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Spatial search by continuous-time quantum walks on crystal lattices
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We consider the problem of searching a general d-dimensional lattice of N vertices for a single marked item
using a continuous-time quantum walk. We demand locality, but allow the walk to vary periodically on a small
scale. By constructing lattice Hamiltonians exhibiting Dirac points in their dispersion relations and exploiting the
linear behavior near a Dirac point, we develop algorithms that solve the problem in a time of O(

√
N ) for d > 2

and O(
√

N log N ) in d = 2. In particular, we show that such algorithms exist even for hypercubic lattices in any
dimension. Unlike previous continuous-time quantum walk algorithms on hypercubic lattices in low dimensions,
our approach does not use external memory.
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I. INTRODUCTION

A basic application of quantum computation is solving the
problem of finding a marked item among N items. A classical
computer takes �(N ) steps to find this item with constant
probability, but Grover’s algorithm [1] shows that a quantum
computer can solve this problem using only O(

√
N ) steps,

which is optimal [2].
However, Grover’s algorithm is unsuited to searching

physical databases as it requires performing a reflection
about a superposition of all possible items. If the items
are distributed in space then this reflection is a nonlocal
operation. A locally realizable search algorithm requires that
the items are distributed in a d-dimensional space and that
the quantum computer (viewed as a “quantum robot” [3])
can only perform local operations to explore this database.
Aaronson and Ambainis [4] constructed such an algorithm that
finds a marked item in the optimal time of O(

√
N ) in d > 2

dimensions and O(
√

N poly(log N )) in d = 2. Their algorithm
uses a carefully optimized recursive search on subcubes, which
raises the question of whether simpler algorithms with the
same running time (or better in d = 2) can be constructed.

Quantum walks on lattices provide a natural framework
for the spatial search problem. Given an N -vertex graph G, a
continuous-time quantum walk is governed by a Hamiltonian
H acting on the N -dimensional Hilbert space spanned by
the states |v〉 for all vertices v of G. A general state |ψ(t)〉
is described by N complex amplitudes ψv(t) = 〈v|ψ(t)〉 and
evolves according to the Schrödinger equation

i
dψv(t)

dt
=

∑
w

Hvwψw(t). (1)

For the spatial search problem, we start in a state |s〉 that is
independent of the marked item and easy to construct (e.g.,
the uniform superposition of all vertices) and evolve |s〉 for
a prescribed time, after which we measure the state in the
vertex basis. The algorithm is successful if the result of the
measurement can be used to guess the marked item with con-
stant probability (or with a sufficiently large probability that
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can be amplified with reasonable computational overhead). We
require that H is local in the sense that Hvw is nonzero only if
v and w are adjacent in G.

Following previous continuous-time quantum walk algo-
rithms for spatial search, we choose H to be of the form

H = H0 + Horacle, (2)

where H0 is the lattice Hamiltonian, which is independent of
the marked item, and Horacle is the oracle Hamiltonian, which
perturbs the lattice Hamiltonian to single out the marked item.
We require that H0 is local and that the support of Horacle is
localized within a constant radius around the marked item.

Quantum walk algorithms for spatial search have been stud-
ied previously. In Ref. [5], Childs and Goldstone considered
the case where G is a hypercubic lattice in d dimensions
and H0 is its adjacency matrix (or equivalently, its Laplacian
matrix). It was found that the full quantum speedup of
O(

√
N ) could be achieved in d > 4 dimensions, whilst for

the “critical” dimension d = 4, a time of O(
√

N log N ) is
required for a constant probability of success. However, for
d < 4, the algorithm does not provide quadratic speedup over
classical algorithms. Subsequently, Ambainis, Kempe, and
Rivosh [6] found a discrete-time quantum walk algorithm that
runs in time O(

√
N ) for d > 2 and O(

√
N log N ) for d = 2.

Unlike the continuous-time case, a discrete-time quantum walk
cannot be defined on the state space of the graph alone but
instead requires a coupling to additional degrees of freedom
usually called “coins.” Following [6], Childs and Goldstone
[7] developed a continuous-time quantum walk algorithm
with similar coin registers that has the same performance.
In the analysis of [5], the failure of the algorithm in d < 4
can be viewed as a consequence of a quadratic dispersion
relation near the ground state of H0, which is the starting state
of the algorithm. Inspired by the Dirac equation, additional
“spin” degrees of freedom were introduced as coin registers to
construct a Hamiltonian with a “Dirac point” in the dispersion
relation. The linear behavior of the dispersion relation near
this point was exploited to reduce the critical dimension from
d = 4 to d = 2. Recently, Foulger, Gnutzmann, and Tanner [8]
noted that the similar dispersion relation found in the adjacency
matrix of a honeycomb lattice can be used to construct a
continuous-time quantum walk algorithm with running time
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FIG. 1. (Color online) Schematic representation of embedding
coin degrees of freedom into the lattice as additional vertices. The
resulting new lattice, which in general will not be isomorphic to
a simple hypercubic lattice, is a crystal of cells, each containing
a number of vertices equal to the dimension of the coin. A naive
embedding of the oracle Hamiltonian turns the marked item into an
entire marked cell.

O(
√

N log N ) in two dimensions without a coin degree of
freedom.

In this paper we construct Hamiltonians for efficient spatial
search algorithms on hypercubic lattices in d � 2 dimensions
that do not use external memory. We do this by introducing
periodic inhomogeneities to the lattice Hamiltonian H0 instead
of taking the adjacency matrix of the graph (which is
homogenous across the lattice). This can be naturally treated
as a crystal consisting of a periodic lattice with multiple items
at each lattice site (sometimes called a lattice with a basis). The
periodic inhomogeneities enable us to construct Hamiltonians
with Dirac points, which in turn allows us to reduce the critical
dimension from d = 4 in Ref. [5] to d = 2.

More generally, we present a framework for describing
spatial search algorithms using continuous-time quantum
walks on arbitrary crystal lattices (subject to certain technical
conditions). This construction naturally generalizes the results
of [8] and is closely related to the ones described in Ref. [7].
The basic idea, similar to the staggered fermion formalism
[9], is that coin degrees of freedom can be embedded into the
lattice as additional vertices, where the coin registers become
cells in the crystal and each cell contains a number of vertices
equal to the dimension of the coin space (see Fig. 1). Of
course, a naive implementation of this embedding does not
result in a hypercubic lattice since the interactions of the coin
registers and the original lattice introduce additional edges in
the graph, and furthermore turn the marked item into an entire
marked cell rather than a single marked vertex. Nevertheless,
we show that with further modifications, the structure of a
hypercubic lattice can be recovered. The items within a cell
can be viewed as an effective coin, but by a careful choice of
oracle Hamiltonian, our approach allows for any vertex to be
a possible marked item. As such, the degrees of freedom in
our approach correspond directly to the items in the database,
unlike in Ref. [7] where the coin is represented using external
memory.

Similar algorithms without additional memory have been
proposed and studied numerically for both continuous- and
discrete-time quantum walks [10–13]. In Ref. [14], Ambainis,
Portugal, and Nahimov rigorously analyze the behavior of the
discrete-time algorithm proposed in Ref. [13], which uses a
“staggered” quantum walk consisting of different unitaries at
even and odd time steps obtained by different tesselations of

the lattice, and obtain the same complexity of O(
√

N log N )
for a two-dimensional search.

The remainder of the paper is organized as follows. In
Sec. II we achieve the same performance as in Ref. [7] on a
low-dimensional hypercubic lattice without coin registers by
constructing Hamiltonians exhibiting Dirac points. We then
develop a framework for searches on arbitrary crystal lattices
in Sec. III, generalizing the algorithm on the hypercubic lattice
from Sec. II and the algorithm on the honeycomb lattice found
in Ref. [8]. In Sec. III B we present several examples of crystal
lattices on which efficient search algorithms can be performed.
Finally, we conclude in Sec. IV with a brief discussion of the
results and some open questions.

II. SEARCH ON THE d-DIMENSIONAL HYPERCUBIC
LATTICE

In this section we consider searching a d-dimensional
hypercubic lattice of N vertices. We construct an algorithm
that finds the marked item in time O(

√
N ) with constant

probability for d > 2 and time O(
√

N log N ) with probability
�(1/

√
log N ) for d = 2. In the latter case, amplitude amplifi-

cation [15] can be used to find the marked item with constant
probability in time O(

√
N log N ).

A. Search Hamiltonian

We label the N = Ld vertices of a d-dimensional hypercu-
bic lattice by v ∈ [L]d , where [m] := {1, . . . ,m}. The Hilbert
space of the quantum walk is

H := span{|v〉 : v ∈ [L]d}. (3)

On this space, consider the lattice Hamiltonian H0 with

H0 |v〉 =
d∑

i=1

(−1)v1+···+vi (|v + ei〉 − |v − ei〉), (4)

where ei is the unit vector in the ith direction.
We take L even and impose periodic boundary conditions,

so that this Hamiltonian is invariant under translations of
length 2, that is, H0 commutes with the translation operators
Ti defined by

Ti |v〉 = |v + 2ei〉 . (5)

It is therefore convenient to consider the lattice as a crystal con-
sisting of n := N/2d cells, each a d-dimensional hypercube
with 2d vertices (see Fig. 2). We define l := L/2.

We can thus write

|v〉 = |x,σ 〉 , (6)

where x ∈ [l]d labels the cell and σ ∈ Zd
2 labels the vertex

within the cell, with

xi =
⌊

vi

2

⌋
, (7)

σ = v − 2x. (8)
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FIG. 2. (Color online) Dividing the hypercubic lattice into n

hypercubes (cells), each with 2d vertices.

Writing σi := 1 − σi to denote the logical negation of the ith
component of σ , the lattice Hamiltonian acts as

H0 |x,σ 〉 =
d∑

i=1

(−1)si (σ )(|x + σiei,σ + ei〉

− |x − σiei,σ + ei〉), (9)

where si(σ ) := σ1 + · · · + σi . Translational invariance by (5)
implies that H0 is block-diagonal of block size 2d in the Fourier
basis given by

|k,σ 〉 := 1√
n

∑
x∈[l]d

eik·x |x,σ 〉 , (10)

ki = 2πmj

l
, mj ∈ [l]. (11)

In particular,

H0 |k,σ 〉 =
d∑

i=1

(−1)si (σ )(e−ikiσi − eikiσi ) |k,σ + ei〉 (12)

=
d∑

i=1

(−1)si (σ )[(−1)σi (1 − cos ki) − i sin ki]

× |k,σ + ei〉 . (13)

We can thus write

H �
⊕

k

Hk (14)

and

H0 =
∑

k

H0(k), (15)

where Hk := span{|k,σ 〉 : σ ∈ Zd
2} and each H0(k) acts only

on Hk . To find the eigenvalues of H0, notice that

H0(k)2 |k,σ 〉 = E(k)2 |k,σ 〉 , (16)

�Π

� Π

2 0
Π

2
Π

k1 � Π

2

0

Π

2

Π

k2

�2

0

2

��k�

FIG. 3. (Color online) Dispersion relation for d = 2.

where

E(k) :=
√√√√ d∑

i=1

[sin2 ki + (1 − cos ki)2]. (17)

Thus the eigenvalues of H0(k) are ±E(k) and because
Tr H0(k) = 0 (indeed, 〈k,σ | H0 |k,σ 〉 = 0 for all k,σ ), both
eigenvalues have multiplicity 2d−1. Notice that k = 0 is the
unique value of k for which E(k) = 0 and that near k = 0 the
dispersion relation (17) behaves linearly: E(k) ≈ |k| for small
values of k (see Fig. 3).

The full algorithm is as follows. Suppose |w,α〉 is the
marked item (where w ∈ [l]d labels the hypercube and α ∈ Zd

2
the vertex within the hypercube). We begin in the uniform
superposition of all items with σ = α,

|s〉 := 1√
n

∑
x

|x,α〉 , (18)

and evolve with the Hamiltonian

H := H0 + Horacle (19)

for some time T , where

Horacle := − |w,α〉 〈w,α| H0 − H0 |w,α〉 〈w,α| (20)

is the oracle Hamiltonian, generalizing the expression chosen
in Ref. [8]. Notice that this choice differs from the naive choice
of Horacle ∝ |w,α〉 〈w,α| used in Ref. [5]. This modification
accounts for the symmetry of the dispersion relation (17) and
the fact that the graph is 2d -partite in the site label σ ∈ Zd

2 (we
discuss this choice further in Sec. III).

We will show that, for d � 3, the evolved state e−iHT |s〉
has constant overlap with the normalized state

|�〉 := 1√
2d

H0 |w,α〉 (21)

after time T = O(
√

N ) [see Fig. 4(b) for a numerical
example]. Since |�〉 only has nonzero amplitudes on the
neighbors of |w,α〉, we thus find a neighbor of |w,α〉 with
constant probability, which in turn lets us guess |w,α〉 itself
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FIG. 4. (Color online) Numerical values of | 〈�| e−iHT |s〉 |2 for
increasing lattice sizes. (a) In d = 2, the squared overlap at T =√

π

64 N log N is �(1/log N). (b) In d = 3, the squared overlap at T =
π

2

√
I2,3N is approximately 1/8I2,3, where I2,3 is a constant defined

below.

with constant probability of success. As in previous quantum
search algorithms [1,5–8], the success probability oscillates
and a measurement should be performed at the correct time to
maximize the success probability (see Fig. 5). For d = 2, the
overlap is �(1/

√
log N ) after time T = O(

√
N log N ) [see

Fig. 4(a)], so amplitude amplification can be used to obtain
constant overlap with |�〉 after time O(

√
N log N ). Notice,

however, that |s〉 depends on α, which in turn depends on
the unknown marked item. Therefore, we run the algorithm
multiple times with different starting states, once for each of
the 2d possible values for α. For fixed d, this increases the
overall complexity only by a constant factor.

B. Analysis of the algorithm

To analyze the algorithm, we determine the spectrum of
H using the spectrum of H0. We use similar techniques as in
Refs. [5–8].

First, notice that 〈w,α| H0 |w,α〉 = 0 implies

H |w,α〉 = 0, (22)

i.e., |w,α〉 is an eigenvector of H with eigenvalue zero. Let
|ψa〉 be an eigenvector of H of eigenvalue Ea 	= 0, which we
assume to be not in the spectrum of H0. Then, in particular,

Ea 〈w,α|ψa〉 = 〈w,α| H |ψa〉 = 0, (23)

0 10 20 30 40
0

0.2

0.4

0.6

t

e
H

t
s

2

FIG. 5. Time-dependent squared overlap | 〈�| e−iH t |s〉 |2 for an
8 × 8 × 8 cubic lattice.

so

〈w,α|ψa〉 = 0. (24)

Now, H |ψa〉 = Ea |ψa〉 and (24) imply that

(H0 − Ea) |ψa〉 = |w,α〉 〈w,α| H0 |ψa〉 (25)

and, since we assumed that Ea is not in the spectrum of H0,
this implies that

|ψa〉 =
√

Ra(H0 − Ea)−1 |w,α〉 , (26)

where √
Ra := 〈w,α| H0 |ψa〉 	= 0. (27)

By choice of phase, we can assume without loss of generality
that

√
Ra > 0. Then (24) implies the eigenvalue condition

F (Ea) = 0, (28)

where

F (E) := 〈w,α| (H0 − E)−1 |w,α〉 . (29)

Note that (28) differs from the eigenvalue condition obtained in
Refs. [5,7], which was F (Ea) = 1. This is a direct consequence
of the different choice of the oracle Hamiltonian (20).

So far, we have only shown that (28) is a necessary condition
for Ea to be an eigenvalue of H , but (28) is also sufficient
for Ea to be an eigenvalue. Indeed, suppose that Ea 	= 0
is not contained in the spectrum of H0 and satisfies (28).
The existence of a vector |ψa〉 satisfying H |ψa〉 = Ea |ψa〉
is equivalent to the existence of a vector |ψa〉 satisfying

|ψa〉 = (H0 − Ea)−1 |w,α〉 〈w,α| H0 |ψa〉
+ (H0 − Ea)−1H0 |w,α〉 〈w,α|ψa〉 . (30)

Equivalently, the operator

X(Ea) := (H0 − Ea)−1 |w,α〉 〈w,α| H0

+ (H0 − Ea)−1H0 |w,α〉 〈w,α| (31)

has an eigenvalue of 1. Since

(H0 − Ea)−1H0 = 1 + (H0 − Ea)−1Ea, (32)

the assumption (28) implies that

〈w,α| (H0 − Ea)−1H0 |w,α〉 = 1, (33)

so that

X(Ea)† |w,α〉 = |w,α〉 . (34)

But since a finite-dimensional Hermitian operator has the same
eigenvalues as its adjoint, X(Ea) also has an eigenvalue 1.

Furthermore, notice that normalization of (26) implies that

R−1
a = 〈w,α| (H0 − Ea)−2 |w,α〉 = F ′(Ea). (35)

We also need the overlaps of the eigenvectors of H with the
starting state. By taking the inner product of (18) and (26), we
find

〈ψa|s〉 = −
√

Ra

Ea

√
n

= − 1

Ea

√
nF ′(Ea)

. (36)

For k 	= 0, let H±
k < Hk be the eigenspaces of the eigen-

values ±E(k), respectively, and let P ±
k be the projectors onto
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H±
k . Furthermore, let P0 be the projector onto H0. For k 	= 0,

we have

H0(k) = E(k)(P +
k − P −

k ) (37)

and

Pk := P +
k + P −

k =
∑
σ∈Zd

2

|k,σ 〉 〈k,σ | . (38)

Equations (38) and (10) imply that, for all k,

‖Pk |w,α〉‖2 =
∑
σ∈Zd

2

| 〈w,α|k,σ 〉 |2 = 1

n
. (39)

Let H̃0 be the restriction of H0 to the subspace

H̃ :=
⊕
k 	=0

Hk. (40)

Notice that H̃0 is invertible. Let |w0〉 := P0 |w,α〉 ∈ H0 and
|w̃〉 := |w,α〉 − |w0〉 ∈ H̃ be the projections of |w,α〉 onto H0

and H̃, respectively.
Since H0 |w0〉 = 0, we can write (29) as

F (E) = −‖|w0〉‖2 1

E
+ 〈w̃| (H0 − E)−1 |w̃〉 (41)

= − 1

nE
+ 〈w̃| (H̃0 − E)−1 |w̃〉 , (42)

where the last equality follows from (39).
We now analyze the eigenvalue condition (28) by Taylor

expansion. We rigorously justify these approximations in
Sec. II D. If |E| � E(k) for all k 	= 0, we can Taylor expand
the second term in Eq. (42) to obtain

F (E) ≈ − 1

nE
+ 〈w̃| H̃−1

0 |w̃〉 + E 〈w̃| H̃−2
0 |w̃〉 . (43)

The middle term vanishes since 〈w,α| H0(k) |w,α〉 = 0 for
all k, so

〈w̃| H̃−1
0 |w̃〉 =

∑
k 	=0

1

E(k)
〈w,α| (P +

k − P −
k ) |w,α〉

=
∑
k 	=0

1

E(k)2
〈w,α| H0(k) |w,α〉 = 0. (44)

In d > 2 dimensions, using (39) we can approximate the last
term as

〈w̃| H̃−2
0 |w̃〉 =

∑
k 	=0

‖Pk |w,α〉‖2 1

E(k)2
(45)

= 1

n

∑
k 	=0

1

E(k)2
(46)

≈ 1

(2π )d

∫ π

−π

ddk

E(k)2
=: I2,d , (47)

where the integral converges for d > 2 (see Table I for
numerical values of I2,d ).

We thus obtain

F (E) ≈ − 1

nE
+ I2,dE, (48)

TABLE I. Numerical values for I2,d .

d I2,d

3 0.2527
4 0.1549
5 0.1156
6 0.0931

which by (28) gives us the eigenvalues

E± ≈ ± 1√
nI2,d

. (49)

Notice that they indeed satisfy |E±| � E(k) for all k 	= 0. It
furthermore can be shown (see Sec. II D) that for these values
of E±, the higher-order terms in Eq. (43) are negligible. Using
(48), we also obtain

F ′(E±) ≈ 2I2,d . (50)

Let |ψ±〉 be the corresponding eigenstates of H . Using (36),
we see that 〈ψ±|s〉 ≈ ∓ 1√

2
, so the starting state is

|s〉 ≈ 1√
2

(|ψ−〉 − |ψ+〉). (51)

Evolving for time T = π/(2|E±|) gives (up to a global phase)
the state

e−iHT |s〉 ≈ 1√
2

(|ψ−〉 + |ψ+〉), (52)

which by (27) and (35) has an overlap with |�〉 [defined in
Eq. (21)] of approximately

|〈�| e−iHT |s〉| ≈ 1√
2d+1

(
1√

F ′(E−)
+ 1√

F ′(E+)

)

≈ 1√
2dI2,d

, (53)

which is constant.
For d = 2, the integral I2,d diverges logarithmically. Specif-

ically, Eqs. (48)–(53) hold with I2,d replaced with

I2,d = 1

4π
log N + O(1), (54)

which can be seen as follows. The smallest nonzero value
of k satisfies |k| = 2π/l. Letting U := {k ∈ [−π,π ]d : |k| �
2π/l}, we can approximate the last term of (43) as

〈w̃| H̃−2
0 |w̃〉 = 1

n

∑
k 	=0

1

E(k)2
(55)

= 1

(2π )2

∫
U

d2k

E(k)2
+ O(1) (56)

= 1

2π

∫ π

2π
l

dk

k
+ O(1) (57)

= 1

4π
log N + O(1). (58)

Thus we find that evolving for a time T = O(
√

N log N )
produces a state with an overlap of �(1/

√
log N ) on |�〉.
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C. Fine-tuning the Hamiltonian

In previous continuous-time quantum walk algorithms for
spatial search [5,7], the full Hamiltonian was of the form

H = γH0 + Horacle, (59)

where γ was an adjustable parameter that had to be fine-tuned
to a critical value. In the analysis above, we have already
implicitly tuned this parameter to γ = 1, which is the critical
value for this algorithm. In practice, this exact fine-tuning
might be difficult to achieve. We now briefly consider the
effect of varying γ away from 1.

It is easy to verify that if the Hamiltonian is replaced with
(59), the eigenvalue condition (28) becomes

F (Ea) = f (γ )

Ea

, (60)

where now

F (E) := 〈w,α| (γH0 − E)−1 |w,α〉 (61)

and f (γ ) := (γ − 1)2/(2γ − 1). Repeating the analysis of
Sec. II B results in the eigenvalues

E± = ±
√

γ 2[1 + nf (γ )]

nI2
. (62)

For γ close to 1, f (γ ) = (γ − 1)2 + O((γ − 1)4). Thus the
algorithm behaves similarly provided γ can be fine-tuned to a
precision of |γ − 1| = o(1/

√
N ).

D. Validity of Taylor expansion

We now give a rigorous justification of the approximations
used in Eqs. (43)–(50). Notice that we only need to justify these
steps for E = �(1/

√
n) for d � 3 and E = �(1/

√
n log n)

for d = 2.
The second term in Eq. (42) can be written as

〈w̃| (H̃0 − E)−1 |w̃〉 = 1

n

∑
k 	= 0
η = ±

1

ηE(k) − E
. (63)

This is just a sum of 2(n − 1) geometric series of ratio
±E(k)/E. The radius of convergence of (63) as a power series
in E is thus the smallest |E(k)|, which is �(n−1/d ). The Taylor
expansion (43) as well as taking the termwise derivative (50)
are thus justified for the values of E± that lie within the radius
of convergence for sufficiently large n.

To show that it suffices to expand to first order in E, notice
that the mth coefficient in the Taylor expansion (43) is

〈w̃| H̃−m
0 |w̃〉 = 1

n

∑
k 	= 0
η = ±

1

[ηE(k)]m
. (64)

A similar analysis to (55)–(58) shows that this is finite for
m < d, O(log n) for m = d, and at most cnm/d−1 for m > d,
where c > 0 is a constant independent of m. Thus, for d � 3
and E = �(1/

√
n), we see that the sum of all higher-order

terms in Eq. (43) is

O

(
n− d

2 log n +
∞∑

m=d+1

n− m−1
2 + m

d
−1

)
= O

(
n− (d+1)(d−2)

2d
− 1

2
)

= o(n−1/2). (65)

A similar argument shows that the higher-order terms are
o(1/

√
n log n) when d = 2 and E = �(1/

√
n log n).

Finally, we relate the approximate eigenvalues in Eq. (49)
to the actual values. To do this, let E+ := 1/

√
nI2,d be the

approximate and Ẽ the true solution of F (E) = 0 that is closest
to E+ (a similar argument also holds for E−). For d � 3, it
suffices to show that |Ẽ − E+| = o(n−1/2). Direct substitution
into (43) shows that there exist constants c1,c2 > 0 indepen-
dent of n such that, for sufficiently large n, F (c1n

−1/2) < 0
and F (c2n

−1/2) > 0. Thus, by the intermediate value theorem,
Ẽ = �(n−1/2). By expanding F around E+, Taylor’s theorem
shows that

0 = F (Ẽ) = F (E+) + (Ẽ − E+)F ′(e) (66)

for some e between Ẽ and E+. Since e = �(n−1/2) is within
the radius of convergence of the Taylor series, the termwise
derivative of F shows that F ′(e) is bounded below by a positive
constant as n → ∞. But F (E+) is just the sum of higher-order
terms of the Taylor expansion which, as we have seen, is at
most O(n−(d+1)(d−2)/2d−1/2) = o(n−1/2). Thus (66) shows that
|Ẽ − E+| = o(n−1/2), as required.

A similar analysis shows that for d = 2, |Ẽ − E+| =
o(1/

√
n log n).

III. SEARCH ON GENERAL CRYSTAL LATTICES

The algorithm introduced in the previous section relies on
the behavior of the dispersion relation (17) near the energy of
the starting state |s〉. Specifically, the linear behavior of the dis-
persion relation near k = 0 is responsible for the efficiency of
the algorithm even in low dimensions. In Ref. [5], the quadratic
instead of linear dispersion near the eigenvalue of the starting
state implies that I2,d only converges for d > 4 instead of
d > 2, thus resulting in a search algorithm with quadratic
speedup only for d � 4 instead of d � 2.

Values of k with linear behavior in the dispersion relation
are commonly referred to as Dirac points. For our purposes,
we say that a dispersion relation E(k) has a Dirac point at k = k̃

if there exist constants c,K > 0 such that |E(k̃ + δ) − E(k̃)| >

c|δ| for all δ ∈ Rd with |δ| < K .
In this section, we generalize the results from the previous

section to any lattice Hamiltonian whose dispersion relation
has a finite number of Dirac points of the same energy.

Suppose we have N = nr items (vertices) arranged in a
crystal of n cells in a lattice, each of which contains r items
(see Fig. 6).

We can assume without loss of generality that the underly-
ing lattice is a hypercubic lattice in d dimensions of linear size
l = n1/d . We impose periodic boundary conditions. Let � be
a set of labels for the items within a cell, with |�| = r . Then,
as before, the items in the crystal are labeled by a pair (x,σ ),
where x ∈ [l]d labels the cell and σ ∈ � labels the item within
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σ1

σ2σ3

x

FIG. 6. (Color online) Schematic representation of a crystal with
r = 3.

the cell. The lattice Hamiltonian is of the form

H0 |x,σ 〉 =
∑
δ ∈ 

σ ′ ∈ �

hδσσ ′ |x + δ,σ ′〉 (67)

for some fixed finite set  ⊂ Zd with − = , and hδσσ ′ =
h∗

−δσ ′σ to ensure that H0 is Hermitian. Translational invariance
implies that H0 is block diagonal in the Fourier basis (10), i.e.
[generalizing (12)],

H0 |k,σ 〉 =
∑
δ ∈ 

σ ′ ∈ �

hδσσ ′e−ik·δ |k,σ ′〉 , (68)

such that (14) and (15) hold. Diagonalizing the r × r matrices
H0(k) with matrix elements

[H0(k)]σσ ′ =
∑
δ∈

hδσσ ′e−ik·δ (69)

gives the dispersion relation Ei(k), with i ∈ [r], for H0.

A. Lattice Hamiltonians with Dirac points

Diagonalizing (69) gives r eigenvalues that can be collected
into r “energy bands” E1(k), . . . ,Er (k). We make the following
assumptions about the dispersion relation of H0.

(1) E1(k), . . . ,Em(k) have D Dirac points at k =
k̃(1), . . . ,k̃(D) of the same energy for some m ∈ [r]. By an
overall energy shift, we can assume without loss of generality
that Ei(k̃(j )) = 0 for all i ∈ [m] and j ∈ [D].

(2) All other eigenvalues are nonzero away from the Dirac
points.

(3) Em+1, . . . ,Er are bounded away from zero.
(4) There exists some k̃ ∈ [−π,π ]d such that, for all j ∈

[D], the coordinates of k̃ − k̃(j ) are rational multiples of π .
(5) χ

(j )
σ := ‖Pj |k̃(j ),σ 〉 ‖2 	= 0 for all σ ∈ �, where Pj is

the projector onto the intersection ofHk̃(j ) with the kernel of H0

(i.e., onto the eigenstates corresponding to the energy bands
Ei(k̃(j )) for i ∈ [m]).

Assumption (2) implies in particular that E1, . . . ,Em cannot
have common Dirac points at other energies. Assumption (3)
ensures that the behavior of the algorithm is dominated by
the linear behavior near the Dirac points. Assumption (4) is

made for simplicity. If no such k̃ exists and some coordinates
of k̃(j ) are irrational multiples of π , suitable convergents of
the prefactors can be considered instead. Notice that since the
matrix elements (69) of H0(k̃(j )) are independent of N , so are
the χ

(j )
σ . Assumption (5) is trivially satisfied whenever m = r

(i.e., when all energy bands have a Dirac point, such as in
Sec. II), since in this case χ

(j )
σ = 1.

Let the marked item be |w,α〉. Define the normalized states∣∣s(j )
σ

〉
:= 1√

χ
(j )
σ

Pj |k̃(j ),σ 〉 . (70)

Take the starting state to be

|s〉 := 1√
χα

D∑
j=1

e−ik̃(j )·w
√

χ
(j )
α

∣∣s(j )
α

〉
, (71)

where

χα :=
D∑

j=1

χ (j )
α . (72)

The state |s〉 depends on the unknown marked item via
the relative phases of (71) and via α. However, there are
only r possible values for α and, by assumption (4), the
phases e−ik̃(j )·w = ei(k̃−k̃(j ))·we−ik̃·w can only take some constant
number of possible values, independent of N . Thus there are
only O(1) possible starting states for any given α [a trivial
upper bound on this number is the least common multiple of
all denominators of the rational numbers in assumption (4)].
Running the algorithm for every possible starting state only
increases the running time by a constant factor.

We evolve |s〉 with the full Hamiltonian

H = H0 + Horacle, (73)

with Horacle specified below.
Define F (E) as in Eq. (29). One easily checks that (39)

generalizes to

‖Pj |w,α〉 ‖2 = χ
(j )
α

n
, (74)

so that (41) and (42) generalize to

F (E) = − 1

E

D∑
j=1

‖Pj |w,α〉 ‖2 + 〈w̃| (H0 − E)−1 |w̃〉

= − χα

nE
+ 〈w̃| (H̃0 − E)−1 |w̃〉 , (75)

where H̃0 is the restriction of H0 to the orthogonal complement
of the kernel and as such is invertible. Assuming that |E| �
|Ei(k(j ))| for all i ∈ [m], j ∈ [D], and all k 	= k̃(j ), we can
Taylor expand the second term in Eq. (75) as

F (E) ≈ − χα

nE
+ 〈w,α| H̃−1

0 |w,α〉

+E 〈w,α| H̃−2
0 |w,α〉 . (76)

This can be justified in a similar fashion to Sec. II D. By
assumptions (2) and (3), the behavior of the last two terms
for n → ∞ is dominated by the behavior around k = k̃(j ).
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In particular, linearity of the dispersion relation around the
Dirac points ensures that 〈w,α| H̃−1

0 |w,α〉 is bounded and
in fact converges to some value I1,d , while 〈w,α| H̃−2

0 |w,α〉
converges to some value I2,d for d > 2 and diverges logarith-
mically for d = 2. Thus we can expand these expressions in the
eigenbasis of H0 and approximate them by integrals [similarly
to (47)] so that

F (E) ≈ − χα

nE
+ I1,d + I2,dE. (77)

To find an eigenvalue gap of O(1/
√

N ) [or O(1/
√

N log N )
in d = 2], the eigenvalue condition should be F (E) = I1,d ;
we choose Horacle to achieve this. The choice of Horacle

thus depends on the value of I1,d . In particular, we choose
qualitatively different oracle terms depending on whether I1,d

is zero.
Case 1. Suppose that I1,d = 0. In particular, this holds

whenever H0(k) is zero on the diagonal (or equivalently,
whenever the lattice is r-partite with the vertices partitioned
according to the value of σ ∈ �) and the dispersion relation
splits into two (possibly degenerate) energy bands that are
symmetric with respect to the Dirac point, as in our example
in Sec. II. In this case we can choose the oracle Hamiltonian
to be

Horacle = −H0 |w,α〉 〈w,α| − |w,α〉 〈w,α| H0. (78)

Case 2. Suppose that I1,d 	= 0. This was the case in
Ref. [5], and as in those algorithms, we can choose the oracle
Hamiltonian to be

Horacle = − 1

I1,d

|w,α〉 〈w,α| . (79)

The prefactor of 1/I1,d plays the role of the parameter
γ discussed in Sec. II C. If |ψa〉 is an eigenvector of H

with eigenvalue Ea that is not in the spectrum of H0, then
H |ψa〉 = Ea |ψa〉 is equivalent to

I1,d |ψa〉 = (H0 − Ea)−1 |w,α〉 〈w,α|ψa〉 , (80)

so that our eigenvalue condition on Ea is

F (Ea) = I1,d , (81)

as required.
In both cases, we obtain two approximate eigenvalues:

E± ≈ ±
√

χα

nI2,d

. (82)

The overlaps of the corresponding eigenvectors with |s(j )
α 〉 can

be calculated similarly to (36), and are given by

〈
ψ±

∣∣s(j )
α

〉 = −eik̃(j )·w

E±

√
χ

(j )
α

nF ′(E±)
(83)

≈ ∓eik̃(j )·w

√
χ

(j )
α

2χα

, (84)

so that from (71), 〈ψ±|s〉 ≈ ∓ 1√
2
. This ensures that |s〉 is

supported essentially only on the two-dimensional subspace
spanned by |ψ±〉.

(a) (b)

FIG. 7. (Color online) Effects of the different choices of Horacle.
(a) The choice in Eq. (78) disconnects the marked vertex from the
rest of the lattice and creates on-site potentials at the neighbors of the
marked item. (b) The choice in Eq. (79) creates an on-site potential
at the marked item.

Finally, the same calculations as in Sec. II B show that for
d > 2, evolving |s〉 for a time T = O(

√
N ) results in a constant

overlap with H0 |w,α〉 /
√

〈w,α| H 2
0 |w,α〉 in case 1 and |w,α〉

in case 2, while for d = 2, evolving for T = O(
√

N log N )
results in an overlap of �(1/

√
log N ).

We briefly interpret the two different choices of Horacle. In
the first case, Eq. (78) modifies the strength of the transition
amplitudes between the marked item and its neighbors.
Specifically, Eq. (78) modifies the Hamiltonian such that
H |w,α〉 = 0 and 〈w′| H |w′〉 	= 0 for all neighbors |w′〉
of |w,α〉. The first condition implies that the probability
amplitude on the marked item is invariant under evolution
with H , so the marked item is disconnected from the rest
of the lattice. The latter condition creates “on-site potentials”
at the states |w′〉, giving loops in the graph structure [see
Fig. 7(a)]. On the other hand, Eq. (79) creates an on-site
potential directly at the marked item [see Fig. 7(b)]. Other
possible oracle Hamiltonians involving single-edge alterations
and additional vertices are briefly mentioned in Ref. [8].

B. Examples

Example 1. To recover the example of Sec. II, we set r = 2d ,
� = Zd

2 , and  = {±ei : i ∈ [d]}. By comparing (9) with (67)
[or, equivalently, Eq. (12) with (68)], we can read off the
coefficients as

h0,σ,σ+ei
= (−1)σ1+···+σi−1 , (85)

hei ,σ,σ+ei
=

{
0, σi = 0,

−(−1)σ1+···+σi−1 , σi = 1,
(86)

h−ei ,σ,σ+ei
=

{−(−1)σ1+···+σi−1 , σi = 0,

0, σi = 1,
(87)

with all other coefficients vanishing. Considering the nonzero
coefficients, we see that the underlying graph is simply a
hypercubic lattice.

Figure 8 depicts the edges corresponding to nonzero
coefficients.

Equation (85) implies that there is an edge in any given
direction i within a given cell.
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σ i
=

0

σ i
=

1

σ i
=

0

σ i
=

1

σ i
=

0

σ i
=

1

x − ei x x + ei

ei

FIG. 8. (Color online) Recovering the edges of the graph from
the coefficients (85)–(87). For each nonzero hδ,σ,σ ′ , there is an edge
from |x,σ 〉 to |x + δ,σ ′〉.

Equation (86) implies that there is an edge from the σi = 1
(right) vertices of a given cell x to the σi = 0 (left) vertices of
the cell x + ei , and similarly (87) implies that there is an edge
from the σi = 0 (left) vertices of a given cell x to the σi = 1
(right) vertices of the cell x − ei .

Repeating this procedure for all directions i ∈ [d], we see
that the graph structure of a d-dimensional hypercubic lattice
is recovered (see Fig. 2).

With the coefficients given by (85)–(87), the eigenvalues of
the 2d × 2d matrices (69) are given by (17).

Example 2 [Honeycomb lattice]. The best known example
of a lattice with Dirac points may be the honeycomb lattice in
d = 2, the lattice structure of graphene. We can recover this
lattice in our formalism by setting r = 2 and taking

H0(k) =
(

0 h(k)∗
h(k) 0

)
, (88)

where h(k) := 1 + e−ikx + e−i(kx+ky ). It is easy to see that,
with this choice, H0 is the adjacency matrix of a graph that is
isomorphic to the standard honeycomb lattice (see Fig. 9).

The dispersion relation of this Hamiltonian is

E(k) = ±|h(k)| (89)

= ±√
3 + 2[cos kx + cos ky + cos(kx + ky)], (90)

which has two Dirac points at kx = ky = ±2π/3. The special
case of spatial search on the honeycomb lattice is studied in
detail in Ref. [8].

(a) (b)

FIG. 9. (Color online) Drawings of honeycomb lattices. (a) Bi-
partite square lattice with two items per cell as in Eq. (88). (b) Standard
drawing of a honeycomb lattice.

(a) (b)

FIG. 10. (Color online) Drawings of Kagome lattices. (a)
Kagome lattice as tripartite square lattice with three items per cell
using (91). (b) Standard drawing of a Kagome lattice.

Example 3 [Kagome lattice]. Another example in d = 2 is
given by the adjacency matrix of a Kagome lattice (see Fig. 10).
We can recover this lattice in our formalism by setting r = 2
and taking

H0(k) =
⎛
⎝ −1 g(ky) g(−kx + ky)

g(−ky) −1 g(−kx)
g(kx − ky) g(kx) −1

⎞
⎠ , (91)

where g(k) := 1 + eik . The diagonal elements only provide an
overall energy shift and are included for convenience.

The dispersion relation of this Hamiltonian comprises three
energy bands given by

E±(k) = ±√
3 + 2[cos kx + cos ky + cos(kx − ky)], (92)

E3(k) = −3. (93)

The top two bands E± have two Dirac points at kx = −ky =
±2π/3 of energy E = 0. Notice that E3 is bounded away from
zero (since it is constant) and it is easy to verify that all the
assumptions of Sec. III A are satisfied. Unlike the previous
examples, I1,2 ≈ −4.39 	= 0, so the oracle Hamiltonian can
be chosen as in Eq. (79).

Example 4. Again in d = 2 and r = 2, we can consider the
Hamiltonian

H0(k) =
(

γ c(k) ωs(k)∗
ωs(k) −γ c(k)

)
, (94)

where s(k) := sin kx − i sin ky , c(k) := 2 − cos kx − cos ky ,
and γ,ω ∈ R. This reproduces the same dispersion relation
found in Ref. [7],

E(k) = ±
√

ω2|s(k)|2 + γ 2|c(k)|2. (95)

As such, the choice (94) effectively embeds the additional
“spin” degrees of freedom introduced in Ref. [7] into the lattice
as additional vertices. A similar approach also recovers the
Hamiltonian from [7] in higher dimensions.

The diagonal terms in Eq. (94) ensure the uniqueness of
the Dirac point at kx = ky = 0. However, using the results
of Sec. III A, we can obtain a working algorithm even when
γ = 0. In this case, the underlying graph is not only bipartite
but also disconnected (see Fig. 11). The connected components
are both isomorphic to two-dimensional square lattices and the
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(a) (b)

FIG. 11. (Color online) (a) Graph induced by (94) for generic
values of γ . (b) If γ = 0, the graph is both bipartite and disconnected
and the two connected components are both isomorphic to a two-
dimensional square lattice.

underlying Hamiltonian acts on these as

H0 |v〉 = i(−1)y(|v + ex〉 − |v − ex〉)
+ (−1)y(|v + ey〉 − |v − ey〉). (96)

This gives an alternative Hamiltonian for searching a two-
dimensional square lattice with near-quadratic speedup.

Notice, however, that although each component only
contains one vertex from each cell, the Hamiltonian (96) is
nonhomogenous in the y direction, so we must combine the
vertices into new cells of size r = 2. Both (96) and (4) are
defined on the same underlying lattice and give algorithms with
the same complexity, but they are inequivalent Hamiltonians.
Indeed, the two Hamiltonians have different symmetries as
(96) is uniform in the x direction, resulting in r = 2, whereas
(4) has four items per cell. Furthermore, the dispersion relation
of (4) has a unique Dirac point, whereas (96) has two.

IV. DISCUSSION

We presented a general framework for describing spatial
search algorithms using continuous-time quantum walks.
Using the linearity of the dispersion relation near Dirac
points, we constructed search algorithms that provide the
optimal quantum speedup of O(

√
N ) in d > 2 dimensions

and have complexity O(
√

N log N ) in d = 2. In particular, we
constructed such algorithms for hypercubic lattices in d � 2
dimensions.

The algorithms presented here are closely related to the
ones described in Ref. [7] and generalize the results from [8].
Inspired by the Dirac equation, Ref. [7] introduced additional

“spin” degrees of freedom, similar to “coin” registers for
discrete-time walks, to obtain a Hamiltonian exhibiting a Dirac
point. Our framework can be used to construct equivalent
Hamiltonians without external memory by embedding these
additional degrees of freedom into the lattice as additional
vertices. The naive way of doing this introduces many
additional nonzero transition amplitudes (i.e., edges) in H0

so that the underlying graph is not isomorphic to a hypercubic
lattice. However, with further modifications as presented in
Secs. II and III B (Example 4), we showed it is possible to
recover the structure of a hypercubic lattice.

In high dimensions, the algorithm presented in Sec. II
requires large cells of size 2d . The results from [7] show that
this can be reduced to d + 1. However, unlike in Ref. [7], those
spin registers do not manifest themselves as additional memory
in our algorithm: every vertex corresponds to a distinct possible
marked item. The procedure is versatile and can in principle be
applied to any continuous-time quantum walk spatial search
algorithm to reduce the external memory at the cost of possibly
introducing additional edges into the graph and requiring
multiple runs to ensure success.

Note that the actual complexity of the spatial search
problem in d = 2 is still an open question. Tulsi [16] proposed
a method for reducing the complexity from O(

√
N log N )

to O(
√

N log N ) for constant probability of success by
controlling the walk using an ancilla qubit. It would be
interesting to improve the complexity further or to show that
no such improvement is possible.

We remark that if the locality constraint is relaxed to only
require an interaction strength that monotonically decreases
with the distance, it is possible to construct a Hamiltonian
that achieves the optimal O(

√
N ) running time in d = 2.

Specifically, it suffices to choose 〈v| H0 |v′〉 ≈ d(x,y)−(2−ε)

decaying as an almost quadratic power law (for any ε > 0).
However, such a power-law decay should not be considered
local.
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