
PHYSICAL REVIEW A 89, 052336 (2014)

Noise and measurement errors in a practical two-state quantum bit commitment protocol
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We present a two-state practical quantum bit commitment protocol, the security of which is based on the
current technological limitations, namely the nonexistence of either stable long-term quantum memories or
nondemolition measurements. For an optical realization of the protocol, we model the errors, which occur
due to the noise and equipment (source, fibers, and detectors) imperfections, accumulated during emission,
transmission, and measurement of photons. The optical part is modeled as a combination of a depolarizing
channel (white noise), unitary evolution (e.g., systematic rotation of the polarization axis of photons), and two
other basis-dependent channels, namely the phase- and bit-flip channels. We analyze quantitatively the effects
of noise using two common information-theoretic measures of probability distribution distinguishability: the
fidelity and the relative entropy. In particular, we discuss the optimal cheating strategy and show that it is always
advantageous for a cheating agent to add some amount of white noise—the particular effect not being present
in standard quantum security protocols. We also analyze the protocol’s security when the use of (im)perfect
nondemolition measurements and noisy or bounded quantum memories is allowed. Finally, we discuss errors
occurring due to a finite detector efficiency, dark counts, and imperfect single-photon sources, and we show that
the effects are the same as those of standard quantum cryptography.

DOI: 10.1103/PhysRevA.89.052336 PACS number(s): 03.67.Dd, 03.67.Hk, 42.50.Ex

I. BIT COMMITMENT

Among security tasks, the bit commitment protocol holds
a prominent role as it represents a computational primitive
for many important information-processing protocols. It is a
two-party protocol that consists of two phases: the commitment
and the opening phases. In the commitment phase, one client
(Alice) commits to a value of a bit (commits to either 0 or 1) at a
certain moment in time t0. After performing the commitment,
Alice finalizes the protocol by revealing (opening) her choice
to the other client (Bob), at some later moment in time t1. The
commitment to a certain value could be seen, for instance,
as a promise to either perform a certain action in a future
moment in time t2 � t1 (e.g., buy a house from Bob for a given
fixed price X)—commitment to 1, or not—commitment to 0.
The protocol has to fulfill three security requirements: Alice
cannot change her commitment later in time, in particular
during the opening phase (the protocol is binding); Bob
cannot learn Alice’s commitment before the opening phase
(the protocol is concealing); if both clients are honest (if
they execute the protocol according to the rules), then Bob
will successfully open Alice’s commitment (the protocol is
viable). Commitment schemes are currently an important
phase in several cryptographic protocols, in particular in
zero-knowledge proof systems and authentication protocols
(for a more detailed description, see Appendix A).

The idea behind the classical solutions to this problem is to
lock Alice’s commitment in a secure “safe” (the commitment
phase), such that without the key it is impossible to break into
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it, and give that “safe” to Bob. During the opening phase, Alice
gives Bob the key, and he learns her commitment. One way of
doing this is to use ordinary keys and locks. Another way is
to perform the locking by encrypting the commitment, using a
secret encryption key. In both cases, the solutions have to meet
the binding and concealment requirements. Unfortunately, it
is not possible to perform a bit commitment protocol that
is unconditionally secure. If Alice chooses to protect her
commitment by placing it in a real safe, since there are no
unbreakable safes, the protocol would not be unconditionally
concealing. If she chooses to protect her commitment by
encrypting it using a secret key known only by her, she can
achieve the concealing requirement, but then the protocol
would no longer be binding. In other words, no unbreakable
encryption scheme is binding at the same time—whatever
commitment value Alice encrypted during the commitment
phase, she can always present a suitable key that would decrypt
to either of the two commitment values.

Attempts to solve this problem using quantum systems
have been made previously [1], but it was shown that no
quantum bit commitment protocol can be both unconditionally
binding and concealing [2]. Nevertheless, it is possible, using
the current technological limitations, to perform a practical
quantum bit commitment protocol that will be secure in the
foreseeable future [3]. The protocol is based on the famous
BB84 quantum cryptographic protocol [4]. The proposed
protocol is binding due to the unconditional security of the
BB84 protocol [5] and the fact that we do not have long-term
stable quantum memories, nor do we have apparatuses able
to perform nondemolition measurements of photons. Practical
bit commitment protocols whose security is based on a limited
amount of quantum memories were studied previously [6], as
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well as protocols whose security is based on having imperfect
(due to unavoidable noise) quantum memories [7]. One such
protocol, using entangled states, was recently reported to be
experimentally performed [8]. Finally, we note that the above
no-go theorem on unconditional security of (quantum) bit
commitment schemes is applicable only to nonrelativistic
protocols. Using relativistic effects, it is possible to design
an unconditionally secure bit commitment protocol [9], which
was recently implemented [10].

In this paper, we present a two-state version of the practical
quantum bit commitment protocol based on the B92 crypto-
graphic protocol [11]. Its practical security relies on the fact
that long-term stable quantum memories and nondemolition
measurements are currently out of reach. Provided those
technological limitations, our protocol is more secure than
classical counterparts, as its security is based on physical laws
rather than on computational assumptions. We also study the
effects of noise, source imperfections, and measurement errors
on the protocol’s security. In particular, we show that adding
a certain amount of white noise always increases the chances
that a dishonest Alice will cheat Bob and postpone her decision
until the opening phase. Finally, we analyze the security of
the protocol in the presence of (im)perfect nondemolition
measurements and noisy or bounded quantum memories.

II. TWO-STATE QUANTUM PROTOCOL

The protocol is based on quantum complementarity—the
impossibility of simultaneously measuring two noncommuting
observables. Therefore, one has to decide to measure only
one out of two possible observables of a physical system,
and obtain information about only one of two features of a
system. The choice of measurement can be interpreted as a
commitment to a bit value, and the measurement outcome used
as a proof of this particular choice (i.e., commitment). This
is somewhat the opposite approach to that used in classical
solutions: instead of (securely) imprinting the information
of a commitment choice into a state of a physical system
(writing down an encrypted message on a piece of paper,
for example), the choice is done by acquiring information
about only one out of two possible features of a physical
system. This approach has already been used for designing
quantum contract signing [12,13] and simultaneous dense
coding protocols [14]. In those cases, the security of the
protocols is provided by the laws of physics (e.g., quantum
mechanics), rather than by the computational complexity
of the decryption schemes. Also, a “probabilistic” two-state
quantum-bit string commitment protocol, based on the same
mechanism, was recently proposed [15], in which Alice
commits to a string of n bits, such that Bob can learn not
more than m < n bits, up to negligible probability (note that
because this protocol is quantum, its unconditional security is
not implying the existence of unconditionally secure quantum
bit commitment schemes, as would be the case for its classical
counterpart [15]). For similar work on coin tossing and
bit-string generation, see [16–19].

In addition to the commitment and the opening phases, the
quantum protocol begins with the initialization phase, during
which Bob prepares a number of identical physical two-level
systems (qubits) on which Alice is to perform the commitment

measurement (the same measurement on each qubit). Bob
sends to Alice a number of qubits, each randomly prepared
in one of two given quantum states (|0〉 or |1〉), without
revealing any information about the prepared states. During
the commitment phase, Alice chooses only one out of two
noncommuting observables, Ĉ0 or Ĉ1 (given by the two states
used by Bob, see below), measures it on each qubit received
from Bob, and keeps the record of measurement outcomes.
Finally, during the opening phase, she reveals the results to
Bob, which serves as a proof of her commitment.

We require that the qubit states |0〉 and |1〉 used in the
protocol are not orthogonal,1 〈0|1〉 = cos θ , with θ ∈ (0,π/2).
Let us denote the states orthogonal to |0〉 and |1〉 as |0⊥〉 and
|1⊥〉, respectively: 〈0⊥|0〉 = 0 and 〈1⊥|1〉 = 0. This way, we
defined two (orthonormal) bases B0 = {|0〉,|0⊥〉} and B1 =
{|1〉,|1⊥〉}, which in turn define two orthogonal observables
Ĉ0 and Ĉ1:

Ĉ0 = 0 × |0〉〈0| + 1 × |0⊥〉〈0⊥|,
(1)

Ĉ1 = 1 × |1〉〈1| + 0 × |1⊥〉〈1⊥|.
Finally, we list the eigenvectors of Ĉ1 expressed2 in the B0

basis,

|1〉 = cos θ |0〉 + eiφ sin θ |0⊥〉,
(2)

|1⊥〉 = sin θ |0〉 − eiφ cos θ |0⊥〉,
and vice versa,

|0〉 = cos θ |1〉 + sin θ |1⊥〉,
(3)

|0⊥〉 = e−iφ(sin θ |1〉 − cos θ |1⊥〉)
for some φ ∈ [0,2π ).

We can now give a more detailed description of our
two-state practical quantum bit commitment protocol. It
consists of three phases, arranged in chronological order
(T0 < T1 < T2):

The initialization phase. At time T0, Bob randomly chooses
a string of N bits (b1,b2, . . . ,bN ), with bk ∈ {0,1}, and sends
a string of N qubits to Alice, each prepared in the pure state
|bk〉, and emitted at time tk , with k ∈ {1,2, . . . ,N}. Bob keeps
the information of the states |bk〉 of each qubit, as well as
the times tk of the emission of each qubit. We assume that
t1 < t2 < · · · tN and that tN − t1 � T2 − T1.

The commitment phase. At time T1, Alice starts measuring
on all the qubits received only one observable, either Ĉ0 or
Ĉ1, depending on her commitment choice (Ĉ0 corresponds to
the commitment to value 0, Ĉ1 to value 1). She announces the

1Note that we fix the scalar product to be a real number. As the two
states |0〉 and |1〉 are used to design Alice’s measurement observables
Ĉ0 and Ĉ1, the relative phase between the two vectors is irrelevant,
and for simplicity we take it to be zero. Note also that, as the relevant
quantity in the calculations is cos θ , for reasons of simplicity we do
not use a standard Bloch representation of pure qubit states. A simple
substitution θ → θ/2 in the formulas gives the results presented
below in the standard form of a Bloch representation.

2Note that, for reasons of simplicity, we take the particular choice
of the gauge for state |1⊥〉, fixing the relative phases between it and
states |0〉 and |0⊥〉 to be 0 and φ, respectively.
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arrival times of each qubit (which are at the same time the times
of measurement of each qubit; see below for the discussion),
a string (τ1,τ2, . . . ,τn), with τ1 = T1, and keeps the record of
the measurement results to her, a string (r1,r2, . . . ,rn), with3

n � N .
The opening phase: At time T2, Alice reveals her commit-

ment c ∈ {0,1} (e.g., the measurement observable Ĉc), together
with the measurement results ri , with i ∈ {1, . . . ,n}, to Bob.

Note that not all qubits sent by Bob arrive to and are
measured by Alice. Thus, n � N , and for each index i

labeling Alice’s measurement times τi and results ri , there is
a corresponding index k = k(i) labeling Bob’s qubit emission
times tk(i) and corresponding bits bk(i).

First, we discuss in more detail the commitment mecha-
nism. The description of the commitment phase states that
measuring Ĉ0 corresponds to the commitment to value 0,
while measuring Ĉ1 corresponds to the commitment to value
1. From the expression of measuring observables in terms of
the states |0〉 and |1〉, and the states orthogonal to them, given
by Eq. (1), we see that when a bit value bk , defining the qubit’s
quantum state |bk〉, “coincides” with the measuring observable
Ĉc = Ĉbk

, i.e., bk = c, then the corresponding measurement
outcome ri , for which k = k(i), coincides with the bit value
bk , i.e., ri = bk . This way, we can interpret the measurement
outcome ri as Alice’s inference of Bob’s bit value bk(i): if
the bit value and the observable “coincide,” the inference will
be right; otherwise, it will be random.4 If by pc(r|b), with
c,r,b ∈ {0,1}, we denote a conditional probability that a result
r is obtained when measuring observable Ĉc on state |b〉, then
the overall conditional probabilities are given by the following
expressions:

(i) Alice measures Ĉ0:

p0(0|0) = 1, p0(1|0) = 0,
(4)

p0(0|1) = cos2 θ, p0(1|1) = sin2 θ.

(ii) Alice measures Ĉ1:

p1(0|0) = sin2 θ, p1(1|0) = cos2 θ,
(5)

p1(0|1) = 0, p1(1|1) = 1.

Thus, the above conditional probabilities give the signature
of the commitment: if Alice measures Ĉ0, the statistics of
her measurement outcomes will be given by (4); otherwise,
they will be given by (5). It also serves as the proof of her
commitment during the opening phase: only if the statistics

3Note that some (in fact with today’s technology, many) qubits sent
will be either lost during their transmission or not detected due to
imperfect detectors.

4We call this ambiguous inference: when measuring observable Ĉ0

and obtaining result 0, we are not sure that the qubit was in the
state |0〉, while obtaining 1 means that the qubit’s state was definitely
|1〉 (and analogously for Ĉ1). In other words, when measuring Ĉc,
all qubits prepared in the state |c〉 will be among those for which
the result was c, with the drawback that some among them will
be prepared in the state |1〉. If we are interested in what we call
unambiguous inference, i.e., when measuring Ĉc and obtaining c we
want to be sure the state was |c〉, then we simply have to relabel the
measuring observables.

of {ri}, with respect to {bk(i)}, are “close enough” to pc(r|b)
did Alice commit to the bit value c. If n(r|b) is the number of
measurements performed by Alice on qubits received in the
state |b〉, with outcome r , and n(b) is the total number of qubits
received in the state |b〉, then define q(r|b) = n(r|b)

n(b) . By “close
enough” to, say, p0(r|b) (c = 0 commitment), we now mean
that the probability P (q||p0) that the measurement statistics
q(r|b) were produced by a random source p0(r|b) is bigger
than a certain threshold value α > 0 (Alice did measure Ĉ0).
This represents Bob’s criterion to accept Alice’s commitment
to c = 0, and analogously for c = 1. Moreover, for the protocol
to be viable, we require that the statistics q(r|b) which pass the
test P (q||p0) > α of committing to value c = 0 are unlikely
to be obtained by measuring Ĉ1, i.e., we require that

P (q||p0) > α ⇒ P (q||p1) < β (6)

(and analogously for statistics that pass the test of committing
to c = 1). The security parameters α and β are to be set by
Bob and the protocol designer, respectively, depending on the
particular equipment used and the desired level of confidence.

Let us now discuss the protocol’s (practical) security and
show that it is indeed both binding and concealing. The
protocol must guarantee that at a certain moment of time T1,
Alice commits to a bit value such that Bob cannot learn her
commitment until she reveals it at time T2, and Alice cannot
change her decision after T1, in particular at T2.

Alice makes the commitment by measuring one of the two
observables, during a period of time [τ1,τn]. The protocol
requires that Alice announces the arrival times of the qubits.
To do so, she either performs her measurements straight away
(meaning that she commits to a certain value), or she performs
a nondemolition measurement, thus detecting the presence of a
photon without either destroying it or affecting its polarization
state. However, photonic nondemolition measurements are
still in their infancy stage (see [20,21]). In [21], for instance,
one performs a nondemolition measurement in a controlled
environment (photons are in a confined cavity). This type of
measurement is thus suitable for computational rather than
optical cryptographic purposes. Furthermore, even if Alice
had access to a nondemolition measuring apparatus, she
would need, in order to perform her measurements later in
time, to have access to stable long-term quantum memories.
Despite recent efforts, current technology allows only for very
short-term noisy memories, usually implemented by fiber optic
cable (see Fig. 5 in [8] for an example): adding extra fiber optic
cable makes the measurements much more prone to errors,
and increases the qubit losses exponentially in the length of
the cable. Consequently, Alice performs her measurements as
soon as she receives the qubits sent to her by Bob, turning
the arrival times of each qubit into the measurement times τi

as well. Therefore, τn − τ1 � tN − t1 � T2 − T1, and for all
practical purposes we can say that the commitment in fact
occurred at time T1. Note that in the ideal case when all qubits
sent by Bob arrive to Alice and are detected by her, n = N , we
have τi = tk(i) + vl, with v being the speed of the qubits and l

the distance between Alice and Bob.
For these same reasons, the protocol is binding: Alice must

perform her measurements as the qubits arrive, and thus she
must make a commitment at time T1, and not later. Otherwise,
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she could keep the qubits in a quantum memory and perform
her measurements—commit to a value—later in time. On
the other hand, as a consequence of the laws of quantum
mechanics, there exists no measurement that would provide
Alice with the knowledge of the states prepared by Bob for
all of the received qubits: she cannot know both p0(ri |0) and
p1(ri |1) for every i. Thus, after performing her measurements,
Alice cannot pass both the test (4) of committing to the value
0 and the test (5) of committing to the value 1. Note that
it is essential that the commitment tests (4) and (5) contain
both p0(ri |0) and p1(ri |1), as well as p0(ri |1) and p1(ri |0),
otherwise the protocol would not be binding. Indeed, Alice
must be able both to identify states corresponding to her
commitment choice and to have proper statistics on states
not corresponding to her choice. Otherwise, she could trivially
pass both tests even without any measurements by simply
setting ri = 0 for all i’s if she wants to pass the test of
committing to the value 0, and ri = 1 otherwise.

Regarding the second security requirement, that of con-
cealment, it is obvious that Alice’s measurements reveal no
information about her measurement outcomes, and thus of
her commitment to a spatially distant Bob. Sending entangled
states would obviously not help, due to nonsignaling and
causality: Bob cannot infer the choice of Alice’s local
measurement by measuring his part of the entangled pair,
spatially distant from Alice.

III. OPTICAL NOISE

The above discussion of the commitment mechanism, based
on quantum complementarity, was done for the ideal case of
noiseless channels and perfect sources and measurements.5

In particular, the expressions (4) and (5) for conditional
probabilities are obtained under this assumption. In this
and the following section, we will discuss the case of a
noisy environment. Regarding a future implementation of
the protocol, in which the qubit states are encoded into the
polarization of single photons [22–25], we will discuss the
case of optical realizations of the protocol. Nevertheless, our
theoretical approach could be easily applied, with suitable
small modifications, to other types of physical realizations
as well. First, we will consider optical noise, while in the
next section we will discuss nonoptical effects, such as
imperfect single-photon sources, losses during the transmis-
sion, and imperfect detectors (detector efficiency and dark
counts).

Note that in this protocol, unlike the case of quantum
cryptography, we are interested in more than just one quantity.
The quantum-bit error rate (QBER), used to study the effects
of noise in quantum cryptography [see Eqs. (31)–(33) in [26],
p. 166], is the ratio between the wrongly measured versus the
total number of qubits received when we measure in the same
basis in which the qubits were prepared. In our case, though,
we are interested in the ratios, i.e., the (conditional) probabili-

5The only effects of the environment considered were the fact that
not all of the qubits sent will arrive to Alice, and that some of those that
arrive will not be detected at all. This was done only qualitatively, so
that the protocol could be properly defined (mentioning that n � N ).

ties of both the case of measurement in the same basis and the
case of measurement in a basis different from that in which
the qubits were prepared. In the ideal case, the conditional
probabilities were given by the expressions (4) and (5). In
the following, we will present the corresponding conditional
probabilities for the cases of depolarizing channel, bit-flip and
phase-flip channels, and arbitrary unitary evolution. At the end
of this section, we will combine the four contributions into a
single one.

A. Depolarizing channel

The depolarizing channel is a model of white noise: with
probability (1 − p), the state of a system (in our case qubit)
stays the same, while with probability p it becomes totally
mixed. Note that in this case, the probability to obtain the result
corresponding to the initial state is higher than (1 − p): even
if, after passing the channel, the state of the system turns out
to be totally mixed (which happens with probability p), there
is still nonzero probability to obtain the result corresponding
to the initial state. In this case, the probability to obtain the
“wrong” (e.g., opposite) result, when measuring in the same
basis in which the qubits were prepared, is

p0(1|0) = p1(0|1) = p/2. (7)

This is merely the optical part of the QBER, given by Eq. (34)
from [26]: QBERopt = (1 − V )/2. Using this formula, where
V is the “visibility” parameter, we get that V = (1 − p), which
is precisely the probability that the state will pass the channel
intact—hence the term “visibility” (a synonym, in a sense, of
“transparency”).

The depolarizing channel has no preferred axis of action,
in the sense that its action is the same in each basis of the
system’s Hilbert space. The noise is the same along each axis,
and is the most dominant type of noise or error that occurs,
as it is a model of white noise. The Kraus decomposition
(or the so-called operator-sum representation; see [27], p. 360,
Sec. 8.2.3) of the (super)operator representing the depolarizing
channel is, for the case of qubit states, given by

Ed (ρ̂) = (1 − p)ρ̂ + p
Î

2
=

(
1 − 3

4

)
ρ̂ + p

4

3∑
i=1

σ̂i ρ̂σ̂i , (8)

where ρ̂ is a general mixed state representing the initial qubit
state, Î is the identity operator, and σ̂i are the standard Pauli
operators. Note that the first equality is the general definition,
while the second one is a particular expression for a two-
dimensional qubit case.

Using the above definition (8), one obtains the relevant
conditional probabilities, analogous to (4) and (5) obtained for
the ideal case (η = QBER represents the optical part of the
quantum-bit error rate):

(i) Alice measures Ĉ0:

p0(0|0) = 1 − p

2
= 1 − η, p0(1|0) = p

2
= η,

p0(0|1) = (1 − p) cos2 θ + p

2
= (1 − 2η) cos2 θ + η,

p0(1|1) = (1 − p) sin2 θ + p

2
= (1 − 2η) sin2 θ + η. (9)
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(ii) Alice measures Ĉ1:

p1(0|0) = (1 − p) sin2 θ + p

2
= (1 − 2η) sin2 θ + η,

p1(1|0) = (1 − p) cos2 θ + p

2
= (1 − 2η) cos2 θ + η,

p1(0|1) = p

2
= η, p1(1|1) = 1 − p

2
= 1 − η. (10)

B. Bit-flip channel

The other two types of channels, bit- and phase-flip, are
basis-dependent. This means that, in the case of a bit-flip in
the B0 basis, it flips (changes) the state |0〉 into |0⊥〉 (and vice
versa) with probability p, where, by construction, 〈0|0⊥〉 = 0.
But if the state is a general superposition a|0〉 + b|0⊥〉, the
flipped state, b|0〉 + a|0⊥〉, will not in general be orthogonal
to the initial state, a|0〉 + b|0⊥〉, so it will not be a bit-flip
in other bases. Therefore, such noise or errors are expected
to occur in cases in which we can isolate a preferable axis
(and thus a basis), which is the case of a measurement of an
observable (or a preparation of a certain state, which is a basis
state of a certain observable). The operator-sum representation
of the bit-flip channel is

Eb0 (ρ̂) = (1 − p)ρ̂ + pσ̂x0 ρ̂σ̂x0 . (11)

For simplicity, we will not present the relevant conditional
probabilities here, since they can be easily derived from the
general formula (15) for combined noises, given in Sec. III E.

Note that the above channel flips the basis states |0〉 into
|0⊥〉 (and vice versa), such that the matrix representation of
the operator σ̂x0 in the basis B0 = {|0〉,|0⊥〉} is the Pauli matrix
σx = [σ̂x0 ]B0 = [0 1

1 0]. We could also consider a bit-flip channel

where states |1〉 and |1⊥〉 are flipped, using σ̂x1 = |1〉〈1⊥| +
|1⊥〉〈1| instead of σ̂x0 .

C. Phase-flip channel

The second basis-dependent operation to model the noise
is the phase-flip channel. It “flips” the phase of one of the two
basis vectors. Below, as in the previous case, we fix the basis
B0 and represent the flip of the phase of |0⊥〉 by the operator
σ̂z0 whose matrix representation is again a Pauli matrix
σz = [σ̂z0 ]B0 = [1 0

0 −1]. The operator-sum representation of the
phase-flip channel is

Ep0 (ρ̂) = (1 − p)ρ̂ + pσ̂z0 ρ̂σ̂z0 . (12)

Again, the relevant conditional probabilities are shown
in (15). In analogy with the bit-flip channel, here as well
we could consider a channel Ep1 given by the operator
σ̂z1 = |1〉〈1| − |1⊥〉〈1⊥|.

D. Unitary evolution

Finally, the unitary evolution could be used to model the
cases for which we have a constant “rotation” of the state
of a system. For example, we may send qubits as photons
through an optical fiber which, due to bad twisting, rotates the
polarization angle by a fixed ratio per unit length [28]. The

unitary evolution is given by

Eu(ρ̂) = Û ρ̂Û †, (13)

where the arbitrary U (1) unitary operator is, up to an irrelevant
global phase, given by its matrix representation (say, in the B0

basis),

[Û ]B0 =
[
eiλ cos α −e−iμ sin α

eiμ sin α e−iλ cos α

]
, (14)

with α ∈ [0,π/2] and λ,μ ∈ [0,2π ) [29]. Note that sin2 α = η

is the QBER in the B0 basis.
The relevant conditional probabilities are given in (15).

E. Total optical noise accumulated during the emission,
transmission, and measurement

The next, and final, step in modeling the optical part of the
noise is combining the above four contributions in a single
set of formulas for conditional probabilities. Our approach is
the following. The whole apparatus consists of three parts:
the sender (Bob) performing the state preparation using the
source of photons, the transmission environment (transmission
through the space, optical fiber, etc.), and the receiver (Alice)
performing the measurement using essentially detectors and
beam-splitters.

In each of the three parts, we can have some of the
above described types of noise. The white noise occurs with
particular probabilities p

p

d , pt
d , and pm

d (p, t , and m stand
for preparation, transmission, and measurement, and d for
depolarizing channel), characteristic of the equipment and the
environment.

The white noise is a generic type of noise that affects all
types of instruments and environments. During the preparation
and the measurement, we can also have basis-dependent
noises: when preparing the |0〉 state, we can have a bit-flip
and a phase-flip in the basis B0 = {|0〉,|0⊥〉}, characteristic
for this particular preparation procedure. They occur with
the corresponding probabilities pb and pp (with b and p

standing for the bit and phase, respectively; the upper labels
are omitted for simplicity). When preparing the |1〉 state, bit-
and phase-flips occur in the basis B1 = {|1〉,|1⊥〉}, with the
same probabilities pb and pp as in the previous case, since
the two-state preparation apparatuses are rotated with respect
to each other (assuming spatial isotropy). In general, bit-
and phase-flips could occur along a general axis during the
transmission as well, but this is a highly unlikely scenario as
usually the transmission environment (space, optical fiber) has
no preferential axes (bases) and thus the noise is not likely to
be biased in this manner. Finally, a unitary evolution could
occur during the transmission, while it is unlikely to happen
in sources and detectors, and is thus ignored in the preparation
and measurement phases.

Therefore, the overall state of a qubit after “passing
through” the preparation apparatus, transmission environment,
and the measurement apparatus, just before the detection, can
be obtained by the consecutive application of the following
channels:

(i) Depolarizing, bit-flip, and phase-flip channels, each
with different probabilities (pp

d ,p
p

b ,p
p
p ), in the preparation

apparatus.
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(ii) Depolarizing channel, with probability pt
d and unitary

rotation, during the transmission.
(iii) Depolarizing, bit-flip, and phase-flip channels, each

with different probabilities (pm
d ,pm

b ,pm
p ), during the measure-

ments.
In each part of the apparatus (sender, transmission en-

vironment, and receiver), different channels model different
noises that occur at the same time, which is assured by their
commutativity. Indeed, all the commutation relations needed
are satisfied: depolarizing, bit-flip, and phase-flip channels
commute with each other (a consequence of commutation
relations for the Pauli matrices and the particular Kraus
representations of the three channels in terms of Pauli matrices;
e.g., see [27]). Thus, the order of their application during
the preparation and measurement are irrelevant. In particular,
we can apply the depolarizing channel occurring during
the preparation just before the transmission, and the one
occurring during the measurement just after the transmission.
The depolarizing channel and unitary evolution commute as
well (the white noise is isotropic), so that we can treat the
white noise by only one parameter: since Ed = Em

d ◦ E t
d ◦ Ep

d ,
we have pd = pm

d + pt
d + p

p

d . On the other hand, the bit-
and phase-flips do not commute with the unitary evolution
(as no axis-dependent operation commutes with the unitary
evolution, in general).

Combining the overall noise in the apparatus, depending on
the preparation procedure (preparing either |0〉 of the B0 basis
or |1〉 of the B1 basis), we have four distinct channels:

(i) E00 = Em
b0

◦ Em
p0

◦ Ed ◦ E t
u ◦ Ep

b0
◦ Ep

p0 , when measuring

Ĉ0 and preparing |0〉.
(ii) E01 = Em

b0
◦ Em

p0
◦ Ed ◦ E t

u ◦ Ep

b1
◦ Ep

p1 , when measuring

Ĉ0 and preparing |1〉.
(iii) E10 = Em

b1
◦ Em

p1
◦ Ed ◦ E t

u ◦ Ep

b0
◦ Ep

p0 , when measuring

Ĉ1 and preparing |0〉.
(iv) E11 = Em

b1
◦ Em

p1
◦ Ed ◦ E t

u ◦ Ep

b1
◦ Ep

p1 , when measuring

Ĉ1 and preparing |1〉.
The calculation of the corresponding conditional probabili-

ties is rather lengthy, but quite straightforward. We present the
final expressions for the conditional probabilities when Alice
measures Ĉ0:

p0(0|0) = 1
2

[
1 + (1 − pd )

(
1 − 2pm

b

)(
1 − 2p

p

b

)
cos 2α

]
,

p0(1|0) = 1
2

[
1 − (1 − pd )

(
1 − 2pm

b

)(
1 − 2p

p

b

)
cos 2α

]
.

p0(0|1) = 1
2

[
1 + (1 − pd )

(
1 − 2pm

b

)(
1 − 2p

p

b

)
cos 2α cos 2θ

− (1 − pd )
(
1 − 2pm

b

)(
1 − 2p

p

b

)
× sin 2α sin 2θ cos(φ − λ − μ)

]
,

p0(1|1) = 1
2

[
1 − (1 − pd )

(
1 − 2pm

b

)(
1 − 2p

p

b

)
cos 2α cos 2θ

+ (1 − pd )
(
1 − 2pm

b

)(
1 − 2p

p

b

)
× sin 2α sin 2θ cos(φ − λ − μ)

]
. (15)

The results for the case when Alice measures Ĉ1 can be
obtained from the above ones by exchanging the labels
0s with 1s in the conditional probabilities, for example
p0(1|0) = p1(0|1), etc. Note that the depolarizing and bit-flip
coefficients occur in the same way in all expressions, as (1 −

pd )(1 − 2pm
b )(1 − 2p

p

b ). Moreover, the effects of both bit-flips
(during the state preparation and during the measurement)
have the same form as that of a depolarizing channel. Indeed,
by introducing b = 1 − (1 − 2pm

b )(1 − 2p
p

b ), we obtain the
joint depolarizing–bit-flip coefficient in a symmetric form
(1 − pd )(1 − b). Note that, since p

p/m

b ∈ [0,1/2], we have
b ∈ [0,1]; the ranges of the two coefficients coincide.

F. Distinguishability between conditional probabilities
corresponding to different commitment choices

Each discrete probability distribution p(i), with i =
1, . . . ,n, can be seen as a vector p = (p1,p2, . . . ,pn), whose
coordinates pi are the probabilities, pi = p(i). Yet there is a
more suitable representation as a vector p = (p1,p2, . . . ,pn),
where the coordinates pi are square roots of the probabilities,
pi = √

p(i). The motivation for this representation is the
following: with the standard scalar product, pq = (p,q) =
〈p|q〉 = ∑

i piqi = ∑
i

√
p(i)q(i), all vectors representing

probability distributions have unit norm, due to the normaliza-
tion of probabilities to 1. On the other hand, a way to quantify
distinguishability between two probability distributions p and
q is given by the fidelity F (p,q) ≡ ∑

i

√
p(i)q(i) (known

also as the Bhattacharyya coefficient [30]), which is merely
the scalar product we just introduced, pq = ∑

i

√
p(i)q(i) =

F (p,q). The more similar the two probabilities are, the bigger
the scalar product is (1 when they are identical); the more
different, i.e., distinguishable, they are, the smaller the scalar
product is (the most distinguishable being the orthogonal
ones).

We can use this measure of the probability distinguishability
to study the influence of noise on the protocol’s performance.
In this and the following sections, we will not consider the
effects of a possible unitary rotation during the transmission,
as it represents a systematic error that can be compensated.
Nevertheless, we hope the above results on the conditional
probabilities with the influence of a possible unitary rotation
could be useful in detecting and eliminating such a systematic
error.

When measuring Ĉ0, we get two probability distri-
butions, each conditioned by the input state |0〉 or |1〉:
one is p0(∗|0) = (

√
p0(0|0),

√
p0(1|0)), the other p0(∗|1) =

(
√

p0(0|1),
√

p0(1|1)). When measuring Ĉ1, we get other two
probability distributions, again each conditioned by the input
state |0〉 or |1〉: one is p1(∗|0) = (

√
p1(0|0),

√
p1(1|0)), the

other p1(∗|1) = (
√

p1(0|1),
√

p1(1|1)).
The stronger the noise is, the more the resulting conditional

probabilities diverge form the ideal case, given by (4) and (5),
approaching a pair of totally balanced conditional probabili-
ties. Thus, we may consider the average fidelity between the
corresponding probability distributions for the noiseless case
and the case of a noise given by the channel E . If pc(r|b) and
pE

c (r|b) are the probabilities for the ideal noiseless case and
the case with a noise given by the channel E , respectively
(c,r,b ∈ {0,1}), then the average fidelity between the four
probability distributions is

〈F (E)〉 = 1
4 [F (E ; Ĉ0,|0〉) + F (E ; Ĉ0,|1〉)
+F (E ; Ĉ1,|0〉) + F (E ; Ĉ1,|1〉)], (16)
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where the four fidelities between the four pairs of probability
distributions, each obtained for the case of Alice measuring
Ĉc, when the state sent by Bob was |b〉 are

F (E ; Ĉ0,|0〉) = F
(
p0(∗|0),pE

0 (∗|0)
)

= [√
p0(0|0)pE

0 (0|0) +
√

p0(1|0)pE
0 (1|0)

]
,

F (E ; Ĉ0,|1〉) = F
(
p0(∗|1),pE

0 (∗|1)
)

= [√
p0(0|1)pE

0 (0|1) +
√

p0(1|1)pE
0 (1|1)

]
,

F (E ; Ĉ1,|0〉) = F
(
p1(∗|0),pE

1 (∗|0)
)

= [√
p1(0|0)pE

1 (0|0) +
√

p1(1|0)pE
1 (1|0)

]
,

F (E ; Ĉ1,|1〉) = F
(
p1(∗|1),pE

1 (∗|1)
)

= [√
p1(0|1)pE

1 (0|1) +
√

p1(1|1)pE
1 (1|1)

]
.

(17)

The bigger the above expected fidelity is (the more similar the
actual probability distributions are to the ideal noiseless ones),
the higher is the protocol’s security.

One could also analyze the intrinsic properties of the
conditional probabilities pE

c (∗|b), obtained when a noise E
is present (for simplicity, when considering the intrinsic
properties of distributions in noisy environments, we drop
the superscript E). As mentioned before, when presenting the
protocol, each choice of Alice’s measurement can serve to
infer the qubit state, prepared by Bob. Thus, whatever the
observable Ĉc she measures, the corresponding distributions
obtained for the case when the prepared state is |0〉, and when
it is |1〉, should be as distinguishable as possible. The fidelities
between these two pairs of probability distributions are

F (p0(∗|0),p0(∗|1)) =
√

p0(0|0)p0(0|1) +
√

p0(1|0)p0(1|1),

F (p1(∗|0),p1(∗|1)) =
√

p1(0|0)p0(0|1) +
√

p1(1|0)p0(1|1).

(18)

The average fidelity between the probability distributions
obtained when sending the state |0〉 and the state |1〉 is then

〈F (|0〉,|1〉)〉 = 1/2[F (p0(∗|0),p0(∗|1))

+F (p1(∗|0),p1(∗|1))]. (19)

The smaller this average fidelity is, the more distinguishable
the two distributions are, thus the better Alice can infer which
state was sent by Bob, and the protocol security is better.

Finally, note that Alice’s choice of measurement must
produce two rather different conditional probability distribu-
tions p0(∗|b) and p1(∗|b). Only then can her commitment
be imprinted in the set of her measurement outcomes, so
that Bob can learn Alice’s commitment during the opening
phase, and Alice cannot change her decision (the protocol
is binding). The average fidelity between the two sets of
probability distributions, obtained when measuring Ĉ0, and
Ĉ1, respectively, is

〈F (Ĉ0,Ĉ1)〉 = 1/2[F (p0(∗|0),p1(∗|0))

+F (p0(∗|1),p1(∗|1))], (20)

where

F (p0(∗|0),p1(∗|0)) =
√

p0(0|0)p1(0|0) +
√

p0(1|0)p1(1|0),

F (p0(∗|1),p1(∗|1)) =
√

p0(0|1)p1(0|1) +
√

p0(1|1)p1(1|1).

(21)

Again, the smaller this expected fidelity is, the more distin-
guishable the two distributions are, which results in higher
security of the protocol: the more distinguishable Alice’s
actions are, the more secure is her commitment (the choice
of her action).

Note that in the noiseless case, we have that 〈F (|0〉,|1〉)〉 =
cos2 θ , while 〈F (Ĉ0,Ĉ1)〉 = sin2 θ . Thus, according to the
first criterion, the best state distinguishability is, as ex-
pected, achieved for θ = π/2, while the highest measurement
distinguishability is achieved for θ = 0 (again, this is a
rather trivial fact when Bob sends qubits in only one state,
which corresponds to result 0 when measuring Ĉ0 and 1
when measuring Ĉ1—the two observables represent the same
physical property, with its outcomes being relabeled). The two
opposed security requirements become equal for θ = π/4,
which matches the optimal value for the angle between the
states sent by Bob.

The same happens for noisy channels. In particular, in
Fig. 1(a) the graph of |〈F (|0〉,|1〉)〉 − 〈F (Ĉ0,Ĉ1)〉| is plotted
as a function of θ and pd in the case of a depolarizing channel.
As shown, the optimal choice of θ is θ = π/4, unless pd = 1,
in which case the measurement results are completely random,
and consequently any θ will yield the same behavior. An
analogous phenomenon occurs in the bit-flip and the phase-flip
channels (see Fig. 1), in which case complete randomness
is achieved by setting pb = 1/2 and pp = 1/2, respectively
(note that in this plot we extended the domain of the bit-flip
coefficient to [0,1], obtaining the plot symmetric around the
value pb = 1/2).

Next we present the effects of noise on the average
fidelity 〈F (E)〉 between noisy and noiseless channels (16) [see
Fig. 2(a)] and within the noisy channel itself, 〈F (|0〉,|1〉)〉
and 〈F (Ĉ0,Ĉ1)〉, given by (19) and (20), respectively, for the
optimal choice of θ = π/4 (recall that in this case the two are
equal) [see Fig. 2(b)]. In the plots, as noted in the previous
section, the coefficient b stands for 1 − (1 − 2p

p

b )(1 − 2pm
b ),

and it represents the joint effect of the bit-flip channels in
the preparation and measurement apparatuses. Both figures
show the expected behavior. Adding noise gradually takes the
probability distributions from a noiseless case to a completely
random case. Also note that the effect of the bit-flip channel is
the same as the effect of the depolarizing channel.

The other quantity widely used to measure how different
probability distributions are is the relative entropy (also known
as Kullback-Leibler divergence [31]; for a review of the use of
relative entropy in the field of quantum information, see [32]).
For two probability distributions {pi} and {qi}, the relative
entropy between the two is given by

S(p||q) =
∑

i

pi ln
pi

qi

. (22)

Although not formally a distance—it is not symmetric with
respect to its arguments—it can still serve as a measure
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FIG. 1. (Color online) (a) Graph of |〈F (|0〉,|1〉)〉 − 〈F (Ĉ0,Ĉ1)〉| as a function of θ and pd . (b) Graph of |〈F (|0〉,|1〉)〉 − 〈F (Ĉ0,Ĉ1)〉| as a
function of θ and pb.

of distinguishability.6 It determines the probability that a
random source that emits symbols according to a probability
distribution {qi} will produce a sequence of symbols consistent
with a source emitting according to {pi} (see Theorem 4
from [32]).

Here as well we can consider the quantities analogous to
those considered in the case of the fidelity, 〈S(E)〉, 〈S(|0〉|||1〉)〉,
and 〈S(Ĉ0||Ĉ1)〉, given by expressions analogous to (16), (19),
and (20). Note that, since relative entropy is not symmetric, we
can consider six rather than just three quantities. In the case
of 〈S(E)〉, however, only one of the two options is relevant
to our study, namely that which quantifies the probability that
the noisy environment and imperfect apparatus will reproduce
results as in the ideal case given by (4) and (5). We also
note that in the noiseless case, the state and measurement

6Indeed, its infinitesimal form is a true metric, the so-called Fisher
information metric (see, for example, [34], p. 87).

distinguishabilities, according to relative entropy, become
equal for the optimal value θ = π/4. The qualitative results
for the relative entropy mimic entirely those for the fidelity,
therefore we will not present them here.

IV. OPTIMAL CHEATING STRATEGY FOR ALICE

In this section, we discuss the optimal cheating strategy
for Alice if she is allowed to perform only single-qubit
measurements. In particular, we analyze the effects of noise
on the protocol’s security in cases when Alice attempts to
cheat. Although the requirement of single-qubit measurements
might in general pose a significant constraint, for our practical
quantum bit commitment scheme it is rather natural. In other
words, not only is it impossible using today’s technology to
reliably perform large multi-qubit coherent measurements, but
in our case Alice would need to have some kind of a stable
quantum memory, since Bob sends his qubits sequentially, and
at times randomly chosen by him—precisely the equipment
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FIG. 2. (Color online) Fidelity 〈F (E)〉 between noisy and noiseless channels (a), and fidelity 〈F (|0〉,|1〉)〉 = 〈F (Ĉ0,Ĉ1)〉 within the noisy
channel (b), as functions of the depolarizing coefficient pd and the joint (preparation- and measurement-induced) bit-flip coefficient b =
1 − (1 − 2p

p

b )(1 − 2pm
b ).
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that is not available today and that makes our (practical)
commitment scheme possible.

The goal of a cheating Alice is to break one of the
two protocol’s security requirements: the binding feature.
Alice would like to be able to postpone the moment of her
commitment, ideally until the opening phase. To do so, she
has to be able to pass both tests of committing to 0 and 1, and
since, under the constraints of today’s technology, she is forced
to perform her measurements immediately upon receiving the
qubits from Bob (during the commitment phase), the only
option left is to choose a measurement that would provide
her with the best possible inference of qubit states sent by
Bob. In other words, the optimal measurement has to secure
minimal error when discriminating between the two quantum
states. This is a well-known problem of ambiguous quantum
state discrimination, and the minimal probability of error when
discriminating between two general mixed quantum states ρ̂0

and ρ̂1 is given by the famous Helstrom bound [33]:

Pe(ρ̂0,ρ̂1) = 1
2 + 1

2 Tr|p0ρ̂0 − p1ρ̂1|, (23)

where p0 and p1 = (1 − p0) are the probabilities of having
the state ρ̂0 and ρ̂1, respectively (in our case, p0 = p1 = 1/2).
In the case of pure states and equal a priori probabilities,
the Helstrom bound is Pe = (1 − sin θ )/2 and the optimal
observable is given by the orthogonal basis vectors |0̃〉 and
|1̃〉, such that (see, for example, [35])

|0〉 = cos α|0̃〉 + sin α|1̃〉, |1〉 = cos β|0̃〉 + sin β|1̃〉, (24)

where α = π/4 − θ/2 and β = π/4 − θ/2. In other words,
the basis vectors |0̃〉 and |1̃〉 are in the plane defined by |0〉 and
|1〉, and they share the same bisector with them.

For the value of θ = π/4, when the protocol’s security is
maximal, the optimal observable for a cheating Alice is given
by the so-called Breidbart basis [36]:

|0̃〉 = cos(π/8)|0〉 − sin(π/8)|1〉,
|1̃〉 = sin(π/8)|0〉 + cos(π/8)|1〉.

(25)

To analyze quantitatively the effects of noise on the above
cheating strategy, we compare, in analogy with the previous
section, how similar various probability distributions are,
using the fidelity and relative entropy as distinguishability
measures. In particular, we can consider how different the
conditional probabilities obtained by a cheating Alice are
from those obtained by the honest one. For simplicity, we
start by comparing the results obtained by a cheating party, in
the presence of noise, with the results of an honest agent,
in the ideal noiseless case (4) and (5). We will consider
the average fidelity 〈F (E)〉, given by Eqs. (16) and (17),
where in (17) instead of pE

0 (∗|∗) and pE
1 (∗|∗), we have the

unique cheating probability pE
ch(∗|∗). Analogously, we con-

sider the relative entropy 〈S(E)〉. The results for the fidelity
and relative entropy are given in Fig. 3 (note that in the rest
of this section, we consider the optimal choice of θ = π/4).
We observe the qualitative difference between the behavior
of the fidelity and the relative entropy: indeed, one can easily
see that the entropy decreases slightly with the introduction of
small noises (in fact, the optimal value of added noise is rather
significant, being slightly over 0.29). This behavior can be
taken advantage of in the more realistic situation of both parties

0.0 0.2 0.4 0.6 0.8 1.0
pd

0.2

0.4

0.6

0.8

1.0

<S>

<F>

FIG. 3. (Color online) Fidelity 〈F (E)〉 [dashed (blue) line] and
relative entropy 〈S(E)〉 [full (red) line] between an honest strategy
without the presence of noise, and the optimal cheating strat-
egy in the presence of white noise, as a function of the noise
parameter pd .

being subjected to noise. In fact, as Fig. 4 shows, independently
of the channel’s noise factor pd , it is always advantageous for
a dishonest party to introduce a small extra noise factor �pd ,
as it decreases the relative entropy between the underlying
probability distributions (note that �pd � 1 − pd ). One can
easily prove that the optimal amount of noise �p̃d a cheating
party should introduce is

�p̃d =
(

1 − 1√
2

)
(1 − pd ). (26)

The above comparative study of the two distinguishability
measures shows two rather conflicting results: while according
to the fidelity, noise degrades the chances of a cheating party,
according to the relative entropy, it is always advantageous
to add a little noise in order to increase the chances that a
cheating party will go on unnoticed. Unlike the fidelity, the
relative entropy gives the probability that a cheating strategy
will produce the distribution of measurement results consistent
with that produced by an honest party.

It is interesting to analyze the reasons for such behavior
of the relative entropy, and why it is not present in the case
of the fidelity. For simplicity, we will analyze only the case

0.0

0.5

1.0
pd

0.0

0.5
1.0

Δpd

0.0

0.1

0.2

0.3

FIG. 4. (Color online) Introducing a small noise �pd helps a
dishonest party.
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when an honest strategy is executed in noiseless circumstances;
the general case when both honest and cheating agents are
subjected to noise is straightforward. First, we note that
unlike the standard quantum cryptographic protocols, such
as BB84 [4] and B92 [11], where the only relevant results are
those obtained for the cases when the basis of the states sent
by Bob and the basis of the observable measured by Alice
coincide, here we are interested in the results when the two
are not the same. In other words, we are interested not only in
how similar the pairs (p0(∗|0),pE

ch(∗|0)) and (p1(∗|1),pE
ch(∗|1))

are, but also in the distinguishability of the cross terms given
by the pairs (p0(∗|1),pE

ch(∗|1)) and (p1(∗|0),pE
ch(∗|1)) of the

probability distributions of the measurement results. And it is
precisely the cross terms that make a difference: the honest
party probability distributions p0(∗|1) and p1(∗|0) are equal
and are actually a uniformly random distribution, while the
cheating probability distributions pE

ch(∗|0) and pE
ch(∗|1) are

biased, and approach a uniformly random distribution when
the noise increases. This means that both the increase in
fidelity and the decrease in relative entropy will occur between
the pairs of the cross terms for certain range of the noise
parameter pd . Nevertheless, these contributions will affect
differently the overall average fidelity 〈F (E)〉 and the average
relative entropy 〈S(E)〉: the former will always decrease with
pd , while the latter will experience a decrease for a rather
broad range of values of pd . Mathematically, this is just an
effect of scaling: fidelity uses a linear scale, and the cross
terms are not powerful enough to overcome the behavior of
noncross terms, whereas the relative entropy uses a logarithmic
scale and allows the cross terms to express themselves
better.

V. THE SECURITY OF THE PROTOCOL—A MORE
DETAILED ANALYSIS

In Sec. II, we presented a general description of Bob’s
decision process: in order to accept Alice’s commitment to,
say, value 0, the probability that the statistics q, formed by the
data communicated by Alice, were obtained by measuring Ĉ0

must be bigger than a certain threshold value α. In addition
to that, the probability that the statistics q, which passed
Bob’s test of committing to 0, were obtained by measuring
Ĉ1 should be smaller than β (the protocol is viable). After
analyzing the effects of noise and imperfect photon sources and
measurement apparatuses, as well as Alice’s optimal cheating
strategy, we can study in more detail Bob’s criteria for deciding
if the results obtained from Alice confirm that she committed
to 0 or to 1, or that the results show that she tried to cheat. We
can also check the minimum number of photons that need to be
measured by Alice for Bob’s decisions not to be compromised
by Alice’s eventual attempt to cheat.

For simplicity, we will analyze the criterion for deciding
if given measurement results confirm that Alice committed to
0. The total number of measurement outcomes is n = n(0) +
n(1), where n(0) is the number of measurements on photons
sent in the state |0〉, and analogously for n(1). Furthermore,
n(0|0) is the number of outcomes 0, when the state |0〉 is sent,
while n(1|0) is the number of outcomes 1 [and analogously
for n(∗|1)]. This way, we have two (conditional) probability

distributions:

q(∗|0) =
{
q(0|0) = n(0|0)

n(0)
, q(1|0) = n(1|0)

n(0)

}
,

q(∗|1) =
{
q(0|1) = n(0|1)

n(1)
, q(1|1) = n(1|1)

n(1)

}
.

(27)

To analyze the protocol’s security against Alice’s attempt
to cheat, we introduce a criterion similar to that given by (6):

P (q||p0) > α ⇒ P (q||pch) < β. (28)

Note that it is more likely to produce statistics that look as
if they were obtained by committing to 0 by measuring Ĉch

than by measuring Ĉ1. Therefore, we will only consider the
criterion that the statistics q = {q(∗|0),q(∗|1)} were obtained
by measuring Ĉ0, and not by measuring Ĉch. Thus, if statistics
q pass Bob’s test of committing to 0,

P (q(∗|0)||p0(∗|0)) > α and P (q(∗|1)||p0(∗|1)) > α′,

(29)

then for the protocol to be secure (and consequently viable),
we require that

P (q(∗|0)||pch(∗|0)) < β and P (q(∗|1)||pch(∗|1)) < β ′.

(30)

(Note that, in general, the thresholds α and α′, as well as β

and β ′, need not be equal.)
The above probabilities are given by a simple binomial

distribution7 B(n0; n,p0) [for simplicity, here we define n =
n(0), n0 = n(0|1), and p0 = p0(0|1)]:

P (q(∗|1)||p0(∗|1)) =
(

n

n0

)
p

n0
0 (1 − p0)(n−n0), (31)

and analogously for other cases. For all practical purposes, the
above binomial distribution will behave as a normal distribu-
tion N (x; μ0,σ0), with its mean μ0 and standard deviation σ0.
Thus, we can set parameter α to be α2σ = 
(μ0 + 2σ0; μ0,σ0),
where 
(x; μ0,σ0) is the cumulative distribution function of
the normal distribution N (x; μ0,σ0). For such α, the statistics
obtained by measuring Ĉ0 will pass the test of committing to
0 in about 97.7% of the cases. Analogously, the distribution
defining the second probability in (30) is given by μch and σch,
and we can define β to be β2σ = 
(μch − 2σch; μch,σch), for
which the statistics obtained by measuring Ĉch will lead to a
successful cheat in only 2.3% of the cases.

It turns out that the second conditions in both (29) and (30)
are, albeit qualitatively the same, quantitatively stronger than
the first pair of conditions. In Fig. 5, we plot P (q(∗|1)||p0(∗|1))
(left bump) and P (q(∗|1)||pch(∗|1)) (right bump) as functions
of a depolarizing coefficient pd and q0 = n(0|1)

n(0) for n(0) = 50

7The probability that the distribution {p0,1 − p0} yields statistics q

[that is, the probability that {p0,1 − p0} yields n0 0s and (n − n0) 1s]
is given by p

n0
0 (1 − p0)(n−n0) times the number of possible sequences

of n0 0s and (n − n0) 1s, i.e., ( n
n0

).
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FIG. 5. (Color online) P (q(∗|1)||p0(∗|1)) (left bump) and
P (q(∗|1)||pch(∗|1)) (right bump), as functions of a depolarizing
coefficient pd and q0 = n(0|1)

n(0) for n(0) = 50. The green (left) full
line represents the intersection between the left bump and the
q0 = μ0 + 2σ0 plane, while the yellow (right) one represents the
intersection between the right bump and the q0 = μch − 2σch plane,
both as functions of pd .

(i.e., the total number of measurements is about n = 100). The
second condition in (30) now translates to

μ0 + 2σ0 � μch − 2σch. (32)

The latter is satisfied as long as the depolarizing coefficient
pd is smaller than about 26%, which is represented by the
intersection of the two full lines in Fig. 5.

We see that already for n = 100 we obtain statistics such
that the probability to cheat becomes negligible for realistic
amounts of noise. Note that this number is smaller than the
number of photons needed to be measured in standard quantum
key distributions, where a number of results are used not for
establishing a secret key, but “wasted” for checking if the
communication between Alice and Bob was eavesdropped.

The conditions determining the probabilities α and β

in (30), given by (32), can be either strengthened or loosened
according to one’s needs. One can, for instance, increase
the viability of the protocol by setting α to be α3σ =

(μ0 + 3σ0; μ0,σ0), in which case an honest party would
successfully pass Bob’s test in 99.86% of the cases. On the
other hand, one could decrease the security parameter β to
βσ = 
(μch − σch; μch,σch), which would still allow Bob to
spot cheating in about 84.2% of the cases. In Table I, we
present various possibilities for p∗

d , the maximum value of pd

TABLE I. Maximum value of pd as a function of the security
parameters α and β.

α β p∗
d

α2σ = 97.7% β2σ = 2.3% 0.26
α3σ = 99.86% βσ = 15.8% 0.23
α3σ = 99.86% β2σ = 2.3% 0.09
α2σ = 97.7% βσ = 15.8% 0.42

for which conditions (29) and (30) are satisfied, as functions of
the security parameters α and β [i.e., the conditions analogous
to (32)].

VI. (IM)PERFECT NONDEMOLITION MEASUREMENTS
AND NOISY OR BOUNDED MEMORY

In this section, we analyze the protocol’s security under
the more realistic assumptions of using finite efficiency
nondemolition measurements and a noisy or bounded memory.
First, we discuss the use of nondemolition measurements.
The ideal nondemolition photon measurement would allow
Alice to obtain the photon arrival times without actually
destroying them, thus permitting her to keep the qubits in
a (noisy) memory and postpone her commitment. Typically,
such nondemolition measurements would alter the photon’s
state of polarization, a contribution that is equivalent to one
coming from an imperfect memory and with which we will
deal later on. In the case of a finite efficiency, say pnd < 1,
a certain fraction of arrived photons will not be possible to
store. If Alice’s equipment simply absorbs such photons, and
does not allow measuring the photon polarizations, Bob can
detect such cheating attempt by comparing the expected and
presented number of results (Bob knows the specifications
of the setup, in particular the rate of photon emission, the
absorption coefficient of the environment, and the detectors’
efficiencies, and can therefore estimate the expected number n

of results provided by Alice). If she has an apparatus that can
measure the polarization of the absorbed photons, Alice’s best
strategy is to perform the polarization measurement of the
cheating observable Ĉch on the said fraction of (1 − pnd )n
photons. But this is equivalent to the case of performing
an ideal nondemolition measurement, and having a bounded
noisy memory, such that only the fraction of ν = pnd of results
are obtained by the stored photons, while the rest are obtained
by measuring Ĉch. Therefore, in the rest of the section we
assume the ideal case of pnd = 1.

Regarding quantum memories, we will first again discuss
the best-case scenario for a cheating Alice: unrestricted amount
of noisy quantum storage. Storing qubits in a memory for
a certain “delay time” �t allows Alice to postpone her
commitment and thus break the binding security condition.
Since the memory is not ideal, during that time the photon’s
polarization states will further decohere with the environment,
hence decreasing Alice’s probability to pass Bob’s test (29).
We model the noise by a depolarizing quantum channel given
by pd (�t). This way, when measuring, say Ĉ0, the cheating a
priori conditional probability distributions p�t

0 (∗|∗), given by
pd + pd (�t), will differ from those expected by Bob, given
by only pd . As in the preceding section, the threshold value for
pd (�t), for which cheating is not possible, is given by (Bob’s
decision criterion)

P (q(∗|0)||p0(∗|0)) > α and P (q(∗|1)||p0(∗|1)) > α,

(33)

and (security criterion)

P (q(∗|0)||p�t
0 (∗|0)) < β�t and

(34)
P (q(∗|1)||p�t

0 (∗|1)) < β�t .

052336-11



RICARDO LOURA et al. PHYSICAL REVIEW A 89, 052336 (2014)

0.5

1

q0

0.2

0.4

pd (Δt)

0.0

0.1

0.2

FIG. 6. (Color online) P (q(∗|0)||p0(∗|0)) (right bump) and
P (q(∗|0)||p�t

0 (∗|0)) (left bump) as a function of pd (�t) and q0 =
n(0|1)
n(0) for a fixed value of pd = 0.15 and n(0) = 50. The green (right)

full line represents the intersection between the right bump and
the q0 = μ0 − 2σ0 plane, while the yellow (left) one represents the
intersection between the left bump and the q0 = μ�t

0 + 2σ�t
0 plane,

both as functions of pd (�t).

Note that α is given in terms of μ and σ of the “honest”
conditional probability distributions p0(∗|∗), while β�t is
obtained for μ�t and σ�t of the “cheating” conditional
probability distributions p�t

0 (∗|∗).
Again, we analyze the case of committing to 0, and for

simplicity we choose only the q(∗|0) results. Further, in
analogy with the previous section, we (re)define n = n(0),
n0 = n(0|0), p0 = p0(0|0), and q(∗|0) = {q = n0/n,1 − q =
(1 − n0)/n}. This change of notation is due to the fact that
p�t

0 (∗|1) = p0(∗|1) is uniformly random, and independent of
�t . In Fig. 6, we plot P (q(∗|0)||p0(∗|0)) (right bump) and
P (q(∗|0)||p�t

0 (∗|0)) (left bump) as functions of pd (�t), for a
fixed value of pd = 0.15. For higher (lower) values of pd , the
corresponding plot is a simple translation to the left (right),
along with a rescaling.

Finding the threshold value p∗
d (�t) for pd (�t) (i.e., for

how long can Alice postpone her commitment), as a function
of pd , is now equivalent to solving

μ�t
0 + 2σ�t

0 � μ0 − 2σ0, (35)

just as in the previous section [see Eq. (32)]. Again, we can
vary the security parameters α�t and β�t . Various possibilities
are presented in Table II.

TABLE II. Maximum value of pd (�t) as a function of the security
parameters α and β.

α�t β�t p∗
d (�t)

α2σ = 97.7% β2σ = 2.3% 0.4
α3σ = 99.86% βσ = 15.8% 0.35
α3σ = 99.86% β2σ = 2.3% 0.49
α2σ = 97.7% βσ = 15.8% 0.26

Finally, we briefly discuss the general case of bounded
and noisy quantum memories. Let ν be the fraction of the
total results n which were obtained by measuring the photons
stored in a noisy quantum memory. The optimal strategy for
a cheating Alice would then be to measure Ĉ0 on νn photons,
and the cheating observable Ĉch on the rest of (1 − ν)n photons
that she cannot store. Due to the law of large numbers, the a
priori probability of such cheating strategy would be

p̄0(∗|0) = νp0(∗|0) + (1 − ν)pch(∗|0), (36)

and analogously for p̄0(∗|0). The security criterion would then
be

P (q(∗|0)||p̄0(∗|0)) < β̄ and P (q(∗|1)||p̄0(∗|1)) < β̄ ′,

(37)

which can be easily analyzed using the previous results
regarding the cheating observable and the noisy memory.

VII. NONOPTICAL DETECTOR ERRORS

In this section, we briefly discuss the effects of nonop-
tical errors, caused by the imperfect single-photon sources,
transmission losses, and imperfect detectors (finite efficiency
and dark counts). As the causes of these errors are basis-
independent, they will manifest equally as in the case of
standard quantum cryptography, when the state |b〉 sent by Bob
and the observable Ĉc measured by Alice coincide, c = b. In
Appendix B, following [26], p. 166, we present the explicit ex-
pressions for nonoptical quantum-bit corrections δpc(∗|b), for
c = b, to the total probabilities p̃c(∗|b) = pc(∗|b) + δpc(∗|b),
where pc(∗|b) represents the optical contribution discussed in
Sec. III.

As in the case of calculating the nonoptical part of QBER,
in cases of measuring a “wrong” observable, when c �= b, we
neglect all less probable cases and calculate the error due to
dark counts only when no photons arrived at the measuring
apparatus (that consists, among other things, of two detectors
D0 and D1, corresponding to two possible outcomes 0 and
1, respectively). Therefore, we can safely estimate that the
number of dark counts in both detectors is equal. In the case
of |〈0|1〉| = cos π/4 = 1/

√
2, when the protocol’s security is

optimal, the error due to dark counts is thus zero.

VIII. CONCLUSIONS

We presented a two-state practical quantum bit
commitment protocol. We discussed the effects of both optical
and nonoptical noise. In the latter case, we showed that
finite detector efficiency, dark counts, imperfect single-photon
sources, and transmission losses have essentially the same
effects as in the case of standard quantum cryptography.
To quantitatively analyze the effects of the optical part of
the noise, we used the fidelity and the relative entropy,
two information-theoretic measures of probability distribution
distinguishability. As a corollary to our study, using the two
distinguishability measures only, we obtained the well-known
result that the optimal value of the angle θ between the
two quantum states used in the protocol is θ = π/4. We
also showed a somewhat counterintuitive result that adding
a certain amount of white noise can always help a cheating
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Alice to postpone her commitment until the opening phase.
This effect is a result of the comparison of the results of
measurements in cases when the measurement basis does not
coincide with the basis from which the state is sent. Although
it can be seen by looking at the behavior of both the fidelity and
the relative entropy, when averaging over all the possible cases,
only the expected relative entropy retains the signature of this
effect. Finally, we analyzed the protocol’s security when Alice
has access to (im)perfect nondemolition measurements and
noisy or bounded memories, and we showed that the protocol
is robust against such possible attacks.
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APPENDIX A

In this appendix, we present a simple example of the
application of bit commitment to authentication protocols
based on zero-knowledge proof systems. Suppose Alice wants
to authenticate herself to Bob by proving to Bob that she knows
a solution to a difficult mathematical problem, without actually
revealing the solution (thus the name zero-knowledge proof).
This requirement is crucial: the knowledge Alice has is unique
to her (the problem is difficult, so others cannot solve it in real
time), and is used as a means of identification. If she discloses
it to Bob, he can in the future falsely present himself as Alice,
which she would like to prevent.

Consider the following mathematical problem (the so-
called coloring problem): given a graph G = (V,E), where
V is the set of vertices and E ⊆ V × V the set of edges, and
three colors {R,Y,B} (red, yellow, and blue), find a coloring
C : V → {R,Y,B} such that no two adjacent vertices have
the same color, (u,v) ∈ E ⇒ C(u) �= C(v). This is known
to be a hard problem, in fact it is an NP-complete problem
(see, for example, [37], p. 1019): if only a graph is given,
finding a proper coloring using today’s best algorithms requires
exponential time with respect to the graphs’ complexity.
Therefore, for all practical purposes it is safe to assume that
Alice is the only person who knows a coloring, and therefore
she can use it as her personal identifier.

The way to prove to Bob that she indeed knows the coloring
C, without actually revealing this information, is the following.

The protocol is probabilistic, consisting of n steps, such that
the probability that Alice cheats (convinces Bob she knows
the coloring, without actually knowing C) approaches zero
exponentially fast with respect to the number of steps n. Each
step consists of three consecutive parts:

(i) Alice randomly chooses a permutation π : {R,Y,B} →
{R,Y,B}, sets a new coloring C ′ = π ◦ C, and commits to it:
she writes down on a piece of paper the colors, according to
new coloring C ′, of all the vertices of a (publicly known) graph
G, locks it in a secure “safe,” keeps the key with her, and gives
the “safe” to Bob. She can do so by committing to a string of
2N bits, where N is the number of vertices of G: assuming
Alice and Bob agreed prior to the protocol on a particular
enumeration of the graph’s vertices, each ith pair of bits, with
i = 1, . . . N , defines the color of the ith vertex (obviously, this
is not an optimal encryption); this way, each bit is locked in a
different “safe,” for which a different key is produced.

(ii) Bob chooses an edge (u.v) and challenges Alice to show
him their respective colors.

(iii) Alice opens the values of the bit pairs corresponding
to the vertex u and the vertex v (gives the keys for the
corresponding bits), thus disclosing to Bob the colors C ′(u)
and C ′(v). If they are the same, Alice failed to pass the test
and Bob terminates the procedure. Otherwise, they repeat the
procedure until Bob is satisfied.

Obviously, Alice can pass the above test only if she indeed
knows the coloring C of the graph G. Otherwise, she can only
try to partially color the graph (properly, so that the adjacent
vertices have different colors), hoping that Bob will not choose
vertices that she colored with the same color. If the probability
to pass the test in a single step of the protocol is p < 1, then
the probability to pass the test goes to zero exponentially fast
with the number of steps n of the protocol, as 1 − pn. Note
that although in each step of the protocol Bob learns a coloring
of one pair of vertices, after n steps he still did not learn the
coloring of n vertices, as in each step Alice chooses different
coloring C ′ = π ◦ C, given by a permutation π , unknown to
Bob.

Note the essential importance that Alice’s commitment is
binding—otherwise, she could, upon learning Bob’s choice of
vertices u and v, change her commitment and choose the two
colors to be different. Also, it is important that the protocol is
concealing—otherwise, Bob would be able to learn a coloring
of graph G, and thus, in the future, impersonate Alice.

This concept of a cryptographic commitment can be traced
back to the early 1980s, with the works of Shamir, Rivest, and
Adleman [38], along with those of Blum [39] and finally of
Even [40], where the concept was first named. Nowadays, it has
found its way into several protocols of many diverse natures,
such as e-voting protocols [41], the TESLA authentication
protocol [42], and the Schnorr protocol [43], upon which part
of Microsoft’s U-prove system is based [44].

APPENDIX B

In this appendix, we evaluate the nonoptical contributions
δpc(∗|b) for c = b. As noted when discussing the depolar-
izing channel, the two out of four probabilities are merely
the quantum-bit error rate, QBER = δp0(1|0) = δp1(0|1),
while the other two are then straightforward to obtain,
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δp0(0|0) = −δp0(1|0) and δp1(1|1) = −δp1(0|1) [note that,
by definition, p̃0(0|0) + p̃0(1|0) = 1 and p0(0|0) + p0(1|0) =
1]. For example, let Alice measure Ĉ0. Then, we are interested
in cases when result 1 is obtained for qubits in state |0〉. Let
Ntot be the total number of qubits received in the state |0〉, and
let Nwrong be the number of qubits received in the state |0〉 for
which the wrong result 1 is obtained, during the time interval
T . Then, the QBER is given by

QBER = Nwrong

Ntot
=

Nwrong

T

Ntot
T

= Rerror

Rtot
. (B1)

Here Rtot = Ntot/T and Rerror = Nwrong/T are the total and
the error rates, respectively, for the qubits received in the state
|0〉. If Rraw is the overall source rate, including both |0〉 and
|1〉 states, then

Rtot = 1
2Rraw, (B2)

since Bob sends on average an equal number of |0〉 and |1〉
states. The total rate (number and time) of qubits sent in either
the |0〉 or |1〉 state (given by frepμ) that were not absorbed and
that managed to arrive to detectors (given by tlink) and were
detected (given by η) is

Rraw = frepμtlinkη . (B3)

Here, frep is the pulse rate (the number of “attempts” to send
a photon, per time) and μ is the mean number of photons
per pulse. Thus, frepμ is the number of photons sent, in the

unit of time. The probability that a sent photon arrives at a
detector is tlink ∼ 10−αL (α is the absorption coefficient, and
L is the transmission distance, i.e., the length of an optical
cable). Finally, the detector efficiency η is the probability that
a photon that arrived at a detector is actually detected. Note that
μ ∼ 0.1 � 1: we ignore the low probability cases of sending
two or more photons per pulse.

In general, Rerror = Ropt + Rdet, but here we are only
interested in the error arising due to dark counts. We have

Rdet = 1
2

(
1
2frep

)
(1 − μtlinkη)pdark ≈ 1

4freppdark . (B4)

Here, 1
2 is the probability that a wrong detector will click,

( 1
2frep) is the rate of photons sent in the “right” state (in our

case |0〉), and (1 − μtlinkη) is the probability that a photon is
not detected (when dark counts are relevant). Note that the
probability that a photon arrives at detectors and is efficiently
detected is small, μtlinkη � 1. Also, we neglect the less
probable cases of “right” dark counts, when a photon does
not arrive at detectors.

Thus, we get

δp0(1|0) = δp1(0|1) = pdark

2μtlinkη
,

δp0(0|0) = δp1(1|1) = − pdark

2μtlinkη
.

(B5)
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