].

To examine the availability of our en correlation functional,
we calculated the total energies of 18 systems, which are
composed of both hydrogen and first- or second-row atoms. We
took the quantum nature of only protons into account for the
nuclei, as well as electrons, as mentioned above. Following
the study of Ishikawa and Quiney [28], we have employed
Gaussian-type basis functions: 6-31G and [1s1p1d] functions
for electrons and protons, respectively. The molecular geome-
tries were optimized using the BOP functional with the 6-31G
basis set and MCBOP and EPC energies were calculated
at such optimized geometries. Table I displays the sum of
the BOP energies and the zero-point vibrational energies
(EBOP + EZPE), the sum of MCBOP and EPC energies
(EMCBOP + EEPC), and the difference between them per
proton (EDev). This result indicates that the multicomponent
CS-type en correlation functional quantitatively reproduces the
quantum mechanical effects of protons for various molecules
with the mean absolute deviation of 2.8 millihartrees. Strictly
speaking, the errors are large for quantum-treated hydrogen
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FIG. 3. Potential energy curves (PECs) calculated with the Kohn-
Sham method with BOP functional, and effective PECs with MCBOP
and MCBOP with our electron-nucleus correlation functional.

atoms with cationic character such as HeH+ and with anionic
character such as LiH and NaH as shown in Table I. We
suppose that these large errors come from the extremely low
or extremely high electron densities of H atom.

To confirm the validity and behavior of our en correlation
functional, we have calculated the effective potential energy
curve (PEC) of the H2 molecule by using the BOP, MCBOP,
and MCBOP + EPC methods (Fig. 3). The figure shows that
the MCBOP energies are about 0.08 hartree higher than the
BOP energies, which are clearly overestimated due to the
simultaneous determination of nuclear and electronic wave
functions in the MCBOP method. The optimum H-H bond dis-
tance of MCBOP is 0.785 Å, which is much longer than that of
BOP, 0.746 Å, due to the overestimation of anharmonic effect

on the PEC along the covalent bond direction. By including
the en correlation effects, the overall PEC shape of MCBOP +
EPC is similar to that of BOP, and the optimum bond
distance, 0.750 Å, reasonably becomes shorter. Thus, these
results clearly support that our functional provides accurate
en correlation to reproduce the PEC of the H2 molecule
around the equilibrium structure. In the near future, we will
discuss the behavior of our correlation functional for the large
internuclear distance, which requires both unrestricted and
multireference treatments to reproduce the PEC correctly.

In summary, we have proposed a CS-type electron-nucleus
(en) correlation functional with the aid of the third-order Taylor
expansion and the definition of βen. We have found that our
functional accurately reproduces ep correlations for the opti-
mized structures of various H-contained molecules. We have
also demonstrated that MCBOP using the our en correlation
functional provides the physically correct effective potential
energy curve of the H2 molecule. In the present paper, we
determined the parameter βen to reproduce the BOP energies
corrected with zero-point vibrations. We, however, expect that
the performance of our en correlation functional would be
improved by fitting it to reproduce more accurate factors such
as the MCQMC-optimized Jastrow factor mentioned above.
Furthermore, we need a general formula for the en functional to
evaluate the en correlations comprehensively and to be applied
to time-dependent external potential issue [29,30].
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