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Theoretical study of the isotope effects on the detachment thresholds of Si−
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The isotope effects in Si− bound levels are studied using the multiconfiguration Hartree-Fock ab initio approach.
Large-scale calculations are carried out for the 3p3 4So, 2Do, and 2P o multiplets of Si− and the 3p2 3P multiplet
of Si. We predict an anomalous isotope shift on the electron affinity, dominated by the specific mass shift, with a
value of −0.66(6) m−1 for the 30-28 isotope pair. We also report hyperfine-structure parameters for the studied
multiplets. We provide the values of level electric-field gradients at the nucleus that could be of interest in a
study of the metastable silicon isotopes. Relativistic corrections are estimated using nonrelativistic orbitals in the
Breit-Pauli and fully relativistic frameworks.
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I. INTRODUCTION

In recent decades, the interest in the isotope effects in
negative ions has grown as the experimental techniques have
evolved [1,2]. In particular, the isotope shift (IS) in the
electron affinity, i.e., the shift of a negative-ion binding energy
from one isotope to another, has gradually become accessible
experimentally [3–5] and theoretically [5–8]. The study of
isotope shifts on atomic transitions is a rather old subject and
previous advances in our understanding of atomic structure
are tightly linked to advances in experimental techniques
permitting the measurement of isotope effects [9]. The laser
photodetachment techniques attained such a level of accuracy
that there are new possibilities for understanding negative ions
and isotope effects.

Silicon is the third-period atom of the carbon-group; its
lowest configuration is [Ne]3s23p2. The silicon negative ion
binds the three multiplets arising from the 3p3 configuration,
i.e., the ground state 4So

3/2 and the excited 2Do
3/2,5/2 and

2P o
1/2,3/2 states. Scheer et al. [10] have measured the binding

energy of the 2Do
3/2 and 2Do

5/2 states, 0.527 234(25) and
0.525 489(20) eV, respectively, but were not able to detect the
weakly bound 2P o whose best binding energy measurement
to date is due to Kasdan et al. of 29(5) meV [11]. Blondel
et al. [12] and Chaibi et al. [13] later measured the 28Si
electron affinity eA, i.e., the 4So

3/2-3P0 threshold, using the
laser photodetachment microscopy technique and obtained
eA(28Si−) = 1 120 724.4(6) m−1 = 1.389 521 0(7) eV.

There are two stable isotopes of silicon with zero spin: 28Si
(92.23%) and 30Si (3.10%). The third stable silicon isotope
is 29Si (4.67%), which has a spin I = 1/2. Lee and Fairbank
studied experimentally the 3s23p2 3P2 → 3s3p3 3Do

3 transi-
tion isotope shifts and, in the case of 29Si, its hyperfine structure
[14]. This work was motivated by the possibility of using the
metastable 31Si (I = 3/2), decaying by β radiation into 31P,
for quantum computing applications [15]. Incidentally, it also
determined the hyperfine constant of a state belonging to the
ground multiplet of a silicon isotope. Wendt et al. [16] also
conducted a two-photon Doppler-free study of isotope effects
on the 3s2 3p2 3P0,1,2 → 3s23p4p 3P0,1,2 transitions.
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In the present work, we use an approach similar to that
used for previous studies of the IS on the eA in neighboring
elements sulfur [5] and chlorine [8]. This method, relying on
a systematic reduction of the single and double excitations
of a set of reference configurations, has been proven to work
efficiently for computing isotopes shifts as well as hyperfine
structure parameters [17], despite the strong emphasis that
this approach puts on providing accurate energies. It has also
been successfully used for studying the weakly bound 2p3 2Do

excited state of C− [7]. With respect to C−, the challenge in
Si− is to correctly describe the correlation of the outer electron
with the larger 1s22s22p6 core. This has been proven to be the
bottleneck in S− and Cl− studies. One problem is to obtain
a balanced description of the neutral atom and negative ion.
Following previous works [5,8,18], we solve this issue by
using orbitals specifically optimized for valence correlation to
describe core-valence correlation.

In Sec. II we briefly lay out the theoretical background. The
calculations of the isotope shifts and hyperfine parameters,
as well as their reliability, are detailed in Secs. III and IV,
respectively. We summarize in Sec. V.

II. THEORY

A. Mass isotope shift

At the nonrelativistic level, the energy corrected for the
first-order mass shift is [8,19]

δEM ′M =
[

μ

M
− μ′

M ′

](
E∞ − �

2

me

SSMS

)
, (1)

where μ = meM/(me + M) is the electron reduced mass, me

is the electron mass, and M is the bare nucleus mass. Here
E∞ is the total binding energy of the atomic system and SSMS

is the specific mass shift parameter, both calculated with an
infinite nucleus mass

SSMS = −〈�∞|
∑
i<j

∇i · ∇j |�∞〉. (2)

The first term of (1) contains the normal mass shift (NMS)
and the second the specific mass shift. The atomic masses are
taken from Audi et al. [20].
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B. Field isotope shift

It was shown for sulfur [5] and chlorine [18] that even
if the field shift (FS) on the electron affinity due to the
effect of the finite nucleus volume on the energy levels is
below the current experimental resolution, it may constitute
a non-negligible correction to the total isotope shift on the
electron affinity of p-block atoms. This shift can be estimated
using

δEM ′M
FS = ha3

0

4Z
f (Z)M

′M [〈r2〉M − 〈r2〉M ′ ]4π�ρ(0), (3)

where f (Z) is a scaling factor correcting for the relativistic
effects, 〈r2〉 is the isotope-dependent rms radius, and �ρ is the
change in the spinless total electron density [21] at the origin

�ρ(0) = ρSi(0) − ρSi− (0). (4)

The mean square radii of the nucleus charge densities of
the different stable isotopes of Si (A = 28,29,30) are reviewed
in Refs. [22,23], offering a large choice of nuclear shape
parameters for silicon. We therefore choose to estimate the
field shift from the averaged values of Angeli [24], 〈r2〉1/2 =
3.1223(24),3.1168(50),3.1332(40) fm, respectively, for A =
28,29,30. The value for f (Z)/c = 1.1099 m−1/fm2 is taken
from Aufmuth et al. [25].

C. Hyperfine interaction

The hyperfine structure of a J level is caused by the
interaction of the angular momentum of the electron cloud
J and of the nucleus I, forming the total atomic angular
momentum F = I + J. The theory underlying the computation
of hyperfine structures can be found in Refs. [26–29]. The
diagonal hyperfine-interaction energy correction is usually
expressed in terms of the hyperfine magnetic dipole AJ and
electric quadrupole BJ constants expressed in MHz. It is
possible to further decompose the nonrelativistic hyperfine
interaction in terms of the J -independent orbital al , spin dipole
asd, contact ac, and electric quadrupole bq electronic hyperfine
parameters defined in Refs. [26,27].

D. The multiconfiguration Hartree-Fock expansion

The multiconfiguration Hartree-Fock (MCHF) approach
consists in variationally solving the time-independent
Schrödinger equation in the space defined by the ansatz
[30]

�(γLSMLMSπ ) =
∑

i

ci	(γiLSMLMSπ ), (5)

where 	(γiLSMLMSπ ) are configuration state functions
(CSFs) built on orthonormal one-electron radial functions. In
practice, we mostly use a multireference interacting (MR-I)
scheme [5]. It consists in selecting in the expansion (5) the
CSFs that interact to first order with a multireference CSF
set. This MR-I space is defined in a given one-electron orbital
basis set �nmaxlmax� containing in total nmax − l orbitals of
angular momentum quantum number l � lmax. In order to
include higher-order correlation effects, the linear problem in
larger CSF spaces is solved by optimizing the ci only. We refer
to this model as configuration-interaction (CI) calculations.

Because the specific mass shift on the electron affinity is
mainly sensitive to valence correlation and the hyperfine-
interaction constants are sensitive to core correlation, we settle
for different approaches in Secs. III and IV. All nonrelativistic
calculations, including the ones of the isotope shift parameters,
are performed using the ATSP2K package [31].

E. Relativistic corrections

In order to estimate relativistic corrections, we compare
nonrelativistic calculations to the corresponding relativistic
calculations that have similar variational contents. To do so,
the relativistic ansatz

�(
JMπ ) =
∑

i

ci	(γiJMπ ) (6)

is constructed on orbitals optimized at the nonrelativistic level.
This has been proven to work for hyperfine structures of
second-period atoms [7,32,33]. For third-period atoms, the
reliability of this scheme has not been established. It has been
used for estimating relativistic effects on the hyperfine struc-
tures of the ground states of S, S−, and Cl [18], but this study
is not conclusive on the accuracy of the computed corrections.
We compare the Breit-Pauli configuration-interaction (BPCI)
method [30] and the relativistic configuration-interaction
method using the Pauli approximation (RCIP) [34]. Such a
comparison has recently been performed for excited states of
fluorine [33], showing a good consistency between the two
approaches.

For differential effects such as the electron affinity and its
isotope shift, one has to strike a balance in the nonrelativistic
approach as well as in the relativistic one. Except in the case of
carbon and its negative ion [7], no attempt to achieve this within
our framework has been successful. However, as previously
emphasized for systems in which it is unrealistic to consider
series of calculations converging toward an exact solution [5],
it is necessary to define some guideline to assess the balance of
the calculations performed on the neutral and the negative ion.
We use the electron affinity itself as the natural guideline. Since
the specific mass shift is much more sensitive to correlation
effects than the energy, it is necessary to subtract relativistic
corrections on the reference electron affinity, even if relativistic
corrections on the isotope shift are not considered. When the
nuclear spin is zero, nonrelativistic results for the electron
affinity can be compared to reference nonrelativistic binding
energies eAnr

ref(LS), which are obtained by averaging the fine-
structure experimental thresholds on the electronic J angular
momenta and subtracting a theoretical estimation of the scalar
non-fine structure relativistic effects �ENF

theor [18]

eAnr
ref = eAAV

expt − �ENF
theor. (7)

The BPCI and RCIP calculations are performed using the
ATSP2K package [31] and the GRASP2K package [34], respec-
tively.

III. DETACHMENT THRESHOLDS AND THEIR ISOTOPE
SHIFTS

We perform Hartree-Fock (HF) frozen-core valence (n = 3)
MCHF calculations on the Si 3P and Si− 4So, 2Do, and 2P o
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TABLE I. Total energies E and SSMS parameters of the 3p2 3P

state of silicon calculated by closed-core MCHF and open-core CI
calculations. We use two different multireferences M1 and M2 [see
Eq. (9) and (10)]. The energies are given in hartrees Eh and SSMS in
units of a−2

0 .

M1 M2

nl E SSMS E SSMS

frozen-core MR-I, MCHF

4f −288.936115 −44.70051 −288.936207 −44.70080
5g −288.938949 −44.69585 −288.939102 −44.69631
6h −288.939673 −44.69836 −288.939841 −44.69886
7i −288.939967 −44.70029 −288.940139 −44.70087
8k −288.940104 −44.70062 −288.940278 −44.70121
9k −288.940156 −44.70064 −288.940331 −44.70124
10k −288.940176 −44.70067 −288.940351 −44.70126

relaxed-core MR-I, MCHF

10k −288.940236 −44.70410 −288.940410 −44.70461

HF core MR-CV-I, CI

10k −288.974565 −44.47343 −288.975221 −44.47000

states. Fully variational valence MCHF calculations are also
carried out for Si 3P and Si− 4So.

We use a MR-I approach similar to that used in previous
works [5,8]. For Si−, the multireference (MR) M is

M = [Ne]{3s,3p}3{3,4}2 4So,2Do,2P o, (8)

where the Ne-like core is kept closed, two electrons are allowed
to be excited in correlation orbitals {3d,4s,4p,4d,4f }, and
the three remaining valence electrons are distributed among
the spectroscopic {3s,3p} orbitals. More flexibility has to be
given to the negative-ion model since it is a system containing
one more electron than the neutral atom. An all-electron series
of calculations converging toward the exact wave functions
for the anion and corresponding neutral, as performed, for
instance, in the case of carbon [7], is intractable in the present

case. In general, the best one can hope for when performing ab
initio calculations is to narrow down an interval in which the
targeted property most likely lies by tailoring computational
models to the task at hand. It is therefore necessary to use
guidelines for assessing the robustness of the error bars. Hence,
for the neutral silicon atom, we choose two multireference
expansions defined as follows:

M1 = [Ne]{3s,3p}2{3}2 3P, (9)

M2 = [Ne]{3s,3p}2{3}1{3,4}1 3P. (10)

We further generate the full MR-CV-I �10k� sets using the
above multireferences and allowing at most one hole in
the n = 2 shell to describe valence and core-valence (CV)
correlation. As advocated in Ref. [8], we use the frozen-core
�10k� orbital basis sets in open-core CI calculations. The
MR-CV-I expansion of 2Do, however, is too large to be
tractable. Our results for the total energy and SSMS parameter
of the investigated states are reported in Tables I and II.

With the experimental fine structure of the neutral atom, we
obtain the J -averaged electron affinity

eAAV
expt(

4So) = 11 356.93 cm−1. (11)

To estimate the scalar relativistic shift, we perform Dirac-Fock
(DF) calculations with GRASP2K [34] and compare them to
Hartree-Fock results. We obtain �ENF

theor(
4So) = −75.1 cm−1

and

eAnr
ref(

4So) = 11 432 cm−1. (12)

Note that de Oliveira et al. [35] obtain �ENF
theor(

4So) =
−63.47 cm−1 when including correlation effects. Scheer et al.
[10] measure the 2Do fine structure at 14.08(20) cm−1 so that
the corresponding eAAV

expt is

eAAV
expt(

2Do) = 4393.7(3) cm−1. (13)

We calculate �ENF
theor(

2Do) = −60.05 cm−1 so that

eAnr
ref(

2Do) = 4454 cm−1. (14)

TABLE II. Total energies E and SSMS parameters of all bound states of Si− 3p3 calculated by closed-core MCHF and open-core CI
calculations. The energies are given in hartrees Eh and SSMS in units of a−2

0 .

4So 2Do 2P o

nl E SSMS E SSMS E SSMS

frozen-core MR-I, MCHF

4f −288.985203 −44.77505 −288.949710 −44.75223 −288.928666 −44.74459
5g −288.990582 −44.77066 −288.957542 −44.75069 −288.938660 −44.74419
6h −288.991886 −44.77157 −288.959439 −44.74967 −288.941004 −44.74002
7i −288.992360 −44.77456 −288.960126 −44.75275 −288.941837 −44.74061
8k −288.992579 −44.77503 −288.960372 −44.75362 −288.942200 −44.74286
9k −288.992662 −44.77525 −288.960577 −44.75402 −288.942338 −44.74311
10k −288.992698 −44.77524 −288.960631 −44.75418 −288.942397 −44.74330

relaxed-core MR-I, MCHF

10k −288.992749 −44.77487

HF core MR-CV-I, CI

10k −289.026801 −44.54629 −288.975331 −44.52808
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TABLE III. Theoretical electron affinities, specific mass shifts (SMS), total mass shifts (MS), field shifts (FS), and total isotope shifts IS
on the detachment thresholds of Si− for the 30-28 isotopic pair. For the 3P -4So valence MCHF calculations, we present the results of both HF
frozen-core ([Ne] HF) and relaxed-core approaches. All values are in cm−1.

Approach eAnr SMS MSa FS ISa

3P -4So

valence relaxed 11506(19) −0.02023(8) −0.00558(8) 0.00010(6) −0.00548(14)
valence [Ne] HF 11508(20) −0.02130(9) −0.00666(9) 0.00010(6) −0.00656(15)
plus core valence 11392(72) −0.0214(5) −0.0067(5) 0.00010(7) −0.0066(6)

other theoryb 11425
eAnr

ref 11432
3P -2Do

valence 4470(19) −0.01526(9) −0.00971(9) 0.00007(5) −0.00963(14)
eAnr

ref 4454
3P -2P o

valence 468(20) −0.01214(9) −0.01184(15) 0.00006(4) −0.01178(19)
eAnr

ref 438(40)

aThe NMS is taken from experiment: 0.014 647, 0.005 558, and 0.000 306(53) cm−1 for the 4So, 2Do, and 2P o thresholds, respectively.
bNonrelativistic results from Ref. [35]. Their scalar relativistic correction yields eAnr

ref = 11 420 m−1.

The Si−(2P o) detachment threshold is 234(40) cm−1 [11].
Its fine structure is unknown. Neglecting the possible effect
of the 2P o fine structure and using the HF-DF value for
�ENF

theor(
2P o) = −54.24 cm−1, we deduce

eAAV
expt(

2P o) = 384(40) cm−1 (15)

and

eAnr
ref(

2P o) = 438(40) cm−1. (16)

As explained in Sec. II E, calculating relativistic corrections
on differential effects including interelectron correlation is
delicate. By comparing Hartree-Fock results to Dirac-Fock
mass shift parameters calculated using the RIS3 program [36],
we estimate relativistic corrections smaller than 1% and hence
neglect them.

The final prediction is the window between the results
obtained from the models based on M1 and M2. This
interpolation is expected to provide robust error bars since
the eA and �SSMS trends in series of calculations are highly
correlated [7,8]. Table III presents the IS on the eA of Si for
the 30-28 isotope pair. The uncertainty on the FS is dominated
by the uncertainty on the proton distribution δ〈r2〉. We have
an overall good agreement of our nonrelativistic calculations
with the eAnr

ref and the calculation of de Oliveira et al. [35].
One can easily deduce the hyperfine averaged IS for the
isotopic pairs involving 29Si with these results. To the contrary
of what has been observed in the calculations of isotope
shifts on the electron affinities of sulfur and chlorine, the
relaxed-core MCHF calculations disagree with the open-core
CI results, the latter being close to the results obtained in
frozen-core calculations. We observe a breakdown of the MR-
CV-I approach for the 2P o detachment threshold. Indeed, this
model leads to eAnr

theor(
2P o) = 96(72) cm−1, which, compared

to the value of 468(20) cm−1 obtained using the closed-core
MR-I model, reveals unphysical bias in the 2P o state open-core
calculations. This is due to a significant difference of the

role of the orbitals and mixing coefficients in the Si−(2P o)
and neutral silicon closed-core expansions due to so-called
quasisymmetries in the MCHF energy functional [37]. This
effect was already encountered, but not fully understood, in
neutral sulfur calculations [5].

IV. HYPERFINE STRUCTURE

For computing hyperfine structures, it is not necessary to
get a balance between different states, but inner correlation is
of crucial importance. In this context, we opt for a different
systematics in the construction of the MCHF ansatz: an
all-electron series of MR-I calculations, hereafter referred
as open-core (OC) MCHF calculations. The multireference
is itself a closed-core CSF set including all single and
double (SD) excitations of the valence in the n = 3 layer but
omitting the 3s2 → 3d2 excitation. In order to avoid too many
redundancies in the variational parameters, the core orbitals
are kept frozen to their HF shape in all calculations. Single,
double, and triple (SDT) excitations of {3s23pw,3s13pw3d1}
(w = 2 for Si and w = 3 for Si−) in �4f � and �5g� are added
to the nmax = 11 expansions through configuration interaction.

The results for the hyperfine parameters are given in
Tables IV–VI for Si(3P ) and Si− (4So, 2Do, and 2P o). For
neutral silicon and Si− 4So, we also compare these results
with calculations performed with the orbitals �10k� optimized
on valence correlation expansions of Sec. II D, as done in
Ref. [18]. In Tables IV and V, the calculation V stands for the
valence MCHF calculation, ∪ CV stands for the core-valence
CI calculation (at most one hole in the core), and the CI
calculation ∪ CC includes also the double excitations from
the core. As analyzed in Ref. [18], this latter approach yields
good results, despite a slower convergence with the number of
correlation layers. They are only used as an indicator of the
quality of the results.
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TABLE IV. Hyperfine parameters, in units of a−3
0 , obtained from

the OC-MCHF and CI calculations performed for the silicon 3p2 3P

term.

Si 3P

nl al asd ac bq

4f 2.42451 0.49677 1.84461 0.99652
5g 2.42181 0.49928 1.08012 0.97866
6h 2.42420 0.50223 0.41961 0.99904
7i 2.36871 0.49710 0.57705 0.94872
8k 2.36633 0.49087 0.77783 0.95023
9k 2.37003 0.49268 0.62625 0.96203
10k 2.36975 0.49204 0.69278 0.95866
11k 2.36960 0.49224 0.66352 0.96032

∪ MR-SDT �n′l′�, CI

4f 2.37499 0.49344 0.61067 0.96516
5g 2.37663 0.49385 0.57875 0.96640

MR-I �10k�
V 2.00503 0.41095 0.83596 0.78085
∪ CV 2.41588 0.49439 1.83006 0.98781
∪ CC 2.36143 0.48519 0.62423 0.96704

The ac Fermi contact contribution represents the contact
interaction between the nucleus and the electron spins. It is
well known that this parameter is highly sensitive to spin
polarization of the electron cloud at the origin and often
shows erratic convergence in a sequence of MCHF calculations
[32]. This difficulty arises from the fact that the relevant
CSFs having unpaired s electrons coupled as (nsms) 3S have
very small mixing coefficients ci in (5). From Tables IV–VI
only, it is unclear if convergence has been reached for this
parameter. The convergence of ac is especially important for

TABLE V. Hyperfine parameters, in units of a−3
0 , obtained from

the OC-MCHF and CI calculations performed for the Si− 3p3 4So and
2Do terms.

Si− 4So Si− 2Do

nl ac al asd ac bq

4f 1.57325 3.48007 0.71108 0.53265 0.00085
5g 0.89446 3.47959 0.71891 0.32564 0.00492
6h −0.47211 3.38189 0.70974 −0.10365 0.02545
7i −0.18712 3.39307 0.71769 −0.01380 0.02526
8k 0.00010 3.39448 0.71475 0.03436 0.02491
9k −0.27006 3.40187 0.71222 −0.07060 0.02242
10k −0.18106 3.39954 0.71275 −0.04981 0.02365
11k −0.19180 3.39838 0.71207 −0.05451 0.02341

∪ MR-SDT �n′l′�, CI

4f −0.32457 3.40735 0.71481 −0.09401 0.02533
5g −0.35984 3.40164 0.71508 −0.10138 0.02662

MR-I �10k�
V −0.00364
∪ CV 1.05388
∪ CC −0.24534

TABLE VI. Hyperfine parameters, in units of a−3
0 , obtained from

the OC-MCHF and CI calculations performed for the Si− 3p3 2P o

term.

Si− 2P o

nl al asd ac bq

4f 1.71550 −0.35163 0.63690 0.01448
5g 1.68124 −0.35213 0.28606 −0.01104
6h 1.68176 −0.35420 0.01997 −0.01138
7i 1.68515 −0.35677 0.06590 −0.01515
8k 1.68653 −0.35637 0.10389 −0.01458
9k 1.68501 −0.35361 −0.01197 −0.01099
10k 1.68502 −0.35423 −0.00046 −0.01227
11k 1.68393 −0.35370 −0.00183 −0.01217

∪ MR-SDT �n′l′�, CI

4f 1.68787 −0.35510 −0.04520 −0.01535
5g 1.68448 −0.35850 −0.04697 −0.03724

the ground state of the anion Si− 4So as it is the only nonzero
contribution to the magnetic dipole hyperfine constant. The
most important CSFs for ac are single excitations ns → n′s
of the dominant configurations, in particular, to s orbitals with
a large contact term 〈δ(r)〉. In Table VII, the evolution of
the ac hyperfine parameter calculated with the sequence of
OC-MCHF �nl� correlation models is put in line with the
〈δ(r)〉, mean radius 〈r〉, and occupation number q of the s

orbitals of the most complete OC-MCHF �11k� calculation.
The orbital reorganization when extending the orbital active set
is weak enough to allow a meaningful correlation. Oscillations
occur up to n = 8, but stabilization appears even if the 〈δ(r)〉ns

values of the last correlation layers are quite large. Adding
higher excitations through MR SDT excitations has a major
effect (see Table V) and triple excitations to other layers than
n = 4,5 might impact ac even more.

The nonrelativistic electric-field gradient at the nucleus bq

of neutral silicon can be estimated to be accurate to about
0.5 %. However, like the ac parameters of Si− 4So, bq is
remarkably small for the Si− 2Do and 2P o multiplets. This is
expected from the fact that, within a nonrelativistic framework,

TABLE VII. Mean values and occupation numbers q of the OC-
MCHF �11k� s orbitals and evolution of the ac hyperfine parameter
along the sequence of OC-MCHF �nl� calculations.

nl 〈δ(r)〉 〈r〉 q ac

1s 820.8 0.111 1.99959667
2s 58.1 0.563 1.99676579
3s 3.5 2.299 1.93575762
4s 194.8 0.845 0.00349874 1.57
5s 2002.7 0.400 0.00056144 0.89
6s 130.8 2.929 0.00318797 −0.47
7s 1646.7 0.945 0.00009859 −0.19
8s 5183.8 0.433 0.00002211 0.00
9s 189.9 3.073 0.00008889 −0.27
10s 4976.3 0.747 0.00000190 −0.18
11s 6542.0 0.480 0.00000029 −0.19
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TABLE VIII. Relativistic corrections on A I

μI
(MHz per units of μN ) of each considered state evaluated by comparing SD-MCHF

calculations to corresponding RCIP and BPCI results.

Si 3P Si− 4So Si− 2Do Si− 2P o

J = 1 J = 2 J = 3/2 J = 3/2 J = 5/2 J = 1/2 J = 3/2

nl RCIP BPCI RCIP BPCI RCIP BPCI RCIP BPCI RCIP BPCI RCIP BPCI RCIP BPCI

4f −0.48 −0.52 1.72 2.05 −0.37 −0.25 0.35 0.34 0.67 0.93 2.47 3.27 0.21 0.32
5g −1.40 −1.62 2.23 2.53 −1.04 −1.19 0.50 0.64 1.36 1.73 3.20 4.07 −0.10 −0.04
6h −2.36 −2.85 1.73 1.77 −2.05 −2.76 0.15 0.37 1.10 1.36 6.33 7.85 −0.14 −0.20
7i −2.49 −2.98 1.77 1.89 −2.21 −2.97 0.22 0.48 1.21 1.52 6.85 8.60 −0.16 −0.21

bq vanishes for a p3 open shell. Relativistic corrections
are evaluated by performing MCHF and the corresponding
Breit-Pauli and RCIP calculations on the set of SD excitations
of the main configuration, as explained in Sec. II E. The
relativistic corrections are the differences between the so-
obtained hyperfine constants. They are presented for quantities
that are independent of the nuclear parameters, i.e., A I

μI
in

Table VIII and B/Q in Table IX. There has been no test of
which of the two methods is most reliable in this specific
context, so we interpret the difference between their results
as uncertainties. Overall, the agreement between BPCI and
RCIP relativistic corrections is satisfactory since they yield
uncertainties that are of the same order of magnitude as
the degree of convergence of the nonrelativistic hyperfine
constants.

The 29Si isotope has a spin I = 1/2, with a magnetic mo-
ment of μ(29Si) = −0.555 29(3)μB [38]. The calculated AJ

hyperfine constants are presented in Table X. As complemen-
tary information, the B/Q nuclear-independent constants are
also given as they could be useful for the study of metastable
isotopes of silicon with a nonzero electric quadrupole moment.
We compare our results with the experimental value of Lee and
Fairbank [14] for A2(3P ) and with the constants calculated in
the open-core CI approach. This comparison indicate a high
degree of convergence of the nonrelativistic calculations, i.e.,
to less than 1%, except in the case of the small magnetic
dipole constants A1(3P ) of Si and A3/2(4So) of Si−. In the
latter case, this is due to the fact that only the problematic
Fermi contact term (see the above discussion) contributes to
the hyperfine constant. In the case of the A1(3P ) constant,
this relative lack of convergence is due to large cancellation
effects. For a single open-shell configuration lwLSJ , the ratio
between the orbit and spin dipole contributions to the AJ

magnetic dipole hyperfine constant is purely angular

A
dip
J

Aorb
J

= (−)L+S+J+l+1 gs

2

√
90l(l + 1)

(2l + 3)(2l + 2)(2l − 1)

×
⎧⎨
⎩

L S J

L S J

2 1 1

⎫⎬
⎭

/ {
L S J

1 J L

}
, (17)

where gs = 2.002 32 is the electron gyromagnetic ratio. For
a p2 or p4 open shell forming 3P , we have A

dip
1 /Aorb

1 = − gs

2 ,
implying that the two contributions cancel each other. This
explains why the C, O, Si, and S A1(3P ) constants are small.
However, for higher Z the deviation from the LS coupling
increases and the A1(3P ) constant becomes relatively large
(see, e.g., Refs. [39,40]).

The drastic effect of relativity on B3/2/Q values in Si−
is striking. Within the nonrelativistic approximation, we have
B3/2(2Do)/B5/2(2Do) = +7/10. The violation of this relation
is due to the small (0.035%), symmetric 3p3 2Do–3p3 2P o

mixing at the single-configuration level of approximation. In
this 2 × 2 interaction problem, only the cross term between
the 2Do and 2P o CSFs gives a nonzero B3/2. This means
that the relativistic corrections to the electric-field gradients
of the two states are equal in magnitude and of opposite
signs, as approximately observed in Table IX. Because the
main configuration has an occupation of about 95% in both
multiplets, the relativistic cross terms and electron correlation
contributions to bq are of the same order of magnitude.

To complete our work, we report in Table XI the theoretical
off-diagonal hyperfine constants [28] that affect the splitting in
nonzero external magnetic fields where J is no longer a good
quantum number.

TABLE IX. Relativistic corrections on B/Q (MHz/b) of each considered state evaluated by comparing SD-MCHF calculations to
corresponding RCIP and BPCI results.

Si 3P Si− 4So Si− 2Do Si− 2P o

J = 1 J = 2 J = 3/2 J = 3/2 J = 5/2 J = 3/2

nl RCIP BPCI RCIP BPCI RCIP BPCI RCIP BPCI RCIP BPCI RCIP BPCI

4f 0.28 0.41 0.04 −1.23 0.00 −0.00 8.97 9.01 0.01 0.01 −8.86 −8.89
5g 0.46 0.69 −1.12 −2.60 −0.00 −0.01 8.61 8.63 0.01 0.01 −9.40 −9.41
6h 0.28 0.53 −1.32 −2.86 −0.00 −0.01 9.18 9.17 0.03 −0.01 −9.45 −9.38
7i 0.28 0.57 −1.39 −3.01 −0.00 −0.01 9.28 9.28 0.04 0.01 −9.55 −9.49
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TABLE X. Hyperfine constants AJ and BJ /Q (in MHz) cal-
culated with the hyperfine parameters reported in Tables IV–VI.
Relativistic corrections (RCs) and their errors are estimated from
Tables VIII and IX.

Si (3P ) Si−(4So)

Calculation A1 A2 B1/Q B2/Q A3/2

OC-MCHF −6.73 −163.38 112.82 −225.64 4.52
∪ MR-SDT −5.17 −162.34 113.54 −227.07 8.48

plus RCs −2.1(3) −164.37(7) 114.0(2) −229.3(8) 11.4(5)

Expt. [16] 8(10) −163(2)
Expt. [14] −160.1(1.3)

Si−(2Do)

Calculation A3/2 A5/2 B3/2/Q B5/2/Q

OC-MCHF −111.07 −173.25 −3.85 −5.50
∪ MR-SDT −111.50 −173.09 −4.38 −6.25

plus RCs −111.9(2) −174.6(2) 4.90(0) −6.23(2)

Si−(2P o)

Calculation A1/2 A3/2 B3/2/Q

OC-MCHF −488.10 −93.90 2.86
∪ MR-SDT −492.63 −92.53 8.75
plus RCs −501.2(1.0) −92.15(3) −0.77(3)

V. CONCLUSION

We reported values of isotope shifts and hyperfine splittings
of all bound states of Si−. We also provided the isotope shifts
on the binding energy of those states and the hyperfine structure
constants of the 3p2 3P lowest multiplet of Si. For the latter,
we obtained satisfactory agreement with experiment. We also
found good consistency between the calculated photodetach-
ment thresholds and their nonrelativistic experimental values
eAnr

ref , deduced by subtracting the experimental data and the
relativistic corrections.

Most hyperfine constants were determined to about ∼1%.
These results could be useful for analyzing experimental

TABLE XI. Off-diagonal hyperfine constants AJ,J ′ and BJ,J ′/Q

(in MHz).

Si (3P )

Calculation A1,0 A2,1 B2,0/Q B2,1/Q

OC-MCHF −79.26 −95.86 −97.71 −56.41
∪ MR-SDT −81.97 −97.04 −98.32 −56.77

plus RCs −84.37(3) −100.78(27) −98.88(19) −57.16(14)

Si−(2Do) Si−(2P o)

Calculation A5/2,3/2 B5/2,3/2/Q A3/2,1/2 B3/2,1/2/Q

OC-MCHF −63.22 −0.60 −28.25 0.62
∪ MR-SDT −64.03 −0.68 −28.91 1.89
plus RCs −65.56(19) −2.36(1) −29.76(16) 2.94(1)

spectra where the hyperfine structure might not be resolved, but
still be significant at the level of the experimental uncertainty,
as is the case of recent laser photodetachment microscopy
experiments on P− [41].

We presented a systematic comparison of configuration-
interaction relativistic methods based on nonrelativistic or-
bitals (BPCI and RCIP) for a third-period atom. The overall
consistency between the so-deduced corrections, in particular
in the cases where they account for a large fraction of the
hyperfine constants, provides evidence that they yield useful
estimates of relativistic effects. This is particularly interesting
in the context of nonrelativistic methods, as it is in general
necessary to consider the impact of relativity on the results
[33].
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