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Anisotropic atom-surface interactions in the Casimir-Polder regime
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The distance dependence of the anisotropic atom-wall interaction is studied. The central result is the 1/z6

quadrupolar anisotropy decay in the retarded Casimir-Polder regime. Analysis of the transition region between
nonretarded van der Waals regime (in 1/z3) and Casimir-Polder regime shows that the anisotropy crossover occurs
at very short distances from the surface, on the order of 0.03λ, where λ is the atom characteristic wavelength.
Possible experimental verifications of this distance dependence using surface-induced inelastic transitions are
discussed.
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I. INTRODUCTION

The force between neutral polarizable systems is a ubiqui-
tous phenomenon in nature, with many applications in physics,
chemistry, biology, etc. A paramount example is the long-range
interaction potential between neutral microscopic quantum
systems, like atomic systems, and a solid surface. For plane
surfaces this interaction is usually governed by a power-law
attractive potential [1,2]. For atom-surfaces distances z smaller
than the wavelengths of the optical transitions involved in the
atomic polarisability, the interaction is of the dipole-induced
dipole type and governed by the well-known nonretarded van
der Waals potential in −C3/z

3, which reflects the correlations
of dipole fluctuations [1]. At larger distances, retardation
effects become important and asymptotically lead to a −C4/z

4

potential, as demonstrated in the pioneering work of Casimir
and Polder [2].

Atom (molecule)-surface forces are central in numerous
scientific and technological domains: surface adsorption of
atoms, gas-surface equilibrium, cavity QED [3], quantum
reflection of atoms on surfaces [4], microelectromechanical
systems [5], research for a fifth fundamental force [6], etc. In
most of the above studies, the interaction potential has to be
treated in its full distance range (retarded and nonretarded)
but is generally considered scalar. However the atom-surface
potential has a cylindrical symmetry around the surface normal
and exhibits a quadrupolar component which may become
important for “nonscalar” energy levels, i.e., levels with
nonzero angular momentum. Anisotropic surface potential
strongly alters the internal dynamics and symmetry of nearby
atomic systems. For example, surface-induced symmetry
break and internal level coupling have been observed on rare-
gas metastable states scattered at material surfaces [7]. From
previous experimental studies of the anisotropic potential,
on can underline two points: (1) on one hand, in selective
reflection (SR) studies, generally sensitive to a λ/2π distance
(∼100 nm) from the surface (see, e.g., Ref. [8]), the influence
of the anisotropic potential has not been observed, although
SR spectroscopy gives access to the excited atomic response
[9]; (2) on the other hand, in beam scattering studies, the range
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of the anisotropic interaction appears to be always smaller than
10 nm, in general 5 nm or less [10]. Thus one can state that up
to now those anisotropic characteristics have been observed in
the nonretarded regime. Indeed, retarded interactions, at the
lowest order in the asymptotic regime, only depend on the
scalar static atom polarizability, as first shown by Casimir and
Polder [2]. To analyze their anisotropic character, one has to
go to higher-order components of the atomic response. In this
paper we study the behavior of the anisotropic response in the
retarded regime and demonstrate that the crossover transition
between nonretarded and retarded ranges occurs at very short
distances from the wall, on the order of 0.03λ, where λ is
the characteristic electric dipole wavelength of the atom. We
discuss its possible experimental observation in atom-surface
scattering.

II. THEORY OF ANISOTROPIC ATOM-SURFACE
POTENTIAL

Many authors have theoretically studied atom-surface
interactions [11,12]. In this work we use a linear response
quantum-mechanical approach via field susceptibilities near
a plane surface [12]. For a dipolar interaction Hamiltonian
(−D · E, with D the atomic electric dipole operator, and E
the e.m. field), the energy-level shift of an atom in a ground or
metastable state, located at position r0, can be written under
the form of an integral over imaginary frequency ξ (following
the approach of Ref. [12]):

δE0 = − �

2π

∫ ∞

0
dξGαβ(r0,r0; ıξ )α0

αβ(ıξ ), (1)

where Gαβ and ααβ are field and atom dipole correlation
functions, respectively. In Eq. (1), subscripts α and β, which
denote the Cartesian components (z normal to the surface; x, y
parallel to the surface), are summed over. For a perfect metallic
reflector, the surface-induced field correlation components are
given by

GS
xx = GS

yy = (1 + σ + σ 2)e−σ /8z3,

GS
zz = (1 + σ )e−σ /4z3, (2)

GS
αβ = 0 for α �= β
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with σ = 2ξz/c. For a dielectric reflector, one should multiply
(2) by the surface response (ε − 1) / (ε + 1). The electric
dipole polarizability of the atom in the ground (metastable)
state is given by

ααβ(ıξ ) = 2

�

∑
n

ω0n

d0n
α d0n

β

ω2
0n + ξ 2

(3)

with d0n
α = 〈0 |Dα|n〉 and ω0n is the 0–n transition frequency.

In the nonretarded regime (ω0nz/c � 1), the integration of
Eq. (1) straightforwardly leads to the well-known result

δE0 = 〈0|Hvw|0〉 with Hvw = −D2
z + D2

16 z3
. (4)

Hvw is the effective van der Waals Hamiltonian in the
electrostatic limit. The anisotropic (quadrupolar) interaction
potential is given by

− Q(2)

16z3
with Q(2) = D2

z − D2/3 (5)

(irreducible tensorial operator of second order). At the opposite
end, in the fully retarded limit (ω0nz/c � 1), one can use the
low-frequency asymptotic limit of the atomic polarizability
(ξ ≈ 0) to get the famous Casimir-Polder result:

δECP
0 = − �c

8πz4
[αxx(0) + αyy(0) + αzz(0)]. (6)

As discussed above, this retarded interaction involves the
scalar polarizability only. To get the quadrupolar component
in the asymptotic Casimir-Polder limit, one has to go to
higher-order components by expanding ααβ [Eq. (3)] over ξ :

ααβ(ıξ ) ≈ 2

�

∑
n

d0n
α d0n

β

ω0n

(
1 − ξ 2

ω2
0n

)
. (7)

The ξ 2 term of Eq. (7), when reported in Eq. (1), yields a z−6

interaction potential with a nonscalar component:

δER
0 = c3

4πz6

∑
n

2
∣∣d0n

x

∣∣2 + 2
∣∣d0n

y

∣∣2 + ∣∣d0n
z

∣∣2

ω3
0n

, (8)

the quadrupolar part of which can be written

δER
0Q = − c3

4πz6

∑
n

∣∣d0n
z

∣∣2 − |d0n|2/3

ω3
0n

. (9)

Let us note that Eq. (9) can be written under the operational
form

δER
0Q = − �

3c3

4πz6
〈0|HR

0Q|0〉 with

HR
0Q = −1

3
D

1

(Hat − �ω0)3
D + Dz

1

(Hat − �ω0)3
Dz, (10)

Hat being the free atom Hamiltonian. The main property of
the anisotropic potential in the Casimir-Polder regime is its
z−6 dependence, as compared to the scalar Casimir-Polder
potential, which is in z−4. If a virtual dipolar coupling (0–1) is
predominant, then Eqs. (9) and (10) can be written as

δER
0Q = − c3

4πz6

1

ω3
01

〈0|Q(2)|0〉. (11)

The intermediate atom-wall separation can be analyzed
with a full integration of Eq. (1), using special functions f

and g, defined in Ref. [13], with the help of sine integral Si
and cosine integral Ci functions:

f (t) = Ci(t) sin t − [Si(t) − π/2] cos t,
(12)

g(t) = −Ci(t) cos t − [Si(t) − π/2] sin t.

One gets for the quadrupolar interaction

δE0Q = − 1

8πz3

∑
n

(∣∣d0n
z

∣∣2 − |d0n|2/3
)

× [−zn + zng(zn) + (
1 + z2

n

)
f (zn)

]
, (13)

where zn = 2ω0nz/c. One can show that Eq. (13) can be well
approximated by the following analytic expression:

δE0Q ≈ − 1

16z3[1 + (z/�2)5/2]6/5
〈0|Q(2)|0〉, (14)

where �2 is a characteristic distance. For z → 0, Eq. (14)
gives the near-field quadrupolar potential. For very large z, it
yields the fully retarded Casimir-Polder interaction, provided
that

�3
2 = 4c3

π

∑
n

|d0n
z |2−|d0n|2/3

ω3
0n∑

n

∣∣d0n
z

∣∣2 − |d0n|2/3
. (15)

For a predominant dipolar coupling at frequency ω01 (wave-
length λ01), the characteristic distance is governed by

�2 = 3

√
4

π

λ01

2π
. (16)

It is worth noting that, making �2 → ∞, one recovers the van
der Waals interaction term.

Up to now, the quadrupolar atom-surface interaction has
been mainly explored in the first excited configuration of the
rare gases, which is characterized by one excited s-electron and
a core of 5p electrons, np5 (n + 1)s. There are two metastable
states J = 0 and J = 2, represented, in the L-S coupling, as
3P0 and 3P2 triplet levels. The anisotropic interaction comes
from the p5 core, and not from the (scalar) s electron, and
increases with the size of the core, i.e., the noble gas atomic
number. In L-S coupling scheme, this anisotropy exists for the
3P0,1,2 states (L = 1), and its symmetry is thus governed by
the (L2

z − L2/3) operator, as expected from the Wigner-Eckart
theorem, which involves D3

z − D2/3 ∝ L2
z − L2/3. It directly

links fine-structure changing transitions to surface-induced
Zeeman transitions [14]. Previous experimental works have
been interpreted in the nonretarded van der Waals regime. In
the following, we analyze the influence of retardation effects.

III. DISTANCE-DEPENDENCE OF SURFACE-INDUCED
INELASTIC TRANSITIONS

The most direct way (presumably not the easiest) to evi-
dence the long distance behavior of the nonscalar component
of the interaction is to analyze inelastic scattering processes
of which this component is specifically responsible. Among
such processes, exo-energetic so-called van der Waals-Zeeman
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transitions (e.g., transitions from Zeeman state M to state
M − 1), occurring in the presence of a magnetic field not
collinear with the normal to the surface, are good candidates
since they have been previously evidenced theoretically and
experimentally for metastable rare gas atoms (3P2) [10,15]. In
the interpretation of these results, both scalar and nonscalar
(quadrupolar) parts of the interaction have been assumed of
the van der Waals type, i.e., proportional to z−3. The main
difficulty here to move to larger values of z is the very short
range (at thermal velocities, a few nm up to a few tens nm)
within which such transitions are observable. Larger ranges
(50–100 nm) are expected at lower velocity (a few tens of
m/s) experimentally accessible, using a magneto-optical trap
from which atoms are pushed away by a laser beam [16].
If no selection of atom-surface distance z is performed, then
both elastic and inelastic diffractions are so largely dominated
by short-distance interactions that no retardation effect can
be evidenced. Various methods have been successfully used
so far to investigate atom-surface interaction in the retarded
regime [4,17,18], but they are restricted to the scalar part
of the potential. To better evidence the behavior of both
scalar and nonscalar interactions as a function of the distance,
the selection of a definite interval of z is clearly needed.
A new method to prepare narrow and nonspreading wave
packets has been proposed and tested experimentally with
slow (v = 50 m/s) metastable argon atoms Ar*(3P2) [19].
Such so-called “Michelangelo” wave packets are obtained by
passing a well-collimated beam of Ar* atoms (the coherence
width of which is of a few μm) through a thick standing light
wave locked in frequency on the open transition 1s5 (3P2)–2p8

(J = 2), at wavelength λop = 801.5 nm. Except in the vicinity
of the standing wave nodes, atoms are partly transferred
to the ground state and then are no longer detectable by
standard metastable atom detectors. In fact, the best efficiency
(84%) of this “optical quenching” is obtained with a circularly
polarized light and atoms initially polarized in Zeeman state
M = 0. As a consequence, in the following calculations, we
shall assume incident atoms in this state. It is shown in
Ref. [19] that the transverse profile of the wave packet is
Gaussian, with a width δz depending on the laser intensity I as
I−1/4. As a compromise width versus intensity, the following
calculations have been carried out at a rather reasonably high
laser power, I = 240 mW/cm2, giving δz = 12 nm. Under
such conditions, the Rabi pulsation is � = 5.28
, where

 = 2π × 5.8 MHz is the natural width of the upper level.
It is worth noting that, as soon as the wave packet comes out
of the light wave, its natural spreading comes back. Then the
solid surface under investigation must be placed as close as
possible to the light beams. At the velocity considered here,
v = 20 m/s, within the extension of the surface along axis
x (direction of atom trajectories), �x = 500 nm, this natural
spreading while small (less than ±5.8 nm) will be taken in
account.

Owing to the shortness of the de Broglie atomic wavelength
(λat = 0.56 nm) relatively to distances characteristic of the
experiment geometry, the semiclassical approximation is valid.
More precisely, the external motion along z is assumed to be
classical, with a constant velocity v, whereas the internal state
is expanded over the Zeeman-state basis set |M〉 where states
|M〉 are referred to the direction of the magnetic field B. The
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FIG. 1. (Color online) log10 of factors δE0Q (z) involved in the
anisotropic part of interaction (see text). Upper dashed line: pure van
der Waals interaction; lower curves: δEWS

0Q (z) (full line), δE
app
0Q (z)

(dashed line).

interaction experienced by an atom is then expressed in the
form of a 5 × 5 matrix combining the magnetic interaction
WMM ′ = −δMM ′MgμBB (g is the Landé factor, μB the Bohr
magneton) and the interaction with the surface (a planar perfect
conductor) described by a 5 × 5 matrix V , whose elements are
VMM ′ (α,z,t), where α is the angle between B and the normal
to the surface.

The quadrupolar part of the atom-surface interaction, in the
case of a metastable argon atom (Ar* 3P2) in the vicinity of
an almost perfect conductor (gold), takes the form given by
Eq. (13), the sum being reduced to the dominant n = 1 term.
This term will be denoted δEWS

0Q . As shown previously this
expression can be further approximated by [cf. Eq. (14)]

δE
app
0Q (z) ≈ − η

16z3[1 + (z/�2)5/2]6/5
, (17)

where the “quadrupolar constant” is η = −0.15 atomic units
[20]. Using λ01 = 815.5 nm as the dominant dipolar coupling,
one gets the characteristic distance �2 = 140 nm. Quadrupo-
lar terms δEWS

0Q and δE
app
0Q are shown in Fig. 1 together with the

latter term at the limit �2 infinite (nonretarded van der Waals
potential). The angular dependence of V is given by

V = δE0Q(z)[(2 − 3 sin2 α)A +
√

3/2 sin α C(α)], (18)

where A is a diagonal constant matrix of elements
{1,1/2,1,1/2,1} and C is a symmetric off-diagonal matrix
whose elements are given by

C21 = C−1,−2 =
√

6 cos α, C20 = C0,−2 = sin α,

C2,−1 = C1,−2 = C2,−2 = 0, (19)

C10 = C0,−1 = cos α, C1,−1 =
√

3/2 sin α.

For a planar surface and a homogeneous magnetic field, α

is constant (α = 1.22 rad in the following calculations), apart
from negligible edge effects (note that for α = 0, V is diagonal
and no transition occurs).

At a given distance z to the surface, the internal state
evolution in time is governed by a set of five coupled
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FIG. 2. (Color online) log10 of total inelastic intensities, calcu-
lated with van der Waals interactions (P (1)

in , upper dashed line) and
calculated with retarded potentials (P (2)

in , lower full line) as functions
of the mean distance zm to the surface. Inset: Ratios R = P (2)

in /P (1)
in

(full line) and R = P (3)
in /P (1)

in (broken line) as functions of zm; the
characteristic distance is �2 = 140 nm.

differential equations:

ı�∂taM =
+2∑

M ′=−2

(WMM ′ + VMM ′ )aM ′(z,t). (20)

The initial condition, at time t1 = −�x/ (2v), is aM = δM0.
Solving (20) one gets the final amplitudes at time t2 =
+�x/ (2v). In the following, we shall restrict numerical
calculations to the amplitudes a0 (z,t2) and a−1 (z,t2), related,
respectively, to pel (z) probability of elastic scattering and
pin (z) probability of the unique inelastic transition 0 → −1
we are interested in [21]. The final complex amplitudes a0

and a−1 generate, at large distance, scattering amplitudes F0

and F−1. In the Fraunhofer regime, at a direction belonging to
plane (x,z) and making an angle θ with the x axis, one gets
(up to a constant multiplicative factor)

F0,−1(θ ) =
∫ ∞

0
dz ρ(z − zm) a0,−1(z,t2)

× exp
[−ı

(
k0,−1 sin θ +

√
k2

0,−1 − k2
0

)
z
]
, (21)

where ρ (z − zm) is the Gaussian amplitude of a Michelangelo
wave packet centered at zm, k0 is the initial wave number,
and k−1 = (k2

0 + g|μB |B/�)1/2 is the wave number in the
inelastic channel. In our case, with k0 = 1.124 × 1010 m−1 and
B = 0.01 T, one gets k−1 = 1.130 × 1010 m−1. Let Pel(zm)
and Pin (zm) be, respectively, the integrals over θ of |F0|2
and |F−1|2. As soon as zm > 25 nm, Pel is very close to 1

(1 − Pel < 10−5), and we shall rather consider in more detail
the inelastic probability Pin.

Our goal is to compare two kinds of nondiagonal interaction
with the surface, namely, potentials V

(1)
MM ′ (z,t) of a pure van

der Waals type, leading to P (1)
in (zm), and retarded potentials

defined above, V (2)
MM ′ (z,t) issued from δEWS

0Q , V (3)
MM ′ (z,t) issued

from δE
app
0Q , aimed at asymptotically leading to Casimir-Polder

interactions at large distance. These latter potentials respec-
tively produce inelastic probabilities P (2)

in (zm) and P (3)
in (zm).

In Fig. 2, log10 P (1)
in (upper curve) and log10 P (2)

in (lower curve)
are plotted as functions of the mean distance zm to the
surface. As expected, at short distances these probabilities
are close to each other, whereas at large distances P (2)

in
decreases much faster than P (1)

in . These features appear more
clearly in inset of Fig. 2 where the ratios R = P (2,3)

in /P (1)
in

are plotted as a function of zm. The passage from van der
Waals to long-range interactions is readily evidenced by the
decrease of the inelastic probability around an amazingly short
distance zm = 25 nm, where R = 0.5 (while the characteristic
distance is �2 = 140 nm). Up to this distance, P (1)

in and P (2,3)
in

while finally small (of the order of 10−5) are still measurable.
Therefore the long-distance behavior of the quadrupolar part
of the atom-surface interaction should be experimentally
investigated, via the observation of inelastic scattering.

IV. CONCLUSION

This study of the anisotropic atom-wall potential has put
evidence for its very fast decay away from the surface, due to
its retarded z−6 power-law dependence. The crossover length
of the anisotropic potential amplitude is on the order of 0.05λ

where λ is the characteristic electric dipole wavelength. This
explains why, in selective reflection studies, up to now, the
influence of the surface potential has been mainly limited
to isotropic effects. The decay range of inelastic transitions
induced by the surface potential is still shorter, on the order of
0.03λ. Its observation in noble gas beam-surface scattering has
confirmed this behavior, showing indeed a practical interaction
range equal to or smaller than 5 nm at thermal velocities.
The analysis of the retarded anisotropic potential will need
slowed atomic beams, in order to increase the atom-surface
interaction time and explore the crossover range between
retarded and nonretarded interactions. The atomic motion
may thus exhibit some quantum-mechanical features which
should be taken into account. This appears to be central in the
realization of novel coherent matter-wave splitters based on
anisotropic atom-surface forces [22]. The exploration of the
anisotropy crossover range between nonretarded and retarded
interactions will have important implications in the interaction
between atomic systems and material nanostructures and the
development of hybrid systems [23].
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