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Two-photon transitions with cascades: Two-photon transition rates and two-photon level widths
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An ambiguity of the separation of cascades from “pure” two-photon decay is confirmed with accurate numerical
calculations in a gauge-invariant way. A direct evaluation of the two-photon decay width of excited states in H-like
ions via the imaginary part of two-loop self-energy is presented. We demonstrate that there is a fundamental
difference between the level width and the transition probability in the presence of cascades. The two-photon
widths are shown to be different from the two-photon decay rates for the transitions including cascades.
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I. INTRODUCTION

The theory of the multiphoton transitions in atoms on the
basis of quantum mechanics (QM) started with the work by
Göppert-Mayer [1]. The first evaluation of the two-photon de-
cay rate 2s → 1s + 2γ (E1) in H was performed by Breit and
Teller [2] (see correction to this work in Ref. [3]). The accurate
nonrelativistic evaluation of the 2s → 1s + 2γ (E1) transition
rate in H was performed by the authors of [4]. The first fully
relativistic calculation of this transition was given in Ref. [5]
and later in Refs. [6–8]. Quantum electrodynamical (QED)
corrections to the two-photon decay of the 2s level in H were
studied in Ref. [9]. Fully relativistic calculations of different
multiphoton transitions can be found in Refs. [10–14].

During the last decade the multiphoton transitions became
of high interest for astrophysics. This interest was triggered
by the accurate measurements of the temperature and po-
larization distribution of the cosmic microwave background
(CMB) [15,16]. The CMB was formed in the epoch of the
cosmological H recombination and an accurate theory of this
formation is therefore required. The modern theory of the
cosmological recombination starts from works by Zel’dovich,
Kurt, and Sunyaev [17] and Peebles [18]. According to the
authors of [17,18], the 2s → 1s + 2γ (E1) transition was
found to be the main channel for the radiation escape from
the matter and formation of CMB. Hence the recent properties
of the CMB are defined by the two-photon processes during
the cosmological recombination epoch.

Apart from the 2s → 1s + 2γ (E1) transition as it was
noted recently in Ref. [19,20] the two-photon decays from
the excited states with the principal quantum numbers n > 2
also can contribute to the radiation escape at the 1% level of
accuracy. This idea was further developed in Ref. [21–24].
There is a difference between the decay of ns (n > 2) and
nd states and the decay of the 2s state. This difference is due
to the presence of cascade transitions as the dominant decay
channels in case of ns (n > 2) and nd levels. For the 2s level
the cascades are absent. The problem of the separation of
“pure” two-photon emission from the cascade photons arises
in connection with the radiation escape probability.

The laboratory measurements of the two-photon decay
rates were reported for 2s → 1s + 2γ transitions in H [24],
in H-like He [25], and in the H-like highly charged ions
(HCI) [26,27].

The cascade separation problem appeared to be nontrivial.
For the first time this question was raised in Ref. [28] for
the two-photon transitions in HCI. The same problem was
considered later in Ref. [29]. In Refs. [30,31] a general QED
approach was developed which allowed for a rigorous descrip-
tion of the multiphoton cascade transitions. This approach was
based on Low’s theory [32] of the spectral line profile in QED.
In Refs. [30,31] it was demonstrated that the separation of the
cascade contribution from the “pure” two-photon decay rate
can not be achieved in an unambiguous way. While in Ref. [30]
this problem was studied for HCI, in Refs. [33,34] it was
discussed in connection with the cosmological recombination.
As an example the two-photon decay of the 3s level in H
was considered: 3s → 1s + 2γ (E1). The ambiguity of the
separation of this cascade was demonstrated numerically: The
result was dependent on the method of separation. In this paper
we reconsider the separation problem for the same example.
On a basis of more accurate numerical calculations we are
able to show that while the contribution of “pure” two-photon
and interference terms vary essentially with the method of
cascade separation, the total two-photon transition rate remains
invariant. The later circumstance was not obvious from the
results in Ref. [33] (because of the poorer accuracy of the
numerical calculations). Moreover, in this paper we prove the
gauge invariance of our results by a direct numerical check.

In the first part of our paper we will apply exclusively
nonrelativistic theory which is sufficient for the description
of the processes in H. This means that we neglect relativistic
and QED corrections to the transition probabilities though
we will use the QED description for the derivation of the
expressions for the decay probabilities. We will neglect also
the multipole radiation, i.e., we restrict our studies with E1
photons, considering only the E1E1 two-photon, E1E1E1
three-photon, and so on, transitions. These transitions are
dominant for one-, two-, three-photon, and so on processes
respectively, though particular transition rates for the one-
photon multipole electric or magnetic transitions can exceed
the transition rates for the multiphoton E1 transitions.

In the second part of our paper we investigate the problem of
the evaluation of the two-photon level width via the imaginary
part of two-loop electron self-energy. This evaluation was per-
formed in a series of works [35–37] and it was claimed that the
results obtained present an unambiguous way to evaluate the
“pure” two-photon contributions to the two-photon transitions
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with cascades. The derivations were made nonrelativistically.
The numerical values differ essentially from the ones in
Ref. [33]. In the present paper we rederive the imaginary part
of the two-loop contribution in a fully relativistic way and
confirm exactly the results [35–37]. However, we argue that
these results have no direct connection to the two-photon decay
rates for the transitions with cascades as it was claimed in
Refs. [35–37]. The numbers obtained in Refs. [35–37] and
confirmed in our present paper are the “pure” two-photon con-
tributions to the level widths. They represent small corrections
to the total level widths. Moreover, these contributions can be
even negative (see Sec. V), which confirms our treatment of
these contributions.

The QED perturbation theory for the self-energy radiative
corrections to the electron energy levels in atoms treats conse-
quently the one-loop (second-order in the coupling constant)
and two-loop (fourth-order in the coupling constant) contribu-
tions. The imaginary parts of these corrections correspond,
respectively, to the one-photon width, two-photon width,
three-photon width and so on

�n = �1γ
n + �2γ

n + �3γ
n + · · · . (1)

Here the index n denotes an excited atomic level. It is well
known that the one-photon width �

1γ
n is equal to the sum of

the one-photon transitions to lower levels

�1γ
n =

∑
n′<n

�
1γ

nn′ =
∑
n′<n

W
1γ

nn′ . (2)

Here we distinguish the partial widths �
1γ

nn′ corresponding to
the transitions n → n′ and the transition rates W

1γ

nn′ for these
transitions. In the case of 1γ transitions

�
1γ

nn′ = W
1γ

nn′ . (3)

However, the situation with 2γ transitions is different. Similar
to Eq. (2) we can express the width �

2γ
n via partial widths

�2γ
n =

∑
n′<n

�
2γ

nn′ , (4)

but now the partial widths �
2γ

nn′ , in general, are not equal to the
corresponding transition rates W

2γ

nn′ . The equality

�
2γ

nn′ = W
2γ

nn′ (5)

holds only in the absence of cascades. Examples with E1
photons only, are 2s → 1s + 2γ , 3s → 2s + 2γ , 3p → 2p +
2γ , and so on. For the transitions with cascades

�
2γ

nn′ �= W
2γ

nn′ . (6)

The widths in Eq. (1) satisfy the inequalities

�1γ
n � �2γ

n � �3γ
n � · · · , (7)

so that the perturbation expansion for the imaginary part of
the energy converges in the same (asymptotic) sense as the
real part. For transitions with cascades the order of magnitude
for the transition rates involving any number of photons is
parametrically the same as W

1γ

nn′ :

W
1γ

2p1s ∼ W
2γ

3s1s ∼ W
3γ

3p1s . (8)

In Eq. (8) only transitions with E1 photons are included. In
Refs. [35–37] the widths �

2γ

nn′ were evaluated for different nn′.
The evaluation itself is quite correct but the corresponding
values cannot be assigned to the “pure” two-photon transition
rates due to the inequality (6). We will extend the calculations
performed in Refs. [35–37] to the more wide set of transitions.

To confirm our conclusions we will also employ the
adiabatic S-matrix approach for the evaluation of the two-
photon level widths [33]. This will justify the derivations made
by the direct evaluation of the imaginary part of the two-loop
self-energy graphs.

II. TRANSITIONS RATES FOR THE TWO-PHOTON
TRANSITIONS WITH CASCADES

In this section we describe the two-photon transitions to
the ground state taking the ns → 1s + 2γ transitions as an
example. We will be interested in transitions with cascades, so
we will consider n > 2 since the 2s → 1s + 2γ transition does
not contain cascades. The full QED description of any process
in an atom should start with the ground state, i.e., the excitation
of the decaying state should be always included. In this way
the theory of multiphoton processes in atoms was developed
by the authors of [30,31]. For the resonant processes, e.g.,
for the resonant photon scattering the absorption part of the
process can be well separated from the emission part, so
that the description of the decay process independent of the
excitation becomes possible. Still the way of the excitation
influences to some extent the decay. Having in mind the
cosmological recombination processes in H we consider the
resonance two-photon scattering on the ground 1s state with

kf2, ef2

kf1, ef1

ki1, ei1

ki2, ei2

kf2, ef2

kf1, ef1

ki2, ei2

ki1, ei1

1s

1s 1s

1s

ns
ns

ns

(a) (b)

FIG. 1. Feynman graph describing the two-photon resonance
scattering on the ground state of a H atom with excitation of the ns

state and the resonance condition ωi1 + ωi2 = Ens − E1s . The double
solid lines denote an electron in the field of the nucleus and the wavy
lines denote the absorbed, emitted, and virtual photons. The notations
�ki1 �ei1 , �ki2 �ei2 correspond to the momentum and polarization of the
absorbed (initial) photons, �kf1 �ef1 , �kf2 �ef2 correspond to the emitted
(final) photons. (a) The generic process of the resonant scattering is
depicted. (b) The electron self-energy insertion in the central electron
propagator is made.
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resonances corresponding to the ns states. This process is
natural in the case of cosmological recombination since the two
photons released in the process of the decay of one atom can be

absorbed by another atom. The Feynman graph corresponding
to the resonant photon scattering is depicted in Fig. 1(a).

The S-matrix element, corresponding to Fig. 1(a) looks like

S
(4)sc
1s = (−ie)4

∫
d4x1d

4x2d
4x3d

4x4ψ1s(x1)γμ1A
∗(�kf2 �ef2 )
μ1 (x1)S(x1,x2)γμ2A

∗(�kf1 �ef1 )
μ2 (x2)S(x2,x3)γμ3A

(�ki2 �ei2 )
μ3 (x3)

× S(x3,x4)γμ4A
(�ki1 �ei1 )
μ3 (x4)ψ1s(x4), (9)

where

ψn(x) = ψn(�r)e−iEnt , (10)

the spatial part ψn(�r) is the solution of the Dirac equation for the atomic electron, En is the Dirac energy, ψn = ψ+
n γ0 is the

Dirac conjugated wave function, γμ ≡ (γ0, �γ ) are the Dirac matrices, and x ≡ (�r,t) are the space-time coordinates. In this paper
the Euclidean metric with an imaginary fourth component is employed. The photon wave function (photon field) is described by

A(�k,�e)
μ (x) =

√
2π

ω
eμeikμxμ = A(�k,�e)

μ (�r)e−iωt , (11)

where k ≡ (�k,iω) is the photon momentum four-vector, �k is the photon wave vector, ω = |�k| is the photon frequency, eμ are

the components of the photon polarization four-vector, �e is the three-dimensional polarization vector for real photons, A(�k,�e)
μ

corresponds to the absorbed photon, and A∗(�k,�e)
μ corresponds to the emitted photon. The electron propagator for bound electrons

we present in the form of the eigenmode decomposition with respect to one-electron eigenstates [38]

S(x1,x2) = 1

2πi

∫ ∞

−∞
dωeiω(t1−t2)

∑
n

ψn(�r1)ψn(�r2)

En(1 − i0) + ω
. (12)

The insertion of the expressions (10) to (12) into Eq. (9) and performing the integrations over time and frequency variables yields

S
(4)sc
1s = −2πie4δ

(
ωf1 + ωf2 − ωi1 − ωi2

) ∑
n1n2n3

(
γμ1A

∗(�kf2 �ef2 )
μ1

)
1sn1

(
γμ2A

∗(�kf1 �ef1 )
μ2

)
n1n2[

En1 (1 − i0) − ωf2 − E1s

][
En2 (1 − i0) − ωf2 − ωf1 − E1s

]
×

(
γμ3A

(�ki2 �ei2 )
μ3

)
n2n3

(
γμ4A

(�ki1 �ei1 )
μ4

)
n31s

En3 (1 − i0) + ωi2 − ωf2 − ωf1 − E1s

. (13)

The amplitude U of the elastic photon scattering is related to the S matrix via [38]

S = −2πiδ
(
ωf1 + ωf2 − ωi1 − ωi2

)
U. (14)

Accordingly, for the scattering amplitude we have

U
(4)sc
1s = e4

∑
n1n2n3

(
γμ1A

∗(�kf2 �ef2 )
μ1

)
1sn1

(
γμ2A

∗(�kf1 �ef1 )
μ2

)
n1n2[

En1 (1 − i0) − ωf2 − E1s

][
En2 (1 − i0) − ωf2 − ωf1 − E1s

] (
γμ3A

(�ki2 �ei2 )
μ3

)
n2n3

(
γμ4A

(�ki1 �ei1 )
μ4

)
n31s

En3 (1 − i0) + ωi2 − ωf2 − ωf1 − E1s

. (15)

For the resonant scattering process the photon frequencies satisfy the relation

ωf1 + ωf2 = ωi1 + ωi2 = Ens − E1s , (16)

so that we have to retain only one term in the sum over n2: n2 = ns. Then, replacing the last denominator in Eq. (15) by

En3 + ωi2 − ωf1 − ωf2 − E1s = En3 − ωi1 − E1s , (17)

we obtain

U
(4)sc
1s(ns) = e4 1

Ens − ωf2 − ωf1 − E1s

∑
n1

(
γμ1A

∗(�kf2 �ef2 )
μ1

)
1sn1

(
γμ2A

∗(�kf1 �ef1 )
μ2

)
n1ns

En1 (1 − i0) − ωf2 − E1s

∑
n3

(
γμ3A

(�ki2 �ei2 )
μ3

)
nsn3

(
γμ4A

(�ki1 �ei1 )
μ4

)
n31s

En3 (1 − i0) − ωi1 − E1s

. (18)

Equation (18) reveals that in the resonance approximation a scattering amplitude factorizes into emission and absorption parts.
The first energy denominator in Eq. (18) should be attached to the emission or absorption part depending on what we want to
describe: the emission or absorption process. The two-photon emission amplitude can be presented as

U
(2γ )em
ns−1s = e2 1

Ens − ωf2 − ωf1 − E1s

∑
n1

(
γμ1A

∗(�kf2 �ef2 )
μ1

)
1sn1

(
γμ2A

∗(�kf1 �ef1 )
μ2

)
n1ns

En1 (1 − i0) − ωf2 − E1s

. (19)
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The energy conservation law which follows from Eq. (14)
reads

ωf1 + ωf2 = ωi1 + ωi2 . (20)

The resonance condition can be written in the form∣∣ωi1 + ωi2 − Ens + E1s

∣∣= ∣∣ωf1 + ωf2 − Ens + E1s

∣∣ � �ns,

(21)

where �ns is the total width of the ns level. In cases when we
can neglect �ns in Eq. (21) this equation takes the form of the
energy conservation law

ωf1 + ωf2 = Ens − E1s , (22)

in particular, we can employ condition (22) in the second en-
ergy denominator in Eq. (19), but not in the first denominator.

Now we have to take into account the form of the resonance
corresponding to the first energy denominator in Eq. (19). For
this purpose we will apply the procedure first introduced in
QED by Low [32] (see also [31]). This procedure consists of an
infinite number of the electron one-loop self-energy insertions
in the central electron propagator in Fig. 1(a) in the resonance
approximation. The first term of this sequence is depicted in
Fig. 1(b). Returning back to the scattering amplitude Eq. (15)
we proceed along the same way as earlier in the resonance
approximation. Continuing Low’s sequence and summing up
the arising geometric progression yields

U
(2γ )em
ns−1s

= e2 1

ωf2 + ωf1 + E1s − Ens − [
�̂
(
ωf1 + ωf2 + E1s

)]
ns,ns

×
∑
n1

(
γμ1A

∗(�kf2 �ef2 )
μ1

)
n1ns

(
γμ2A

∗(�kf1 �ef1 )
μ2

)
n1ns

ωf1 + E1s − En1

, (23)

where the matrix element of the one-loop electron self-energy
operator is defined as [31]

[�̂(ξ )]AB = e2

2πi

∑
n

∫
d


[
γμ1γμ2Iμ1μ2 (|
|,r12)

]
AnnB

ξ − 
 − En(1 − i0)
,

(24)

Iμ1μ2 = δμ1μ2

r12
ei|
|r12 . (25)

Here x ≡ (�r,t), r12 = |�r1 − �r2|.
At the point of the resonance we expand the operator

�̂
(
ωf1 + ωf2 + E1s

) = �̂(Ens) + · · · (26)

and use the equality

[�̂(Ens)]ns,ns = LSE
ns − i

2
�1γ

ns , (27)

where LSE
ns is the lowest-order (one-loop) electron self-energy

part of the Lamb shift for the level ns and �
1γ
ns is the one-photon

level width. An explicit relativistic expression for �
1γ

A for an
arbitrary level A can be found in Ref. [39]. The contribution
of LSE

ns does not play any significant role in our further
derivations and will be omitted. To the expression (23) we

have to add also another term corresponding to the graphs
in Fig. 1 with interchanged positions of the �kf1 �ef1 and �kf2 �ef2

photon lines.
Taking Eq. (23) by the square modulus, integrating over

the momenta of the emitted photons, and summing over the
photon polarizations we obtain the absolute probability for the
two-photon emission db

2γ

ns−1s(ω), where ω is the frequency of
one of the emitted photons; the frequency of the second photon
is determined via Eq. (22). The quantity b

2γ

ns−1s presents the
differential branching ratio

db
2γ

ns−1s(ω) = dW
2γ

ns−1s(ω)

�ns

, (28)

where dW
2γ

ns−1s(ω) is the differential transition rate. The total
transition rate then results as

W
2γ

ns−1s = 1

2

∫ ω0

0
dW

2γ

ns−1s(ω), (29)

ω0 = Ens − E1s . The factor of 1/2 in Eq. (29) reflects
the integration over dωf1dωf2 together with the additional
condition Eq. (22).

III. TWO-PHOTON 3s-1s TRANSITION

The further investigation of the two-photon transitions with
cascades should be performed separately for different n values.
In this section we will continue this investigation for the
3s → 1s + 2γ transition. The Feynman graphs which describe
this process are depicted in Fig. 2. The two-photon emission

kf2, ef2

kf1, ef1

ki1, ei1

ki2, ei2

kf2, ef2

kf1, ef1

ki2, ei2

ki1, ei1

1s

1s 1s

1s

ns
3s

3s

kf2, ef2

kf1, ef1

ki2, ei2

ki1, ei1

1s

1s

2p

2p

3̃s

(a) (b) (c)

FIG. 2. Feynman graph describing the two-photon resonance
scattering on the ground state of a H atom with excitation of the 3s

state. Resonance condition is ωi1 + ωi2 = E3s − E1s and the decay
resonances are ωres.1

f = E3s − E2p , ωres.2
f = E3s − E2p . (a) The basic

process of the resonance scattering is depicted. (b) The electron
self-energy insertion in the central propagator is made. (a), (b)
repeat the graphs in Figs. 1(a) and 1(b) for the ns resonance for the
particular case of n = 3. (c) The electron self-energy insertion in the
upper electron propagator is shown. Notation 3̃s means that the Low
procedure is already performed for the central electron propagator.
The other notations are the same as in Fig. 1.
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amplitude for this process looks like

U
2γ

3s−1s = e2 1

ωf2 + ωf1 + E1s − E3s + i
2�3s

×
∑
n1

⎧⎨⎩
(
γμ1A

∗(�kf2 �ef2 )
μ1

)
1sn1

(
γμ2A

∗(�kf1 �ef1 )
μ2

)
n13s

ωf2 + E1s − En1

+
(
γμ1A

∗(�kf1 �ef1 )
μ1

)
1sn1

(
γμ2A

∗(�kf2 �ef2 )
μ2

)
n13s

ωf1 + E1s − En1

⎫⎬⎭ . (30)

For the 3s − 1s two-photon transition only one cascade is
possible: 3s − 2p − 1s. Accordingly, the two new resonance
conditions arise:

ωres.1 = E3s − E2p, (31)

ωres.2 = E2p − E1s . (32)

Let us consider first the cascade contribution to Eq. (30). For
this purpose we have to set n1 = 2p, which gives

U
2γ, cascade
3s−2p−1s = e2 1

ωf2 + ωf1 + E1s − E3s + i
2�3s

×
⎧⎨⎩
(
γμ1A

∗(�kf2 �ef2 )
μ1

)
1s2p

(
γμ2A

∗(�kf1 �ef1 )
μ2

)
2p3s

ωf2 + E1s − E2p

+
(
γμ1A

∗(�kf1 �ef1 )
μ1

)
1s2p

(
γμ2A

∗(�kf2 �ef2 )
μ2

)
2p3s

ωf1 + E1s − E2p

⎫⎬⎭ .

(33)

The first term in the curly brackets in Eq. (33) corresponds to
the resonance (31). Applying the Low procedure (the insertion
of the infinite chain of the electron self-energy corrections in
the resonance approximation and summation of the arising
geometric progression) to the upper electron propagator in
Fig. 2 [see Fig. 2(c)] we find

U
2γ, cascade
3s−2p−1s = e2 1

ωf2 + ωf1 + E1s − E3s + i
2�3s

×
⎧⎨⎩
(
γμ1A

∗(�kf2 �ef2 )
μ1

)
1s2p

(
γμ2A

∗(�kf1 �ef1 )
μ2

)
2p3s

ωf2 + E1s − E2p + i
2�2p

+
(
γμ1A

∗(�kf1 �ef1 )
μ1

)
1s2p

(
γμ2A

∗(�kf2 �ef2 )
μ2

)
2p3s

ωf1 + E1s − E2p + i
2�2p

⎫⎬⎭ .

(34)

Now we take U
2γ, cascade
3s−2p−1s by the square modulus, integrate over

emitted photon directions, and sum over the polarizations. The
one-photon transition rates arise as a result:

W
1γ

AB = 2πω2e2
∑

�e

∫
d�ν

(2π )3

∣∣(γμA∗(�k�e)
μ

)
AB

∣∣2, (35)

where �ν ≡ �k/ω, A, B are the atomic states, ω = EA − EB ,
EA, EB are the energy of the states A, B, respectively.

Consider first the square modulus of the first term in the
curly brackets in Eq. (34) together with the factor outside
the brackets. This term corresponds to the contribution of
the resonance 1 in Eq. (31), i.e., the upper link of the
cascade 3s − 2p − 1s. Therefore we have to integrate first
over frequency ωf2 of the second emitted photon. In principle,
the integration over both photon frequencies should be done
with Eq. (22) taken into account. However, we perform the
integration over ωf2 in the complex plane. Since only the pole
terms contribute we can extend the interval of integration to
(−∞,+∞) and disregard Eq. (22). Then using the Cauchy
theorem after some algebraic transformations we obtain the
following cascade (resonance 1) contribution to the differential
branching ratio:

db
2γ (res.1)
3s−2p−1s(ω)

= 1

2π

�3s + �2p

�3s�2p

W
1γ

3s−2p(ωres.1)W 1γ

2p−1s(ω
res.2)dω

(ω − ωres.1)2 + 1
4 (�3s + �2p)2

(36)

(here we have changed notation for the frequency from ωf1 to
ω). The differential branching ratio db2γ is connected with the
differential transition rate dW 2γ via Eq. (28). Combining now
the formulas (36) and (28) we arrive at the expression for the
cascade (upper link) contribution to the transit rate

dW
2γ (res.1)
3s−2p−1s(ω)

= 1

2π

�3s + �2p

�2p

W
1γ

3s−2p(ωres.1)W 1γ

2p−1s(ω
res.2)dω

(ω − ωres.1)2 + 1
4 (�3s + �2p)2

. (37)

The definition (28) concerns not only the cascade contribution
to dW

2γ

ns−1s but all other contributions, i.e., noncascade, or
“pure” two-photon contribution and the interference between
cascade and noncascade contributions. The interference be-
tween different resonances (links of one cascade) or between
different cascades are usually negligible since they correspond
to different frequency regions. Hence we can write

db
2γ

ns−1s = db
2γ, cascade
ns−1s + db

2γ, pure
ns−1s + db

2γ, interference
ns−1s

= dW
2γ

ns−1s

�ns

= 1

�ns

(
dW

2γ, cascade
ns−1s + dW

2γ, pure
ns−1s + dW

2γ, interference
ns−1s

)
.

(38)

Integration Eq. (28) over the remaining frequency ω [see
Eq. (29)] will give the total branching ratio

b
2γ

ns−1s = W
2γ

ns−1s

�ns

. (39)

The cascade contribution consists of two terms

dW
2γ, cascade
3s−1s = dW

2γ, res.1
3s−2p−1s + dW

2γ, res.2
3s−2p−1s . (40)

The second term in the curly brackets in Eq. (34) corresponds
to the resonance 2 Eq. (32), i.e., to the lower link of the cascade.
Taking it by the square modulus, after integration over the
directions of emitted photons, and the summation over the
photon polarizations, we have to integrate it over the frequency
of the first emitted photon, i.e., again over ωf2 [the photons are
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FIG. 3. The frequency distribution dW
2γ

3s−1s(ω)/dω for the two-
photon 3s → 1s + 2γ transition, divided by α6 (α is the fine structure
constant). The boundaries for the frequency subintervals I–V are
indicated as vertical lines.

interchanged compared to the first term in Eq. (34)]. Replacing
notation ωf1 to ω we obtain

dW
2γ (res.2)
3s−2p−1s(ω) = 1

2π

W
1γ

3s−2p(ωres.1)W 1γ

2p−1s(ω
res.2)dω

(ω − ωres.2)2 + 1
4�2

2p

.

(41)

IV. AMBIGUITY OF THE SEPARATION OF CASCADES
AND PURE TWO-PHOTON EMISSION

In this section we will demonstrate the ambiguity of
the separation of contributions dW

2γ, cascade
ns−1s , dW

2γ, pure
ns−1s and

dW
2γ, interference
ns−1s in Eq. (38), taking the transition 3s →

1s + 2γ as an example. This ambiguity was demonstrated
numerically by the authors of [33], however, the accuracy of
the calculations was not sufficient to show that the total value
for the transition rate W

2γ

3s−1s is always the same, independent
of the way of defining the separate terms in Eq. (38). Now,
with more accurate calculations we can show this. Moreover
we can prove also the gauge invariance of the total transition
rate W

2γ

3s−1s with cascade terms, regularized according to the
Low procedure, i.e., with Eqs. (37) and (41).

The integration over the entire frequency interval [0,ω0] in
Eq. (29) we split into several intervals, namely five in the case
of the 3s → 1s + 2γ transition (see Fig. 3). The first interval
I extends from ω = 0 up to the lower boundary of the interval
II. The second one encloses the resonance frequency value
Eq. (31). Within the interval II the resonant term n1 = 2p in
Eq. (30) after taking the square modulus of expression (30)
should be replaced by the expression (37). The third interval
III extends from the upper boundary of the interval II up to
the lower boundary of the interval IV, the later one enclosing
another resonance frequency defined by Eq. (32). Within the
interval IV again the resonant term n1 = 2p in Eq. (30) after
taking the square modulus should be replaced by Eq. (41).
Finally, the fifth interval V ranges from the upper boundary of
the interval IV up to the maximum frequency ω0 = E3s − E1s .
The frequency distribution dW

2γ

3s−1s is symmetric with respect
to the point ω = 1

2ω0 with an accuracy of about 1%. The
deviation from the symmetry is due to the difference between
�3s + �2p and �2p in the denominators of Eqs. (37) and (41).

Going over to the fully nonrelativistic approximation and
performing the angular integration in the matrix elements in
Eq. (30) we obtain the following contributions to the total
transition rate W

2γ

3s−1s :

W
2γ

3s−1s = W
2γ, cascade
3s−1s + W

2γ, pure
3s−1s + W

2γ, interference
3s−1s , (42)

W
(cascade)
3s;1s = 4

27π

�3s + �2p

�2p

∫
(II)

ω3(ω0 − ω)3

∣∣∣∣∣ (r)3s2p(r)2p1s

E2p − E3s + ω − i
2 (�3s + �2p)

∣∣∣∣∣
2

dω

+ 4

27π

∫
(IV)

ω3(ω0 − ω)3

∣∣∣∣∣ (r)3s2p(r)2p1s

E2p − E1s − ω − i
2�2p

∣∣∣∣∣
2

dω, (43)

W
(pure2γ )
3s;1s = 4

27π

∫
(II)

ω3(ω0 − ω)3
∣∣S(2p)

1s;3s(ω) + S1s;3s(ω0 − ω)
∣∣2dω + 4

27π

∫
(IV)

ω3(ω0 − ω)3
∣∣S1s;3s(ω)

+ S
(2p)
1s;3s(ω0 − ω)

∣∣2dω + 4

27π

∫
(I+III+V)

ω3(ω0 − ω)3|S1s;3s(ω) + S1s;3s(ω0 − ω)|2dω, (44)

dW
(interference)
3s;1s = �3s + �2p

�2p

∫
(II)

4ω3(ω0 − ω)3

27π
Re

[
(r)3s2p(r)2p1s

E2p − E3s + ω − i
2 (�3s + �2p)

]
(45)

[
S

(2p)
1s;3s(ω) + S1s;3s(ω0 − ω)

]
dω +

∫
(IV)

4ω3(ω0 − ω)3

27π
Re

[
(r)3s2p(r)2p1s

E2p − E1s − ω − i
2�2p

] [
S1s;3s(ω) + S

(2p)
1s;3s(ω0 − ω)

]
dω, (46)

S1s;3s =
∑
n′p

(r)3sn′p(r)n′p1s

En′p − E3s + ω
, (47) (r)nln′l′ =

∫ ∞

0
r3Rnl(r)Rn′l′(r)dr. (48)
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TABLE I. Transition rates (in s−1) for the different decay channels for the decay probability of the 3s level with different frequency interval
size (l) in length gauge. The last column corresponds to the limiting case where intervals II and IV touch one another with the use of three
parameters l1 = 4.53 × 106, l2 = 4.58 × 106, and l3 = 107.

l 104 105 2.5 × 105 5 × 105 106 l1, l2, l3

W
(pure)
I 53.05375194 7.05462259 3.57430739 2.18976651 1.27735735 0 ‘

W
(pure)
II 0.00624713 0.06246845 0.15613353 0.31199777 0.62181876 3.98083823

W
(pure)
III 95.53585438 7.87779112 2.79274511 1.45164839 1.04561648 0

W
(pure)
IV 0.00618480 0.06184525 0.15457664 0.30889200 0.61567230 3.95741133

W
(pure)
V 53.56051962 7.11011114 3.59987543 2.20557518 1.28862529 0

W (pure) 202.16255787 22.16683855 10.27763810 6.46787984 4.84909017 7.93824956
W (inter) −0.00910554 −0.09106015 −0.22761672 −0.45498984 −0.90802360 −6.976045531
W (casc) 6.31675910 × 106 6.3169401 ×106 6.31695216 ×106 6.31695622 ×106 6.31695830 ×106 6.31696010 ×106

W (total) 6.31696125 × 106 6.31696215 ×106 6.31696221 ×106 6.31696223 ×106 6.31696224 ×106 6.31696196 ×106

The notation S
(2p)
1s;3s means that the state 2p is excluded from

sum over the n′p in Eq. (47).
In Eqs. (43) to (48) Rnl are the radial Schrödinger wave

functions for the H atoms and Enl are the corresponding
energies. All the probabilities are given in the “length” gauge,
in atomic units.

The resonance contributions are concentrated exclusively
in the intervals II and IV for the resonances 1 and 2 [see
Eqs. (31) and (32)], respectively. Within the other intervals
the cascade contributions vanish. Unlike the cascades,
the “pure” two-photon contributions are present in all the
intervals. The interference contribution is zero within the I,
III, and V intervals, i.e., where the cascade contributions are
absent.

The results of our calculations are presented in Table I. It is
convenient to define the size of the second interval II as ωII =
2(�3s + �2p)l where l is some number and the size of the
fourth interval (IV) as ωIV = 2�2pl, the numbers l ranging
from l = 104 up to l = 1.5 × 106. The upper boundary of
interval II equals ωres.1 + l(�3s + �2p) = 5

72 + l(�3s + �2p)
in a.u. while the lower boundary of the interval IV equals
ωres.2 − l�2p = 3

8 − l�2p. The different lines in Table I present

the contributions of the different intervals to the “pure”
two-photon decay rate W

2γ,pure
3s−1s for different choices of the

size of intervals (i.e., the l values). The three last lines present
the contributions of the W

2γ,interference
3s−1s , W

2γ,cascade
3s−1s and the

total value W
2γ

3s−1s . From Table I we can draw the following
conclusion: the “pure” two-photon transition rate depends
strongly on the choice of the of the intervals ωII, ωIV

and cannot be separated out of the total value of W
2γ

2s−1s . Only

the sum of all contributions W
2γ

3s−1s = W
2γ,cascade
3s−1s + W

2γ,pure
3s−1s +

W
2γ,interference
3s−1s can be defined unambiguously, independent of

the intervals’ choice, i.e., remain invariant. This invariance is
clearly seen from comparison of the two last lines in Table I: the
cascade contributions changes in the sixth digit with the choice
of different l values (at this sixth digit the contributions of the
“pure” and “interference” terms becomes significant) while
the total value W

2γ

3s−1s remains invariant with the sixth digits.
This is an exact proof that was missing in Ref. [33] due to the
poorer numerical accuracy. Moreover, in Table II we present
the results of the same calculations performed in the “velocity”
gauge. Although all the numbers differ quite considerably, the
final results for W

2γ

3s−1s again remain invariant with respect

TABLE II. Transition rates (in s−1) for the different decay channels for the decay probability of the 3s level with different frequency interval
size (l) in velocity gauge. The last column corresponds to the limiting case where intervals II and IV touch one another with the use of three
parameters l1 = 4.53 × 106, l2 = 4.58 × 106, and l3 = 107.

l 104 105 2.5 × 105 5 × 105 106 l1, l2, l3

W
(pure)
I 53.05371101 7.05459545 3.57428602 2.18974982 1.27734585 0

W
(pure)
II 0.00373447 0.03734343 0.09334150 0.18656065 0.37212616 2.45141850

W
(pure)
III 95.53586269 7.87777276 2.79271674 1.45161319 1.04557595 0

W
(pure)
IV 0.00369721 0.03697087 0.09241062 0.18470252 0.36843982 2.43568051

W
(pure)
V 53.56047863 7.11008395 3.59985400 2.20555842 1.28861370 0

W (pure) 202.15748401 22.11676645 10.15260889 6.21818460 4.35210148 4.88709901
W (inter) −0.00251068 −0.02510978 −0.06278658 −0.125659184 −0.25201266 −2.71427111
W (casc) 6.31675909 × 106 6.31694006 ×106 6.31695212 ×106 6.31695614 ×106 6.31695814 ×106 6.31695986 ×106

W (total) 6.31696125 × 106 6.31696215 ×106 6.31696221 ×106 6.31696223 ×106 6.31696224 ×106 6.31696203 ×106
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to the choice of the intervals’ size and coincide with the
value in the “length” gauge with six digits. Our conclusion
is that there is no way to define separately the contributions
of the “pure” two-photon transition rate for the transitions
with cascades.

The accuracy of the numbers in Tables I and II is higher
than the contributions of the relativistic and QED corrections
to the transition rates, not included in our calculations.
Though these corrections will change the value of the
W

2γ

3s−1s transition rate (in the fourth digit by the relativistic
corrections, in the sixth digit by the QED ones) they will not
change our argument for the “inseparability” of the “pure”
two-photon contribution from the total 3s → 1s + 2γ decay
rate.

V. TWO-PHOTON WIDTHS FROM THE IMAGINARY
PART OF THE ENERGY LEVEL SHIFT

There is a familiar statement that the total width � of the
excited atomic level equals the sum of the transition rates to
all the lower levels. Since all the transitions end up finally at
the ground state we could write

�total
A =

∑
i

W i
A→0, (49)

where index A denotes the arbitrary excited state of an
atom, 0 denotes the ground state, and the summation over i

corresponds to all possible decay channels, including cascades.
From the other side, the width of the level can be defined via
imaginary part of the level shift EA which is due to the
radiative corrections and interelectron corrections

�A = −2ImEA. (50)

As it was argued in the Introduction, these two definitions do
not coincide with the cascade contributions taken into account.
The cascades do not contribute to Eq. (50). The proof of this
statement is the aim of the present section.

The contributions of the cascades to the �total
A become

singular due to the energy denominators which tend to zero
as was demonstrated in Secs. II and III. The regularizations of
these singularities require the insertion of the energy widths in
the energy denominators and these widths are defined exactly
by Eq. (50).

In the case of the one-photon transitions there are no
cascades and Eq. (2) for �

1γ
n takes place. For the one-electron

atom the closed fully relativistic expression for �
1γ
n can be

derived (see [31,39])

�1γ
n =

∑
n′<n

�
1γ

nn′ = −α

2

∑
n′<n

(
1 − En′

|En′ |
)

×
(

1 − �α1 �α2

r12
sin(|En′ − En|r12)

)
n′nnn′

, (51)

where �αi (i = 1, 2) are the Dirac matrices acting on the Dirac
atomic wave functions depending on the variables �r1 and �r2,
respectively. The summation in Eq. (51) is extended over all

(a)

(b)

FIG. 4. The Feynman one-loop graph corresponding to the one-
photon width �1γ

n [see Eq. (51)]. The double solid line denotes the
electron in the field of the nucleus (Furry picture), the wavy lines
denote (a) the virtual or (b) real photons. The dashed vertical line
in (a) indicates the cut of the graph. This cut corresponds to the
emission of the photon and the right graph corresponds to the absorbed
photon.

positive energy levels lower than n: En′ < En. In Eq. (51)
the integration over the emitted photon directions and the
summation over the photon polarization are automatically
included.

The expression Eq. (51) arises as an imaginary part of
the lowest-order radiative electron self-energy correction. The
Feynman graph corresponding to this correction is depicted
in Fig. 4. There is a simple rule which helps to understand
to which transition corresponds the imaginary part of one
or another Feynman graph for radiative corrections. This
rule consists of cutting the graphs, namely the electron
self-energy loops as it is demonstrated in Fig. 4(a) for the
lowest-order electron self-energy correction. One should not
cut the vacuum loops since the vacuum polarization corrections
do not contribute to the imaginary part of the energy correction.
The graph in Fig. 4(b) illustrates that the imaginary part
of the graph in Fig. 4(a) corresponds to the sum of the
one-photon transitions to the lower levels. A justification
of this rule can be seen from the derivations below in this
section.

The second-order electron self-energy corrections are
depicted in Figs. 5–7. The Feynman graph Fig. 5(a) is
reducible, i.e., this graph can be divided into two parts
by cutting only the internal electron line. The graphs in
Figs. 6(a) and 7(a) are irreducible in this sense. As it was
proved in Refs. [31,39], corrections to the energy EA

corresponding to any irreducible graphs can be obtained via
relations

〈A′|Ŝ|A〉 = 2πiδ(EA′ − EA)〈A′|Û |A〉, (52)

EA = 〈A|Û |A〉, (53)

where 〈A′|Û |A〉 is the matrix element of the amplitude.
Figure 5(b) demonstrates that the graph in Fig. 5(a) contributes
only to the electron self-energy (SE) correction to the one-
photon amplitude and does not contribute to the two-photon
width �

2γ
n . Radiative corrections to the one-photon transition
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(a)

(b)

FIG. 5. The two-loop graph (loop after loop). Notations are
the same as in Fig. 4. The two cuts I and II in (a) correspond
to the products of the amplitudes corresponding for the Feynman
graphs in (b) as depicted for cut I. A similar picture results for
cut II. These pictures demonstrate that the graph in panel (a)
contributes only to the electron self-energy (SE) correction to the one-
photon amplitudes and does not contribute to the two-photon width
�2γ

n .

rates via imaginary parts of the radiative corrections to the
energy levels were evaluated in Refs. [40–42]. Here we will not
be interested in these corrections and will evaluate exclusively

(a)

(b)

(c)

FIG. 6. The two-loop Feynman graph (loop inside loop). Nota-
tions are the same as in Figs. 4 and 5. The three cuts I, II, II in (a)
correspond to the products of amplitudes as depicted for the cut I in
(b) and for the cut II in (c). A picture for the cut III is similar to that
in (b). These pictures demonstrate that only the cut II corresponds to
the contribution to the two-photon width �2γ

n .

(a)

(b)

(c)

FIG. 7. The two-loop graph (crossed loops). Notations are the
same as in Fig. 4. The three cuts in (a) correspond to the products of
the Feynman graphs as depicted for the cut I in (b) and for the cut II
in (c). A picture for the cut III is similar to that in (b). These pictures
demonstrate that the cuts I and II contribute to the vertex corrections
to the one-photon amplitudes and only the cut II contributes to the
two-photon width �2γ

n .

the two-photon decay widths. Therefore we will concentrate
on the graphs in Figs. 6 and 7.

The fourth-order S-matrix elements which correspond to
Fig. 6(a) “loop inside loop” (lil) and Fig. 7(a) “crossed loops”
(cl) graphs are

〈A|Ŝ(4)lil|A〉 = e4
∫

d4x1d
4x2d

4x3d
4x4

(
ψA(x1)γμ1S(x1x2)γμ2

× S(x2x3)γμ3S(x3x4)γμ4ψA(x4)
)

×Dμ1μ4 (x1x4)Dμ2μ3 (x2x3), (54)

〈A|Ŝ(4)cl|A〉= e4
∫

d4x1d
4x2d

4x3d
4x4

(
ψA(x1)γμ1S(x1x2)γμ2

× S(x2x3)γμ3 S(x3x4)γμ4ψA(x4)
)

×Dμ1μ3 (x1x3)Dμ2μ4 (x2x4). (55)

Here the notations are the same as in Sec. II and
Dμν(x1x2) denotes the photon propagator in the Feynman
gauge

Dμν(x1x2) = δμν

2πir12

∫ ∞

−∞
eiω(t1−t2)+i|ω|r12dω. (56)

Inserting expressions (10), (12), and (56) in Eqs. (54) and (55)
for the Dirac wave functions, electron propagators, and photon
propagators, respectively, integrating over time and frequency
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variables, and using Eqs. (52) and (53) we find

U
(4)lil
A = e4

∑
nmk

(
δμ1μ4

r14

δμ2μ3

r23
I lil
nmkA(r14r23)

)
Anmk

, (57)

I lil
nmkA(r14r23) =

(
1

2πi

)2∫ +∞

−∞
dω1

∫ +∞

−∞
dω3

ei|ω1|r14ei|ω3|r23

[EA − ω1 − En(1 − i0)][EA − ω1 − ω3 − Ek(1 − i0)][EA − ω1 − Em(1 − i0)]
,

(58)

U
(4)cl
A = e4

∑
nmk

(
δμ1μ3

r13

δμ2μ4

r24
I cl
nmkA(r13r24)

)
Anmk

, (59)

I cl
nmkA(r13r24) =

(
1

2πi

)2∫ +∞

−∞
dω1

∫ +∞

−∞
dω3

ei|ω1|r13ei|ω3|r24

[EA − ω1 − En(1 − i0)][EA − ω1 − ω3 − Ek(1 − i0)][EA − ω3 − Em(1 − i0)]
.

(60)

According to the analysis given in the beginning of this section the two-photon width is connected exclusively with the poles
generated by the central energy denominators in Eqs. (58) and (60). For further evaluation we employ the following representation
of the integrals, containing ei|ω|r :

Re
∫ ∞

−∞

ei|ω|r

EA − Es(1 − i0) − ω
= −π

2

(
1 + Es

|Es |
)(

1 + βAs

|βAs |
)

sin(βAsr), (61)

where βAs = EA − Es . Performing the integration over ω3 with the help of Eq. (61) we find that the two-photon contributions to
Eqs. (58) and (60) reduce to

I
lil.2γ

nmkA(r14,r23) = e4

2π

(
1 + Ek

|Ek|
)∫ βAk

0
dω1

sin(ω1r23)ei(βAk−ω1)r14

[EA + ω1 − En(1 − i0)][EA − ω1 − Em(1 − i0)]
, (62)

I
cl.2γ

nmkA(r13,r24) = e4

2π

(
1 + Ek

|Ek|
)∫ βAk

0
dω1

sin(ω1r23)ei(βAk−ω1)r14

[EA + ω1 − En(1 − i0)][EA − ω1 − Em(1 − i0)]
, (63)

where EA > En(m) > Ek .
Collecting all the contributions together, using the definition Eq. (50) and introducing explicitly the Feynman parameters

i0 → iε we get

�
2γ

A = e4

2π
lim
ε→0

Re

⎛⎜⎜⎜⎜⎜⎝
∑
nkm

EA > En(m)
> Ek

∫ βAk

0

(
1 + Ek

|Ek|
){ ( (1−�α2 �α4) sin(ωr24)

r24

)
nmkA

( (1−�α1 �α3) sin[(βAk−ω)r13]
r13

)
Akmn

[(Ek − En)(1 − iε) + ω][EA − ω − Em(1 − iε)]

+
( (1−�α2 �α3) sin(ωr23)

r23

)
AmnA

( (1−�α1 �α4) sin[(βAk−ω)r14]
r14

)
nkkm

[EA − ω − En(1 − iε)][EA − ω − Em(1 − iε)]

}⎞⎟⎟⎟⎟⎟⎠ dω. (64)

The matrix elements in Eq. (64) [F (12)]abcd should be understood as [F (12)]a(1)b(2)c(1)d(2) where 1, 2 denote the variables and �αi

are the Dirac matrices acting on the corresponding wave functions ψ(i). The first term in curly brackets in Eq. (64) corresponds
to the contribution of the loop inside loop Feynman graph and the second term corresponds to the crossed loops Feynman
graph.

To express Eq. (64) as the sum of the partial widths for the two-photon transitions A → k + 2γ we may use an
equality [39]

βAk

∑
�e

∫
d�ν|[(�e�α)e−iβnA(�ν�r)]kA|2 = −π

(
1 − �α1 �α2

r12
sin(βAkr12)

)
AkkA

. (65)
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Then

�
2γ

A =
∑

EA>En(m)>Ek

�
2γ

Ak, (66)

�
2γ

Ak = e4 lim
ε→0

Re
∫ βAk

0

(
ω(βAk − ω)

24π3

∫
d�νd�ν ′ ∑

�e �e ′

∑
n

{
[(�e ∗ �α)e−i�k�r ]kn[(�e ′ ∗ �α)e−i�k′ �r ]nA

EA − ω − En(1 − iε)
+ [(�e′ ∗ �α)e−i�k′ �r ]kn[(�e ∗ �α)e−i�k�r ]nA

(Ek − En)(1 − iε) + ω

}

×
∑
m

{
[(�e ∗ �α)e−i�k�r ]∗km[(�e′ ∗ �α)e−i�k′ �r ]∗mA

EA − ω − Em(1 − iε)
+ [(�e′ ∗ �α)e−i�k′ �r ]∗km[(�e ∗ �α)e−i�k�r ]∗mA

(Ek − Em)(1 − iε) + ω

})
dω. (67)

Note that in Eq. (67) there is no square modulus. Therefore we
can employ the method suggested by the authors of [35–37]
for avoiding the double pole singularities in the integration
over ω in Eq. (64) when n(m) = A, k. According to the
prescription given in Refs. [35–37] these singular terms should
be regularized with the use of equality

lim
ε→0

Re
∫ 1

0
dω

(
1

a − ω + iε

)2

= 1

a(a − 1)
. (68)

The regularization Eq. (68) holds with two special assump-
tions.

(1) We have to keep the Feynman parameters iε in both
energy denominators in Eq. (64) and below as equal to each
other.

(2) In Eq. (68) we have first to integrate over ω and only
then evaluate the limit ε → 0.

Both assumptions are not evident, but in the next section
we will present a justification for them.

In the nonrelativistic limit in the “length” form Eq. (64) after
integration over the photon emission directions and summation
over the photon polarizations reduces to

�
2γ

Ak = e4 lim
ε→0

Re
∫ βAk

0

ω3 (βAk − ω)3

24π3

∑
n

×
{

(�r)kn(�r)nA

EA − ω − En(1 − iε)
+ (�r)kn(�r)nA

(Ek − En)(1 − iε) + ω

}
×
∑
m

{
(�r)∗km(�r)∗mA

EA − ω − Em(1 − iε)

+ (�r)∗km(�r)∗mA

(Ek − Em)(1 − iε) + ω

}
dω, (69)

where (. . .)ab denote the matrix elements with the Schrödinger
wave functions ψ∗

a , ψb. The double pole contribution in
Eq. (69) should be understood according to Eq. (68). Fol-
lowing [35–37] we performed also the numerical calculations
of the widths �

2γ

Ak with indices A,k running through the
set of nl states: for A n(m) = 2, . . . ,5,l = 0,1,2,3, for k

n(m) = 1, . . . ,4,l = 0,1,2. The results are summarized in
Table III. We should stress once more, that the widths �

2γ

Ak

cannot be considered as the “pure” two-photon transition rates,
but present the two-photon contributions to the total level
width. This statement is supported by the circumstance that
some quantities �

2γ

Ak appear to be negative (see Table III).
This prevents the treatment of �

2γ

Ak as transition rates. Our
calculations in Table III were performed in three different

ways: (1) direct summation over the entire H spectrum in
Eq. (69) using the “length” form of the matrix elements;
(2) the same with the “velocity” form of the matrix elements;
and (3) the use of the Coulomb Green’s function. All the results
coincide with three to six digits.

VI. APPLICATION OF THE ADIABATIC
S-MATRIX THEORY

In the Sec. V Eqs. (52) and (53) for the energy level shift
were applied for the evaluation of the two-photon width �

2γ

A of
the energy level A as an imaginary part of the total energy shift
EA. As was already mentioned in Sec. V, the applicability
of Eqs. (52) and (53) was proven for the corrections described
by the irreducible Feynman graphs in Refs. [31,39]. This
proof was based on the adiabatic S-matrix theory, i.e., on the
Gell-Mann and Low formula [43] modified by Sucher [44], and
on an assumption that the energy denominators in the S-matrix
elements corresponding to the irreducible Feynman graphs
never turn to zero. The imaginary parts of the irreducible
Feynman graphs in Figs. 6 and 7, wherefrom we extract the
two-photon width contribution, contain singular denominators

TABLE III. The widths �
2γ

Ak for the hydrogen atom (in s−1). With
the (∗) are denoted the values calculated earlier in Refs. [35–37].

state n′

nl n′l 1 2 3 4
8.229355

2s n′s – – –
8.229352 ∗

2.083086
3s n′s 0.064531 – –

2.082853 ∗

1.042708
3d n ’s 0.000776 – –

1.042896 ∗

0.699717
4s n′s 0.016843 0.002925 –

0.698897 ∗ –

4s n′d – – 9.69 × 10−6 –
4p n′p – 0.015623 0.002503 –

0.598406
4d n′s −0.007319 0.000030 –

0.598798 ∗

4d n′d – – 0.001685 –
4f n′p – 0.031754 0.000044

0.288117
5s n′s 0.081741 0.000704 0.000298

0.287110 ∗

5s n′d – – −0.000028 1.82×10−6
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as was shown in Sec. V. Though this singularity can be avoided
with the help of the formula (68), we would like to support the
derivations made in Sec. V, by another approach which does
not refer to Eqs. (52) and (53) and is based directly on the
Gell-Mann-Low-Sucher adiabatic S matrix.

The adiabatic S-matrix approach was applied by the authors
of [33] for the description of the one- and two-photon transi-
tions with cascades. A general approach and the one-photon
part of the studies in Ref. [33] are fully adequate, but the two-
photon part including the cascade contribution requires revi-
sion. The Gell-Mann-Low-Sucher formula for the energy shift
EA for an electron in the one-electron atom or ion looks like

EA = lim
η→0

1

2
iη

e ∂
∂e

〈A|Ŝη|A〉
〈A|Ŝη|A〉 , (70)

where e is the electron charge (absolute value). The adiabatic
S matrix Sη differs from the ordinary S matrix by the presence
of the adiabatic exponential factor e−η|t | in the every vertex.
The level shift is considered with respect to the zero-order
Dirac energy of the level E0

A. The shift may be caused by
the radiative corrections or by the interelectron interaction
corrections in a few-electron atom. An imaginary part of the
energy shift due to the radiative corrections corresponds to
the radiative widths of the levels, an imaginary part of the
second-order interelectron interaction corrections corresponds
to the Auge width [39]. The use of Eq. (70) helps to avoid the
assumption (1) made in the previous section.

The first evaluation of the first- and second-order energy
shift due to the Coulomb interelectron interaction was given
in Ref. [45], the first evaluation of the imaginary part of EA

(radiative correction to the one-photon decay of the excited
state in one-electron atom) was made in Ref. [40].

For a one-electron atom (ion) in the state |A〉 interacting
with the photon vacuum a complex energy correction EA

contains only the diagonal S-matrix elements of even order.
The expansion of Eq. (67) up to the fourth order in e reads
[45]

EA = lim
η→0

iη
[〈A|Ŝ(2)

η |A〉 + 2〈A|Ŝ(4)
η |A〉 − 〈A|Ŝ(2)

η |A〉2
]
.

(71)

Separating the real and imaginary parts of the matrix element
〈A|Ŝ(i)

η |A〉 and using Eqs. (50) and (71) results [33]

�A = − lim
η→0

η
[
Re〈A|Ŝ(2)

η |A〉 + 2Re〈A|Ŝ(4)
η |A〉

+ ∣∣〈A|Ŝ(2)
η |A〉∣∣2 − 2

(
Re〈A|Ŝ(2)

η |A〉)2]
. (72)

Equation (72) is valid up to the e4 terms inclusively.
For further analysis in Ref. [33] using the optical theorem

was suggested. This theorem is a consequence of the unitarity

of the S matrix and in the general way can be formulated via
the introduction of the T matrix

Ŝ = 1 + iT̂ . (73)

Then the optical theorem reads

i(T̂ − T̂ +) = −T̂ +T̂ = −T̂ T̂ +. (74)

In terms of the matrix elements Eq. (74) looks like

2Im〈I |T̂ |I 〉 =
∑
F

|〈F |T̂ |I 〉|2, (75)

where the wave function |I 〉 corresponds to the initial excited
state of an atomic electron and the photon vacuum and the
summation in Eq. (75) runs over the states |F 〉, corresponding
to the final (not necessarily ground) state of atomic electron
plus a number (one or two in our case) of photons. Using the
optical theorem in the form Eq. (75) and the relation between
the matrix elements

Re〈I |Ŝ(i)|I 〉 = −Im〈I |T̂ (i)|I 〉, (76)

where i = 1,2, . . ., the following equality can be derived [33]

−2Re〈I |Ŝ(2i)|I 〉 =
∑
F

|〈F |Ŝ(i)|I 〉|2 +
∑
F

∑
j<i

2Re〈I |

× Ŝ(2j )|F 〉〈F |Ŝ(2i−j )|I 〉. (77)

For the fourth-order matrix elements of our interest Eq. (77)
results

−2Re〈I |Ŝ(4)|I 〉 =
∑
F

|〈F |Ŝ(2)|I 〉|2

+
∑
F

∑
j<i

2Re〈I |Ŝ(1)|F 〉〈F |Ŝ(3)|I 〉.

(78)

The last term in Eq. (78) represents evidently the radiative
correction to the one-photon width evaluated in Ref. [40] and
will not be discussed here anymore.

As it was argued in Ref. [33], it is also possible to apply the
optical theorem to the adiabatic S matrix. Then from Eq. (72) it
follows for I = A,0γ (excited state, no photons) an expression
for the two-photon width

�
2γ

A = lim
η→0

η

{
2

∑
F �=A,0γ

∣∣〈F |Ŝ(2)
η |A,0γ 〉∣∣2

+ 4
(
Re〈A,0γ |Ŝ(2)

η |A,0γ 〉)2
}
. (79)

It should be noted that the state F = A,2γ formally is present
in the sum over F in Eq. (79). So we can rewrite Eq. (79)
finally in the form

�
2γ

A = lim
η→0

η

⎧⎪⎪⎪⎨⎪⎪⎪⎩2
∑

F �= A,0γ

F �= A,2γ

∣∣〈F |Ŝ(2)
η |A,0γ 〉∣∣2 + 2

∣∣〈A,2γ |Ŝ(2)
η |A,0γ 〉∣∣2 + 4

(
Re〈A,0γ |Ŝ(2)

η |A,0γ 〉)2

⎫⎪⎪⎪⎬⎪⎪⎪⎭ . (80)
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The middle term in Eq. (80) corresponds to the apparently nonphysical transition A → A + 2γ as canceled by the last term as it
was shown in Ref. [33]. The summation over F in Eq. (79) assumes also an integration over the wave vectors of both the emitted
photons and summation over the photon polarizations.

Note that our analysis of Eq. (80) differs from that in Ref. [33]. Below we will demonstrate that this analysis leads to the same
conclusions as in Sec. V.

The substitution of the corresponding matrix elements in Eq. (80) and integration over photon frequency leads to

�
2γ

A =
∑
F

�
2γ

AF = lim
η→0

e4

24π3

∑
F

{∑
e e′

∫
dνdν ′

∫
dω ω(ω0 − ω)

×
∑

n

∣∣∣∣ [(�e′ ∗ �α)e−i�k′ �r ]Fn[(�e ∗ �α)e−i�k�r ]nA

En − EA + ω + iη
+ [(�e ∗ �α)e−i�k�r ]Fn[(�e′ ∗ �α)e−i�k′ �r ]nA

En − EF − ω + iη

∣∣∣∣2
}

. (81)

To demonstrate that Eqs. (81) and (66) coincide with each other in the presence of cascades (in the absence of cascades it
is obvious since both amplitudes are pure real) it is convenient to consider transition 3s → 1s + 2γ (A = 3s, F = 1s) as an
example:

�
2γ

3s,1s = lim
η→0

e4

24π3

∑
e e′

∫
dνdν ′

∫
dω ω(ω0 − ω)

∑
n

∣∣∣∣ [(�e′ ∗ �α)e−i�k′ �r ]1sn[(�e ∗ �α)e−i�k�r ]n3s

En − E3s + ω + iη
+ [(�e ∗ �α)e−i�k�r ]1sn[(�e′ ∗ �α)e−i�k′ �r ]n3s

En − E1s − ω + iη

∣∣∣∣2.
(82)

The resonant terms when n = 2p in Eq. (82) are

�
2γ,res.1
3s−2p−1s = lim

η→0

e4

24π3

∑
e e′

∫
dνdν ′

∫
dω ω(ω0 − ω)|[(�e′ ∗ �α)e−i�k′ �r ]1s2p[(�e ∗ �α)e−i�k�r ]2p3s |2

∣∣∣∣ 1

E2p − E3s + ω + iη

∣∣∣∣2 (83)

and

�
2γ,res.2
3s−2p−1s = lim

η→0

e4

24π3

∑
e e′

∫
dνdν ′

∫
dω ω(ω0 − ω)|[(�e′ ∗ �α)e−i�k′ �r ]1s2p[(�e ∗ �α)e−i�k�r ]2p3s |2

∣∣∣∣ 1

E2p − E1s − ω + iη

∣∣∣∣2. (84)

It is important to note that parameter η in both Eqs. (83) and (84) is the same. The limit η → 0 in the adiabatic theory should be
evaluated after all the integrations are performed. This justifies the assumptions made in the previous section.

The equality

lim
ε→0

∫ 1

0
dω

∣∣∣∣ 1

a − ω + iε

∣∣∣∣2 = π

ε
+ 1

a(a − 1)
+ O(ε2) (85)

employed in Ref. [35] being applied to Eq. (84) yields the positive contribution +π
η

while for Eq. (83) it gives negative
contribution −π

η
. So these singular terms cancel each other in Eq. (82) after using Eq. (85). Having in mind Eq. (68), we can

write the following chain of equalities for two resonant terms in Eq. (82):

lim
η→0

∫ 1

0
dω

∣∣∣∣ 1

a − ω + iη

∣∣∣∣2 + lim
η→0

∫ 1

0
dω

∣∣∣∣ 1

a′ − ω − iη

∣∣∣∣2 = π

η
+ 1

a(a − 1)
− π

η
+ 1

a′(a′ − 1)
+ O(η2)

= lim
η→0

Re
∫ 1

0
dω

(
1

a − ω + iη

)2

+ lim
η→0

Re
∫ 1

0
dω

(
1

a′ − ω + iη

)2

.

(86)

Substituting Eq. (87) in Eq. (82) finally we have

�
2γ

3s,1s = e4 lim
η→0

Re
∫ ω0

0

(
ω(ω0 − ω)

24π3

∫
d�νd�ν ′ ∑

�e �e ′

∑
n

{
[(�e ′ ∗ �α)e−i�k ′ �r ]1sn[(�e ∗ �α)e−i�k�r ]n3s

En − E3s + ω + iη
+ [(�e ∗ �α)e−i�k�r ]1sn[(�e ′ ∗ �α)e−i�k ′ �r ]n3s

En − E1s − ω + iη

}

×
∑
m

{
[(�e ∗ �α)e−i�k�r ]∗1sm[(�e ′ ∗ �α)e−i�k ′ �r ]∗m3s

Em − E3s + ω + iη
+ [(�e ′ ∗ �α)e−i�k ′ �r ]∗1sm[(�e ∗ �α)e−i�k�r ]∗m3s

Em − E1s − ω + iη

})
dω. (87)

The final equation for �
2γ

3s,1s fully coincides with Eq. (67) for A = 3s, k = 1s.
The approach described above can be applied also for the evaluation of transition rate W

2γ

3s,1s , however, in this case the
singular terms in Eq. (87) will not cancel each other. Actually each electron propagator in the two-photon decay rate amplitude
has a different infinitesimal parameter ε and the limits with respect to these parameters should be taken independently.
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Thus the singularity remains in the cascade terms in the
two-photon transition rate and should be regularized as it was
described in Sec. III.

VII. CONCLUSION

To summarize the results of our present studies we should
mention first that we believe that we have presented a
convincing demonstration of the inseparability of the con-
tributions of cascades and “pure” two-photon transitions in
the total two-photon transition rates. We have shown with
a high numerical accuracy of calculations that, while the
“pure” two-photon and interference contributions can vary
essentially with the choice of the method of calculation, the
total two-photon transition rates remains strongly invariant.
For the regularization of the cascade (singular) terms in the
expressions for the two-photon decay rates we employed
the QED procedure suggested by Low [32]. This procedure
in an unambiguous way introduces the level width �A in
the “dangerous” energy denominators. These widths are the
imaginary parts of the corresponding radiative level shifts.
The dominant contributions to these widths come from the
one-photon width �

1γ

A , which can be presented as a sum of
the one-photon transition rates to the lower levels [Eq. (2)].
However, in principle �A should contain also a two-photon
part �

2γ

A . If �
2γ

A would also coincide with the sum of the total
two-photon decay rates (including cascades), the perturbation
theory for the imaginary part of the radiative energy level
shift would not exist: cascade contributions are always of the
same order (parametrically) as the one-photon widths. Our
analysis shows that it does not happen. An explicit evaluation

of the two-photon contributions to the imaginary part of the
radiative level shift shows that the cascades do not contribute
to this imaginary part. The “dangerous” denominators do not
require regularization and reduce to the finite terms, so that
the two-photon width �

2γ

A does not violate the perturbation
theory [see Eq. (7)]. The most important (and new) statement
made in the present work is expressed by an inequality (6): the
two-photon transition rate in the presence of cascades does not
coincide with the two-photon width evaluated as an imaginary
part of the radiative level shift. The two-photon transition
rate W 2γ contains singularity corresponding to the cascades
and requires regularization. The two-photon width �

2γ

A is
finite and presents a small correction to the one-photon width
�

1γ

A . For the one-electron ions with only E1 photons taken
into account �

1γ

A ∼ mα(αZ)4 r.u., where m is the electron
mass, α is the fine structure constant, and Z is the nuclear
charge. For the two-photon width the corresponding estimate
is �

2γ

A ∼ mα2(αZ)6, so that the inequality (7) always holds.
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