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Casimir interaction between spherical and planar plasma sheets
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We consider the interaction between a spherical plasma sheet and a planar plasma sheet due to the vacuum
fluctuations of electromagnetic fields. We derive the TGTG formula for the Casimir interaction energy and study
its asymptotic behaviors. In the small separation regime, we confirm the proximity force approximation and
calculate the first correction beyond the proximity force approximation. This study has potential application to
model Casimir interaction between objects made of materials that can be modeled by plasma sheets such as
graphene sheets.
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I. INTRODUCTION

Due to the potential impact to nanotechnology, the Casimir
interactions between objects of nontrivial geometries have
been under active research in recent years. Thanks to works
done by several groups of researchers [1–14], we now have
a formalism to compute the exact functional representation
(known as the TGTG formula) for the Casimir interaction
energy between two objects. Despite the seemingly different
approaches taken, all the methods can be regarded as multiple
scattering approaches, which can also be understood from
the point of view of a mode summation approach [15–17].
The basic ingredients in the TGTG formula are the scattering
matrices of the two objects and the translation matrices that
relate the coordinate system of one object to the other. In
the case that the objects have certain symmetries that allow a
separable coordinate system to be employed, one can calculate
these matrices explicitly. This has made possible the exact
analytic and numerical analysis of the Casimir interaction
between a sphere and a plate [18–29], between two spheres
[30–32], between a cylinder and a plate [2,33,34], between two
cylinders [35–38], between a sphere and a cylinder [39,40], as
well as other geometries [41–43].

As is well known, the strength of the Casimir interaction not
only depends on the geometries of the objects, it is also very
sensitive to the boundary conditions imposed on the objects.
For the past few years, many works have been done in the
analysis of the quantum effect on objects with perfect boundary
conditions such as Dirichlet, Neumann, perfectly conducting,
infinitely permeable, etc. There are also a number of works
which consider real materials such as metals modeled by
plasma or Drude models [19,20,23–25,27,29,31,38,40]. In this
work, we consider the Casimir interaction between a spherical
plasma sheet and a planar plasma sheet. The plasma sheet
model was considered in [33,44–49] to model a graphene
sheet, describing the π electrons in C60 molecules. This model
has its own appeal in describing a thin shell of materials that
have the same attributes.

In [33], the Casimir interaction between a cylindrical
plasma sheet and a planar plasma sheet has been considered.
Our work can be considered as a generalization of [33] where
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we consider a spherical plasma sheet instead of a cylindrical
plasma sheet. One of the main objectives of the current work is
to derive the TGTG formula for the Casimir interaction energy.
As in [33], we are also going to study the asymptotic behaviors
of the Casimir interaction in the small separation regime. We
would expect that the leading term of the Casimir interaction
coincides with the proximity force approximation (PFA),
which we are going to confirm. Another major contribution
would be the exact analytic computation of the next-to-leading
order term which determines the deviation from PFA.

II. THE CASIMIR INTERACTION ENERGY

In this section, we derive the TGTG formula for the Casimir
interaction energy between a spherical plasma sheet and a
planar plasma sheet. We follow our approach in [17].

Assume that the spherical plasma sheet is a spherical surface
of radius R and the planar plasma sheet is located at a distance
L away from the center of the sphere.

The electromagnetic field is governed by the Maxwell
equations:

∇ · E = ρf

ε0
, ∇ × E + ∂B

∂t
= 0,

∇ · B = 0, ∇ × B − 1

c2

∂E
∂t

= μ0Jf .

(1)

The free charge density ρf and free current density Jf are
functions having support on the plasma sheets (boundaries).
The boundary conditions are given by [44]

E‖|S+ − E‖|S− = 0,

Bn|S+ − Bn|S− = 0,

En|S+ − En|S− = 2�
c2

ω2
∇‖ · E‖|S,

B‖|S+ − B‖|S− = −2i�
1

ω
n × E‖|S,

(2)

where S is the boundary, S+ and S− are, respectively, the
outside and inside of the boundary, n is a unit vector normal to
the boundary, and � is a constant characterizing the plasma,
having dimension inverse of length.

Following the same scheme developed in [17], one can
show that the Casimir interaction energy is given by the TGTG
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formula:

ECas = �

2π

∫ ∞

0
dξ Tr ln [I − M(iξ )]

= �c

2π

∫ ∞

0
dκ Tr ln (I − M) , (3)

where

κ = ξ

c
,

and the matrix M can be written as

M = TVT̃W.

In the work [11], the matrices V and W are written as G12 and
G21, and this is the origin of the name TGTG formula.

The matrices T and T̃ are obtained by matching boundary
conditions (2) on the sphere and the plate, respectively.
They are derived in the Appendix. The matrices V and
W are translation matrices relating the spherical waves to
planar waves and vice versa. They have been derived in
[10,17].

Similar to the case of magnetodielectric sphere-plate
configuration derived in [17], we then find that the components
of the matrix M, which are parametrized by (lm,l′m′)
with l,l′ � 1 and −l � m � l, −l′ � m′ � l′, are given
by

Mlm,l′m′(iξ ) = δm,m′
(−1)mπ

2

√
(2l + 1)(2l′ + 1)

l(l + 1)l′(l′ + 1)

(l − m)!(l′ − m)!

(l + m)!(l′ + m)!
Tlm

∫ ∞

0
dθ sinh θe−2κL cosh θ

×
(

sinh θP m′
l (cosh θ ) − m

sinh θ
P m

l (cosh θ )

− m
sinh θ

P m
l (cosh θ ) sinh θP m′

l (cosh θ )

) ⎛⎝ �p

�p+κ cosh θ
0

0 − �p cosh θ

�p cosh θ+κ

⎞⎠
×

(
sinh θP m′ ′

l′ (cosh θ ) m′
sinh θ

P m′
l′ (cosh θ )

m′
sinh θ

P m′
l′ (cosh θ ) sinh θP m′ ′

l′ (cosh θ )

)
.

(4)

Here P m
l (z) is an associated Legendre function and P m′

l (z) is its derivative, whereas Tlm is a diagonal matrix:

Tlm =
(

T TE
lm 0

0 T TM
lm

)
with

T TE
lm = 2�sRIl+1/2(κR)2

1 + 2�sRIl+1/2(κR)Kl+1/2(κR)
,

T TM
lm = − 2�s

[
1
2Il+1/2(κR) + κRI ′

l+1/2(κR)
]2

κ2R − 2�s

[
1
2Il+1/2(κR) + κRI ′

l+1/2(κR)
][

1
2Kl+1/2(κR) + κRK ′

l+1/2(κR)
] .

(5)

�s and �p are, respectively, the plasma parameters of the sphere and the plate.
In the limit �s → ∞ and �p → ∞, we find from (5) and (4) that

T TE
lm (iξ ) = Il+1/2(κR)

Kl+1/2(κR)
, T TM

lm (iξ ) =
1
2Il+1/2(κR) + κRI ′

l+1/2(κR)
1
2Kl+1/2(κR) + κRK ′

l+1/2(κR)
, (6)

Mlm,l′m′(iξ ) = δm,m′
(−1)mπ

2

√
(2l + 1)(2l′ + 1)

l(l + 1)l′(l′ + 1)

(l − m)!(l′ − m)!

(l + m)!(l′ + m)!
Tlm

∫ ∞

0
dθ sinh θe−2κL cosh θ

×
(

1 0
0 −1

) (
sinh θP m′

l (cosh θ ) m
sinh θ

P m
l (cosh θ )

m
sinh θ

P m
l (cosh θ ) sinh θP m′

l (cosh θ )

)(
sinh θP m′ ′

l′ (cosh θ ) m′
sinh θ

P m′
l′ (cosh θ )

m′
sinh θ

P m′
l′ (cosh θ ) sinh θP m′ ′

l′ (cosh θ )

)
,

which recovers the Casimir interaction energy between a
perfectly conducting spherical shell and a perfectly conducting
plane [10,17].

III. SMALL SEPARATION ASYMPTOTIC BEHAVIOR

In this section, we consider the asymptotic behavior of the
Casimir interaction energy when d � R, where d = L − R is
the distance between the spherical plasma sheet and the planar

plasma sheet. Let

ε = d

R

be the dimensionless parameter, and we consider ε � 1. There
are also another two length parameters in the problem: 1/�s

and 1/�p. Let

�s = �sd, �p = �pd.
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They are dimensionless and we assume that they have order 1, i.e.,

�s ∼ 1, �p ∼ 1.

First we consider the proximity force approximation to the Casimir interaction energy, which approximates the Casimir
interaction energy by summing the local Casimir energy density between two planes over the surfaces.

The Casimir interaction energy density between two planar plasma sheets with respective parameters �1 and �2 is given by
the Lifshitz formula [50]:

E‖
Cas(d) = �c

4π2

∫ ∞

0
dκ

∫ ∞

0
dk⊥k⊥

[
ln

(
1 − r

(1)
TEr

(2)
TEe−2d

√
k2
⊥+κ2) + ln

(
1 − r

(1)
TMr

(2)
TMe−2d

√
κ2+k2

⊥
)]

.

Here d is the distance between the two planar sheets:

r
(i)
TE = �i

�i +
√

κ2 + k2
⊥

,

r
(i)
TM = −

�i

√
κ2 + k2

⊥

�i

√
κ2 + k2

⊥ + κ2

are nothing but the components of the Tk⊥
2 given in (A2).

The proximity force approximation for the Casimir interaction energy between a sphere and a plate is then given by

EPFA
Cas = R2

∫ 2π

0
dφ

∫ π

0
dθ sin θE‖

Cas(L + R cos θ )

∼ 2πR

∫ ∞

d

duE‖
Cas(u)

= −�cR

2π

∫ ∞

0
dκ

∫ ∞

0
dk⊥k⊥

∫ ∞

d

du

∞∑
n=1

1

n

([
r

(1)
TEr

(2)
TE

]n + [
r

(1)
TMr

(2)
TM

]n)
e−2un

√
κ2+k2

⊥

= −�cR

4π

∫ ∞

0
dκ

∫ ∞

0
dk⊥

k⊥√
κ2 + k2

⊥

∞∑
n=1

1

n2

([
r

(1)
TEr

(2)
TE

]n + [
r

(1)
TMr

(2)
TM

]n)
e−2dn

√
κ2+k2

⊥

= −�cR

4π

∫ ∞

0
dκ

∫ ∞

0
dk⊥

k⊥√
κ2 + k2

⊥

[
Li2

(
r

(1)
TEr

(2)
TEe−2d

√
κ2+k2

⊥
) + Li2

(
r

(1)
TMr

(2)
TMe−2d

√
κ2+k2

⊥
)]

= −�cR

4π

∫ ∞

0
dq

∫ q

0
dκ

[
Li2

(
r

(1)
TEr

(2)
TEe−2dq

) + Li2
(
r

(1)
TMr

(2)
TMe−2dq

)]
.

Here Li2(z) = ∑∞
n=1

zn

n2 is a polylogarithm function of order 2. Making a change of variables dq = t and κ = q
√

1 − τ 2 =
t
√

1 − τ 2/d, we finally obtain

EPFA
Cas = − �cR

4πd2

∫ ∞

0
dt t

∫ 1

0

dτ τ√
1 − τ 2

[
Li2

(
r

(1)
TEr

(2)
TEe−2t

) + Li2
(
r

(1)
TMr

(2)
TMe−2t

)]
, (7)

where

r
(i)
TE = �i

�i + q
= �i

�i + t
,

r
(i)
TM = − �iq

�iq + κ2
= − �i

�i + t(1 − τ 2)
.

Next, we consider the small separation asymptotic behavior of the Casimir interaction energy up to the next-to-leading order
term in ε from the functional representation (3). In [29], we have considered the small separation asymptotic expansion of the
Casimir interaction between a magnetodielectric sphere and a magnetodielectric plane. Our present scenario is similar to the one
considered in [29]. The major differences are the boundary conditions on the sphere and the plate that are encoded in the two
matrices Tlm and T̃k⊥ . Hence, we do not repeat the calculations that have been presented in [29], but only present the final result
and point out the differences.
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The leading term and next-to-leading term of the Casimir interaction energy E0
Cas and E1

Cas are given, respectively, by

E0
Cas = − �cR

4πd2

∞∑
s=0

1

(s + 1)2

∫ ∞

0
dt t

∫ 1

0

dτ τ√
1 − τ 2

e−2t(s+1)
∑

∗=TE,TM

[T ∗
0 T̃ ∗

0 ]s+1, (8)

E1
Cas = − �c

4πd

∞∑
s=0

1

(s + 1)2

∫ ∞

0
dt t

∫ 1

0

dτ τ√
1 − τ 2

e−2t(s+1)

{ ∑
∗=TE,TM

[T ∗
0 T̃ ∗

0 ]s+1(A + C ∗ + D∗) + B

}
. (9)

Here

T TE
0 = �s

�s + t
,

T TM
0 = �s

�s + t(1 − τ 2)
,

T̃ TE
0 = �p

�p + t
,

T̃ TM
0 = �p

�p + t(1 − τ 2)
,

A = tτ 2

3
[(s + 1)3 + 2(s + 1)] + 1

3
[(τ 2 − 2)(s + 1)2 − 3τ (s + 1) + 2τ 2 − 1]

+ τ 4 + τ 2 − 12

12tτ 2
(s + 1) + (1 + τ )(1 − τ 2)

2tτ 2
− (1 − τ 2)

3t

1

s + 1
,

B = 1 − τ 2

2tτ 2

{(
T TE

0 T̃ TM
0 + T TM

0 T̃ TE
0

) [
T TE

0 T̃ TE
0

]s+1 − [
T TM

0 T̃ TM
0

]s+1

T TE
0 T̃ TE

0 − T TM
0 T̃ TM

0

+ 2T TE
0 T̃ TE

0 T TM
0 T̃ TM

0

[
T TE

0 T̃ TE
0

]s − [
T TM

0 T̃ TM
0

]s

T TE
0 T̃ TE

0 − T TM
0 T̃ TM

0

}
,

C ∗ = CVK∗
1 + CJW∗

1 ,

D∗ = DV VK∗2
1 + DV JK∗

1W∗
1 + DJJW∗2

1 + DVK∗
2 + DJW∗

2 + (s + 1)Y∗
2 ,

with

CV = − τ

3
[(s + 1)3 + 2(s + 1)] + 1 − τ 2

6tτ
(s + 1)2

+ 1

2t
(s + 1) + 1 − 4τ 2

12tτ
,

CJ = − tτ

3
[(s + 1)3 − (s + 1)] + 1

6τ
[(s + 1)2 − 1],

DV V = 1

12t
[(s + 1)3 − 2(s + 1)2 + 2(s + 1) − 1],

DJJ = t

12
[(s + 1)3 − 2(s + 1)2 − (s + 1) + 2],

DV J = 1

6
[(s + 1)3 − (s + 1)],

DV = 1

6t
[2(s + 1)2 + 1],

DJ = t

3
[(s + 1)2 − 1],

KTE
1 = − tτ

�p + t
,

KTE
2 = − t[�p + t(1 − 2τ 2)]

2(�p + t)2
,

KTM
1 = t(1 − τ 2)

�p + t(1 − τ 2)
,

KTM
2 = t(1 − τ 2)[�p(1 − 2τ 2) + t(1 − τ 2)]

2(�p + t(1 − τ 2))2
,

WTE
1 = − τ

�s + t
,

WTE
2 = − [t(1 − 3τ 2) + �s(1 − τ 2)]

2t(�s + t)2
,

YTE
2 = − τ

2(�s + t)
+ 1

t

(
1

4
− 5τ 2

12

)
,

WTM
1 = τ (1 − τ 2)

�s + t(1 − τ 2)
,

WTM
2 = (1 − τ 2)[t(1 − τ 2)2 + �s(1 − 3τ 2)]

2t[�s + t(1 − τ 2)]2
,

YTM
2 = τ (1 − τ 2)

2[�s + t(1 − τ 2)]
+ 1

t

(
1

4
+ 7τ 2

12

)
.

We have replaced the l in [29] with tτ/ε. The definitions
of B, D , CV , CJ , DV V , DV J , and DJJ are slightly different
than those in [29]. For ∗ = TE or TM, K∗

1, K∗
2, W∗

1 , W∗
2 , and

Y∗
2 are obtained from the asymptotic expansions of Tlm and

T̃k⊥ . Hence, they are different than those obtained in [29].
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Using polylogarithm function, we can rewrite the leading
term E0

Cas (8) as

E0
Cas = − �cR

4πd2

∫ ∞

0
dt t

∫ 1

0

dτ τ√
1 − τ 2

[
Li2

(
T TE

0 T̃ TE
0 e−2t

)
+ Li2

(
T TM

0 T̃ TM
0 e−2t

)]
. (10)

It is easy to see that this coincides with the proximity force
approximation (7) when �s = �1 and �p = �2.

Notice that the leading term E0
Cas can be split into a sum of

TE and TM contributions. However, because of the B term,
the next-to-leading order term E1

Cas (9) cannot be split into TE
and TM contributions.

In the limit �p,�s → ∞ which corresponds to perfectly
conducting boundary conditions on the sphere and the plate,
we find that for ∗ = TE or TM, K∗

1,K∗
2,W∗

1 ,W∗
2 vanishes,

T ∗
0 = T̃ ∗

0 = 1,

B = (1 − τ 2)

2tτ 2
(4s + 2),

YTE
2 = 1

t

(
1

4
− 5τ 2

12

)
,

YTM
2 = 1

t

(
1

4
+ 7τ 2

12

)
.

Hence,

E0
Cas = − �cR

2πd2

∞∑
s=0

1

(s + 1)2

∫ ∞

0
dt t

∫ 1

0

dτ τ√
1 − τ 2

e−2t(s+1)

= − �cR

8πd2

∞∑
s=0

1

(s + 1)4

= − �cπ3R

720d2
,

E1
Cas = − �c

4πd

∞∑
s=0

1

(s + 1)2

∫ ∞

0
dt t

∫ 1

0

dτ τ√
1 − τ 2

e−2t(s+1)

× [
2A + B + (s + 1)YTE

2 + (s + 1)YTM
2

]
= − �c

4πd

∞∑
s=0

1

(s + 1)2

(
1

6(s + 1)2
− 2

3

)
= E0

Cas

(
1

3
− 20

π2

)
d

R
.

These recover the results for the case where both the sphere
and the plane are perfectly conducting [26].

Next, we consider the special case where we have a
spherical graphene sheet in front of a planar graphene sheet.
The parameters �s and �p are both equal to 6.75 × 105 m−1

(see Ref. [50]). Assume that the radius of the spherical
graphene sheet is R = 1 mm. Let

E
PFA,PC
Cas = −�cπ3R

720d2

be the leading term of the Casimir interaction between a
perfectly conducting sphere and a perfectly conducting plane.
In Fig. 1, we plot the ratio of the leading term of the Casimir
interaction energy E0

Cas to E
PFA,PC
Cas , and the ratio of the sum of

the leading term and next-to-leading order term (E0
Cas + E1

Cas)
to E

PFA,PC
Cas . The ratio of (E0

Cas + E1
Cas) to E0

Cas is plotted in

10−8 10−7 10−6 10−5 10−40

0.2

0.4

0.6

0.8

1

d (m)

Eap
pr

ox
C

as
/E

C
as

PF
A

, P
C

 

 

E0

E0+E1

FIG. 1. (Color online) The leading order term of the Casimir
interaction energy normalized by E

PFA,PC
Cas (dashed line) and the sum

of the leading and next-to-leading order terms normalized by E
PFA,PC
Cas

(solid line) in the case in which both the sphere and plane are graphene
sheets.

10−8 10−7 10−6 10−5 10−40.8

0.85

0.9

0.95

1

d (m)

(E
C

as
+E

C
as

)/E
C

as
1

0
0

FIG. 2. (Color online) The ratio of the sum of the leading and
next-to-leading order terms to the leading order term in the case in
which both the sphere and plane are graphene sheets.

10−8 10−7 10−6 10−5 10−4−2

−1.5

−1

−0.5

0

d (m)

θ

FIG. 3. (Color online) θ as a function of d in the case in which
both the sphere and plane are graphene sheets.
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10−8 10−7 10−6 10−5 10−4
0

0.2

0.4

0.6

0.8

1

d (m)

E C
as

0
/E

C
as

PF
A

, P
C

 

 

Ωs=Ωp=105m−1

Ωs=Ωp=106m−1

Ωs=Ωp=107m−1

Ωs=105m−1

Ωp=107m−1

Ωs=107m−1

Ωp=105m−1

FIG. 4. (Color online) E0
Cas/E

PFA,PC
Cas as a function of d .

Fig. 2. From these graphs, we can see that the next-to-leading
order term plays a significant correction role when d/R ∼ 0.1.

Another important quantity that characterizes the correction
to proximity force approximation is

θ = E1
Cas

E0
Cas

R

d
,

so that

ECas = E0
Cas

(
1 + d

R
θ + · · ·

)
.

In the case of a perfectly conducting sphere and plane, θ is a
pure number given by [26]

θ = 1

3
− 20

π2
= −1.69. (11)

In Fig. 3, we plot θ as a function of d for a spherical graphene
sheet in front of a planar graphene sheet. We observe that its
variation pattern is significantly different from the case of a
gold sphere and gold plane modeled by the plasma model and
the Drude model which we studied in [29]. Nevertheless, as d

is large enough, θ approaches the limiting value (11).
To study the dependence of the Casimir interaction

energy on the parameters �s and �p, we plot in Figs. 4
and 5, respectively, the ratio E0

Cas/E
PFA,PC
Cas and the ratio

(E0
Cas + E1

Cas)/E
PFA,PC
Cas as a function of d for various values of

�s and �p. The variation of θ is plotted in Fig. 6. It is observed
that the larger �, the larger the Casimir interaction energy.

10−8 10−7 10−6 10−5 10−4
0

0.2

0.4

0.6

0.8

1

d (m)

(E
C
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0

+E
C

as
1

)/E
C

as
PF

A
,P

C

 

 

Ωs=Ωp=105m−1

Ωs=Ωp=106m−1

Ωs=Ωp=107m−1

Ωs=105m−1

Ωp=107m−1

Ωp=107m−1

Ωs=105m−1

FIG. 5. (Color online) (E0
Cas + E1

Cas)/E
PFA,PC
Cas as a function of d .

10−8 10−7 10−6 10−5 10−4
−2

−1.5

−1

−0.5

0

 

 

Ωs=Ωp=105m−1

Ωs=Ωp=106m−1

Ωs=Ωp=107m−1

Ωs=105m−1

Ωp=107m−1

Ωs=107m−1

Ωp=105m−1

d (m)

FIG. 6. (Color online) θ as a function of d .

The behavior of θ shown in Fig. 6 is more interesting. It
is observed that it has a minimum which appears at d ∼ �−1

when �s = �p = �.

IV. CONCLUSION

We study the Casimir interaction between a spherical object
and a planar object that are made of materials that can be
modeled as plasma sheets. The functional representation of
the Casimir interaction energy is derived. It is then used to
study the small separation asymptotic behavior of the Casimir
interaction. The leading term of the Casimir interaction
is confirmed to be in agreement with the proximity force
approximation. The analytic formula for the next-to-leading
order term is computed based on a previously established
perturbation analysis [29]. The special case where the spherical
object and planar object are graphene sheets is considered.
The results are found to be quite different from the case
of metallic sphere-plane configuration when the separation
between the sphere and the plane is small. This may suggest a
new experimental setup to test the Casimir effect. It also has
potential application to nanotechnology.
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APPENDIX: DERIVATION OF THE T AND ˜T MATRICES

We assume that the center of the spherical plasma sheet is
the origin and the planar plasma sheet is located at z = L.

Let A be a vector potential that satisfies the gauge condition
∇ · A = 0 and such that

E = −∂A
∂t

, B = ∇ × A.

Away from the boundaries, the solutions of the Maxwell
equations (1) can be divided into transverse electric (TE) waves
ATE and transverse magnetic (TM) waves ATM. They can be
further divided into regular waves Areg that are regular at the
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origin of the coordinate system and outgoing waves Aout that decrease to zero rapidly when x → ∞ and k is replaced by ik. In
rectangular coordinates, the waves are parametrized by k⊥ = (kx,ky) ∈ R2, with

ATE,reg
out

k⊥ (x,t) = 1

k⊥
eikxx+ikyy∓i

√
k2−k2

⊥z
(
ikyex − ikxey

)
e−iωt ,

ATM,reg
out

k⊥ (x,t) = 1

kk⊥
eikxx+ikyy∓i

√
k2−k2

⊥z(±kx

√
k2 − k2

⊥ex ± ky

√
k2 − k2

⊥ey + k2
⊥ez)e

−iωt .

Here

k = ω

c
.

In spherical coordinates, the waves are parametrized by (l,m), where l = 1,2,3, . . . and −l � m � l, with

ATE,∗
lm (x,t) = C∗

l√
l(l + 1)

f ∗
l (kr)

(
im

sin θ
Ylm(θ,φ)eθ − ∂Ylm(θ,φ)

∂θ
eφ

)
e−iωt ,

ATM,∗
lm (x,t) = C∗

l

(√
l(l + 1)

kr
f ∗

l (kr)Ylm(θ,φ)er + 1√
l(l + 1)

1

kr

d

dr
[rf ∗

l (kr)]

[
∂Ylm(θ,φ)

∂θ
eθ + im

sin θ
Ylm(θ,φ)eφ

])
e−iωt .

Here ∗ = reg or out, with f
reg
l (z) = jl(z) and f out

l (z) = h
(1)
l (z), and Ylm(θ,φ) are the spherical harmonics. The constants Creg

l and
Cout

l are chosen so that

Creg
l jl(iζ ) =

√
π

2ζ
Il+1/2(ζ ), Cout

l h
(1)
l (iζ ) =

√
π

2ζ
Kl+1/2(ζ ).

To derive the T matrix of the sphere, let

A(x,t) = Alm
1 ATE,reg

lm (x,t) + Clm
1 ATM,reg

lm (x,t)

inside the sphere and

A(x,t) = alm
1 ATE,reg

lm (x,ω) + blm
1 ATE,out

lm (x,ω) + clm
1 ATM,reg

lm (x,t) + dlm
1 ATM,out

lm (x,t)

outside the sphere.
Let �s be the parameter characterizing the spherical plasma sheet. Matching the boundary conditions (2) on the sphere gives

alm
1 Creg

l jl(kR) + blm
1 Cout

l h
(1)
l (kR) = Alm

1 Creg
l jl(kR),

alm
1 Creg

l [jl(kR) + kRj ′
l (kR)] + blm

1 Cout
l

[
h

(1)
l (kR) + kRh

(1)′
l (kR)

] − Alm
1 Creg

l

[
jl(kR) + kRj ′

l (kR)
] = 2�sRAlm

1 Creg
l jl(kR),

clm
1 Creg

l [jl(kR) + kRj ′
l (kR)] + dlm

1 Cout
l

[
h

(1)
l (kR) + kRh

(1)′
l (kR)

] = Clm
1 Creg

l

[
jl(kR) + kRj ′

l (kR)
]
,

clm
1 Creg

l jl(kR) + dlm
1 Cout

l h
(1)
l (kR) − Clm

1 Creg
l jl(kR) = −2�sc

2

ω2R
Clm

1 Creg
l

[
jl(kR) + kRj ′

l (kR)
]
.

Eliminating Alm and Clm, we obtain a relation of the form(
blm

1

dlm
1

)
= −Tlm

(
alm

1

clm
1

)
,

which defines the T matrix. It is straightforward to show that Tlm is a diagonal matrix:

Tlm =
(

T TE
lm 0

0 T TM
lm

)
with

T TE
lm = 2�sRIl+1/2(κR)2

1 + 2�sRIl+1/2(κR)Kl+1/2(κR)
,

T TM
lm = − 2�s

[
1
2Il+1/2(κR) + κRI ′

l+1/2(κR)
]2

κ2R − 2�s

[
1
2Il+1/2(κR) + κRI ′

l+1/2(κR)
][

1
2Kl+ 1

2
(κR) + κRK ′

l+ 1
2
(κR)

] .

(A1)

Here we have replaced k by iκ .
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To derive the T̃ matrix for the plane, let

A(x′,t) = B
k⊥
2 ATE,out

k⊥ (x′,ω) + D
k⊥
2 ATM,out

k⊥ (x′,ω)e−iωt

outside the plane (z > L), and

A(x′,t) = a
k⊥
2 ATE,reg

k⊥ (x′,ω) + b
k⊥
2 ATE,out

k⊥ (x′,ω) + c
k⊥
2 ATM,reg

k⊥ (x′,ω) + d
k⊥
2 ATM,out

k⊥ (x′,ω)e−iωt

inside the plane (z < L). Here x′ = x − L, where L = Lez.
Denote by �p the parameter characterizing the planar plasma sheet. Matching the boundary conditions (2) on the plane gives

a
k⊥
2 + b

k⊥
2 = B

k⊥
2 ,√

k2 − k2
⊥
(
a

k⊥
2 − b

k⊥
2 + B

k⊥
2

) = −2i�pB
k⊥
2 ,

c
k⊥
2 − d

k⊥
2 = −D

k⊥
2 ,

c
k⊥
2 + d

k⊥
2 − D

k⊥
2 = 2i�pc2

ω2

√
k2 − k2

⊥D
k⊥
2 .

From here, we find that we have a relation of the form(
a

k⊥
2

c
k⊥
2

)
= −T̃k⊥

(
b

k⊥
2

d
k⊥
2

)
,

which defines the T̃ matrix. T̃k⊥ is a diagonal matrix with elements

T̃ TE
k⊥ = �p

�p +
√

κ2 + k2
⊥

, T̃ TM
k⊥ = −

�p

√
κ2 + k2

⊥

�p

√
κ2 + k2

⊥ + κ2
. (A2)
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