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We introduce a class of mixed multiqubit states, that corresponds to a randomized version of graph states.
Such states arise when a graph state is prepared with noisy or imperfect controlled-Z gates. We study the
entanglement features of these states by investigating both bipartite and genuine multipartite entanglement.
Bipartite entanglement is studied via the concepts of connectedness and persistency, which are related to
measurement based quantum computation. The presence of multipartite entanglement is instead revealed by
the use of witness operators which are subsequently adapted to study nonlocal properties through the violation
of suitable Bell inequalities. We also present results on the entanglement detection of particular randomized
graph states, by deriving explicit thresholds for entanglement and nonlocality in terms of the noise parameter
that characterizes the controlled-Z gates exploited for their generation. Finally, we propose a method to further
improve the detection of genuine multipartite entanglement in this class of states.
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I. INTRODUCTION

Graph states and especially cluster states are at the heart of
measurement based quantum computation (MBQC) [1]. Given
a cluster state, this prominent model of quantum computation
provides a way to perform universal computing with only local
gates and measurements, by avoiding the use of two-qubit
entangling gates. Under this light, the entanglement content of
cluster states can then be regarded as a quantum resource that
is consumed throughout the process. However, despite the fact
that all the operations involved in MBQC can nowadays be
easily implemented in various hardware, the hardest task from
an experimental point of view is represented by the preparation
of the initial cluster state.

The preparation of general graph states always starts from a
product state of qubits corresponding to the vertices of a graph
with no edges, which is then subsequently processed via an
Ising-like interaction [2]. This interaction is tuned in such a
way that its action can be regarded as a series of controlled-Z
(CZ) gates, connecting the vertices according to the target
graph. In Ref. [3] a preparation method involving only one- and
two-qubit gates for graph states up to 12 qubits is proposed.
As a matter of fact, the current experimental realization of a CZ

gate is far from being perfect, and in practice it is very difficult
to create a noiseless graph state [3].

A possible way to model a noisy CZ gate is to assume
that, with probability p it creates the desired edge between
its qubits, while with probability 1 − p it fails. For heralded
entanglement [4], if the gate fails, one could recover the
original state, i.e., |++〉. This has the same effect as an identity
operator. A physical realization of this probabilistic CZ gate
was suggested in [4–6].

In this paper, we aim at studying the randomized graph
state (for short, RG state), that is, states that arise whenever a
probabilistic CZ gate is applied for every edge in a graph. Given
a graph state, its randomized version is thus a mixture of all

the states corresponding to its subgraphs. These are weighted
according to a single parameter p, which we call randomness
parameter, physically related to the success probability of the
CZ gate.

Besides addressing the issue of the unitary equivalence
of general RG states, we will mainly focus on the amount
of entanglement in RG states, both in the bipartite and the
multipartite case [7]. Regarding the former, we will especially
discuss the concepts of persistency and connectedness, which
have a clear application in terms of the usefulness of RG states
for MBQC [2]. For the quantification of the latter, we will use a
genuine multipartite entanglement witness [8–10]. We will be
able in this way to define a critical value pc for the randomness
parameter, above which the state shows genuine multipartite
entanglement properties. Finally, nonlocal realistic features of
RG states will be discussed with the help of suitable Bell
inequalities developed for graph states.

Notice that not only are RG states interesting and highly
nontrivial per se, but they are a useful tool to investigate and
understand the presence of noise in MBQC. Furthermore,
complete RG states are a plausible quantum counterpart to
the classical Erdős-Rényi random graphs introduced in [11]
(Ref. [12] is a detailed survey on the topic), and recently
studied in the context of complex systems [13,14].

The present paper is organized as follows. In Sec. II we
review some basic definitions about mathematical graphs,
random graphs, and quantum graph states. We define ran-
domized graph states in Sec. III. We then study the rank
of RG states to answer the question of unitary equivalence
and bipartite and multipartite entanglement in Secs. IV–VI,
respectively. In Sec. VI, an approximation to a witness for
multipartite entanglement is introduced, which allows us
to determine a threshold probability. A further analysis on
nonlocal realism is carried out in Sec. VII. We conclude in
Sec. VIII with a summary of the achieved results and future
perspectives.
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II. PRELIMINARIES

In this section, we briefly review the definition of graphs as
used in the paper and the mathematical concept of Erdős-Rényi
random graphs. We then remind the reader of the well-known
class of quantum graph states and introduce the notation that
will be used throughout the paper.

A. Graphs

A graph G = (V,E) is defined as a pair consisting of a set
VG = {v1, . . . ,vn}, whose elements are called vertices, and a
set EG = {e1, . . . ,el}, whose elements are called edges and
consist of unordered pairs of different vertices [15]. A graph
F with VF ⊆ VG and EF ⊆ EG is called a subgraph of G. If
VF = VG then F is said to be a spanning subgraph of G; in
such a case, we say that F spans G. Two vertices are neighbors
if they are connected by an edge. The degree of a vertex vi ,
dvi

, is the number of its neighbors. A graph is empty if it has
no edges. The empty graph on n vertices is denoted by G∅

n.
On the other hand, the complete (or fully connected) graph on
n vertices, Kn, contains all possible

(
n

2

)
edges. Other relevant

types of graphs that will be considered along the paper are the
following ones:

(1) (i) Star graphs, Sn: graphs where one vertex has degree
n − 1 and all others have degree 1.

(2) (ii) Cluster graphs, Lm×n: graphs whose vertices
correspond to the points of a discrete two-dimensional lattice
with m times n. When m = 1, we simply write Ln. This is
a linear cluster, or, equivalently, a path on n vertices. Notice
that in the graph-theoretic literature Lm×n is usually called a
grid graph or a lattice graph. We use a different terminology
given the link with MBQC.

(3) (iii) Cycle graphs, Cn: graphs where all vertices have
degree 2. These are closed linear clusters.

A very useful concept in the remainder of the paper is
the symmetric difference. Letting F and G be two graphs
on the same set of vertices V , their symmetric difference is
the graph F�G, such that VF�G = VF = VG and EF�G =
EF ∪ EG \ EF ∩ EG.

B. Erdős-Rényi random graphs

Random graphs are a well-developed mathematical subject
touching both graph theory and probability theory [12]. In the
Erdős-Rényi (ER) random graph on n vertices, each edge is
included with probability p independently of any other edge.
Notice that, as p is uniform for all edges, then the probability
of a subgraph G ⊆ Kn with a number of edges |EG| is given by
P (G) = p|EG|(1 − p)(

n

2)−|EG|. As an illustration, Fig. 1 shows
all possible subgraphs of the complete graph K3.

C. Graph states

We will briefly review here the well-known concept of a
graph state of n qubits and its connection to graphs [16,17].
Given a graph G = (V,E) on n vertices, the corresponding
graph state is denoted by |G〉 and defined as follows. First,
assign to each vertex a qubit and initialize it as the state
|+〉 = 1√

2
(|0〉 + |1〉), so that the initial n-qubit state is given

by |+〉⊗n. Then, perform a CZ operation between any two
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FIG. 1. (Color online) All possible subgraphs on three vertices,
and the related probabilities, as instances of the ER random graph.
(a) The empty G∅

3 and the complete K3 subgraphs with probability
(1 − p)3 and p3, respectively. (b) The subgraphs composed of a single
edge with probability p(1 − p)2. (c) The subgraphs composed of two
edges with probability p2(1 − p).

qubits associated to vertices that are connected by an edge.
This operation is defined as CZ = diag(1,1,1,−1), in the
computational basis {|0〉,|1〉} for each qubit. By performing
the CZ operation on any two connected qubits i1 and i2, we get
the corresponding graph state

|G〉 :=
∏

{i1,i2}∈E

(CZ)i1i2
|+〉⊗n. (1)

Notice that the number of distinct graph states of n qubits is
equal to 2(n

2), which is the number of labeled graphs with n

vertices.

III. RANDOMIZED GRAPH STATES

In this section, we will introduce the class of randomized
graph (RG) states. The main idea is to start from a graph G

and to apply probabilistic gates �p to the state |+〉⊗n instead
of the perfect CZ gates. �p is defined as

�p(|++〉〈+ + |) = p| 〉〈 〉 + (1 − p)|++〉〈++|, (2)

with |++〉 representing the two-qubit empty graph state, and
| 〉 denoting the two-qubit connected graph state. In other
words, we consider a noisy implementation of the gate CZ,
where one realizes the desired CZ gate with probability p,
but one fails and does nothing with probability 1 − p [4–6].
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Notice that all gates �p acting on any pair of qubits commute
and therefore we do not have to specify the order of application.

As an illustration, suppose we want to generate the
GHZ state | 〉 by employing the aforementioned procedure,
namely by applying the probabilistic gates �p to create edges.
It is easy to see that the resulting state is a mixture of subgraph
states of | 〉, namely

Rp(| 〉) = �{1,2}
p ◦ �{2,3}

p (|+++〉〈+ + +|)
= p2| 〉〈 | + p(1 − p)| 〉〈 |

+p(1 − p)| 〉〈 | + (1 − p)2| 〉〈 |. (3)

The above state is then said to be the RG state associated to
the graph . The above example shows that the RG state ρ

p

G

associated to a graph G, or equivalently to a pure graph state
|G〉, can be derived by applying the randomization operation
Rp in agreement with the following definition.

Definition III.1 (Randomized graph state). Let |G〉 be a
graph state. A randomization operator Rp is defined via

Rp(|G〉) :=
∑

F spans G

p|EF |(1 − p)|EG\EF ||F 〉〈F |, (4)

where F are spanning subgraphs of G, EF and EG are the
sets of edges of F and G, and p is the randomness parameter
corresponding to the success probability of the CZ gate in
Eq. (2). The resulting state ρ

p

G := Rp(|G〉) is the randomized
version of |G〉 with randomness parameter p, or, shortly, a
p randomization of |G〉.

This randomization operator corresponds to the preparation
of graph states showed in the probabilistic gate model of
Eq. (2). It maps a pure graph state |G〉 into a mixture of
all its spanning subgraph states. Since the two extreme cases
p = 0,1 correspond to the empty graph and the pure graph
state, respectively, the parameter p plays a fundamental role
to determine the entanglement features of RG states.

In addition, it is useful to remark a difference between
mathematical ER random graphs and RG states: in ER random
graphs all possible edges among the vertices are considered; in
RG states the randomization is restricted to the edges of a given
graph. In other words, ER random graphs are always related to
the fully connected graph, while RG states can be generated by
the randomization process on any graph. From this viewpoint,
we can say that RG states are more general than random graphs,
since only in the case of G = Kn does the corresponding
RG state ρ

p

Kn
have the same combinatorial properties as the

ER random graph of n vertices. It is then evident that our
model is in close analogy with bond percolation. Of course,
the questions that we ask are not directly related to the main
question in percolation theory, which is traditionally concerned
with the global behavior of infinite graphs as a function of the
randomness parameter (see [18]).

In this paper we will denote the p randomization of the
important graph states |Kn〉, |Sn〉, |Ln〉, and |Cn〉 by ρ

p

Kn
, ρ

p

Sn
,

ρ
p

Ln
, and ρ

p

Cn
, respectively.

Notice that a different definition of random graph states
is also given in [19]. In that model, a vertex with degree
d is represented by a d-qubit system and two vertices a

and b are said to be connected by an edge if one qubit in

a is maximally entangled with one qubit in b. A random
unitary matrix describes the coupling between subsystems
of a vertex. The random graph states considered in [19] are
then an ensemble of pure states. In contrast, in our definition
each vertex is a single-qubit system, and a randomized graph
state is always a mixed state for any value of the randomness
parameter 0 < p < 1. Notice that other ways to define mixed
quantum states from graphs have been studied in the literature
(see, e.g., Ref. [20]).

IV. RANK OF RANDOMIZED GRAPH STATES
AND UNITARY EQUIVALENCE

In this section, we investigate the question of local unitary
(LU) equivalence of RG states. Two n-qubit quantum states ρ

and σ are LU equivalent if and only if there exist local uni-
taries U (1), . . . ,U (n) such that ρ = U (1) ⊗ · · · ⊗ U (n)σU (1)† ⊗
· · · ⊗ U (n)†. LU equivalent states have identical entanglement
properties.

The LU equivalence classes of graph states have been
intensively studied in Ref. [16]. Pure graph states up to six
qubits can be classified in 19 different LU classes. Graph
states in the same class can be transformed into each other
via local unitaries, and hence share the same entanglement
properties. However, in most cases the RG states derived from
two LU equivalent graph states, say |G1〉 and |G2〉, are not LU
equivalent and, in general, not even equivalent under global
unitaries (GUs).

In order to see this, consider for instance the graph
states |G1〉 = | 〉 and |G2〉 = | 〉, that are known to be
LU equivalent. The corresponding RG states are given by
ρ

p

G1
= Rp(| 〉), see Eq. (3), and

ρ
p

G2
= p3| 〉〈 | + p2(1 − p)| 〉〈 | + · · ·

+p(1 − p)2| 〉〈 | + · · ·
+(1 − p)3| 〉〈 |. (5)

For any value of p �= 0,1 the above two states can be shown by
direct calculation to have different ranks, namely rank(ρp

G1
) =

4, and rank(ρp

G2
) = 5. Therefore, the RG states ρ

p

G1
and ρ

p

G2
,

defined starting from LU equivalent graph states, cannot even
be transformed into each other by a GU operation. In other
words, these are not unitary equivalent and, in particular,
not LU equivalent. This reasoning can be generalized to
an arbitrary number of qubits by introducing the following
concepts:

Definition IV.1 (G-subgraphs state space). Let G be a
graph and F a spanning subgraph of G. The space spanned by
the states |F 〉 is called G-subgraphs state space and is denoted
as

�G := span({|F 〉}F⊆G,VF =VG
). (6)

This definition prompts to two observations concerned with
the complete graph. The respective proofs are in Appendix A.

Theorem IV.2 (Dimension of �Kn
). The Kn-subgraphs state

space �Kn
has dimension 2n − n.

Theorem IV.3 (Rank of randomized graph states). The rank
of the randomized graph state ρ

p

Kn
is 2n − n, for all 0 < p < 1.
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A direct consequence of Theorem IV.3 is that the rank
of ρ

p

Kn
is maximum over all RG states of n qubits, as long

as p �= 0,1. An interesting question is whether there exists
any other randomized graph state ρGn

with maximum rank.
The answer is in the negative. This can be explained by the
following argument. Suppose we have a graph Gn given by
the complete graph Kn where, without loss of generality, we
delete a single edge between vertices 1 and 2. It can be easily
seen that the state |1100 . . . 00〉 appears with a plus sign in
the graph state |Gn〉 and all the corresponding subgraph states.
Therefore, the state |0000 . . . 00〉 − |1100 . . . 00〉 cannot be
obtained as a superposition of the subgraphs of Gn (see the
proof of Theorem IV.2 in Appendix A for an explanation).
Thus, the rank of ρGn

is always strictly smaller than 2n − n.
The above argument also holds for the case of states that

correspond to graphs G¬m
n with m edges missing with respect

to the complete graph, i.e., with
(
n

2

) − m edges. The rank of
the corresponding RG states is then bounded as

rank
(
ρG¬m

n

)
� 2n − n − m. (7)

To prove this, the above argument about the state |1100 . . . 00〉
corresponding to 1’s for the qubits that are not connected by
an edge can be repeated for all the other m pairs of qubits
where the edges are missing, and the above upper bound
then follows. From the above reasoning we can thus infer that
the randomized graph state ρG¬m

n
can never be GU equivalent

to ρKn
.

An interesting example in this sense is provided by the
two graph states |Kn〉 and |Sn〉, which are known to be LU
equivalent. As we have observed, rank(Kn) = 2n − n, while,
since the star graph Sn can be obtained from the complete graph
Kn by deleting

(
n−1

2

)
edges, the rank of ρSn

can be bounded as

rank
(
ρSn

)
� 2n − n −

(
n − 1

2

)
. (8)

This proves that, although the star graph state |Sn〉 and the com-
plete graph state |Kn〉 are LU equivalent, their corresponding
RG states ρSn

and ρKn
are not even GU equivalent.

V. BIPARTITE ENTANGLEMENT

In this section, we analyze the bipartite entanglement
properties of RG states. We show that RG states exhibit some
properties which are analogous to bipartite entanglement of
pure graph states, while others are different. A pure graph
state is entangled regarding a bipartition if there exists at least
one edge across the partition. The following proposition shows
that the same result holds for RG states.

Proposition V.1. Given a graph G, let A and B be disjoint
subsets such that A ∪ B = VG. A RG state ρ

p

G is entangled
regarding the bipartition A|B, if there exists at least one
randomized edge between A and B with randomness p > 0.

Proof. Let us first consider the graph state composed of two
qubits, namely the Bell state |Bell〉 = | 〉. The RG state ρ

p

Bell

associated to it is thus given by

ρ
p

Bell = 1

4

⎛
⎜⎜⎜⎝

1 1 1 1 − 2p

1 1 1 1 − 2p

1 1 1 1 − 2p

1 − 2p 1 − 2p 1 − 2p 1

⎞
⎟⎟⎟⎠ . (9)

Since the partial transpose of ρ
p

Bell has one negative eigenvalue
for p > 0, ρ

p

Bell is entangled whenever p > 0 [21]. Let us
now move to the general case and show that there is always
a nonzero probability to project a given RG state ρ

p

G onto a
randomized Bell state of vertices a ∈ A and b ∈ B, by using
local σz measurements. Notice that this is never possible if
ρ

p

G is separable across the bipartition A|B. Recall that a σz

measurement on the vertex vi of |G〉 results in the graph state
|G − vi〉 ⊗ |+〉vi

, where all the edges touching the vertex vi

have been deleted, whenever the outcome +1 occurs [16].
Therefore, if we now measure all the vertices except a and b,
i.e., V \{a,b}, there is a nonvanishing probability that all the
outcomes are +1, and thus a nonzero probability to delete all
the randomized edges of ρ

p

G except the one between a ∈ A

and b ∈ B. As a result, there is a nonzero probability to obtain
a randomized Bell state ρ

p

Bell between the vertices a and b,
which finally shows that the state ρ

p

G is entangled with respect
to A|B for any p > 0. �

This shows that, for p > 0, RG states show entanglement
across any bipartition connected by at least one randomized
edge, thus even the action of an imperfect probabilistic CZ gate
creates entanglement between the two connected parties.

We now consider two different bipartite entanglement
properties, namely maximal connectedness and persistency,
specifically introduced in [2] for cluster states, and of particular
interest with regard to MBQC. A state is said to be maximally
connected if we can project any pair of vertices onto a Bell
state with certainty, by using only local measurements. The
following proposition shows that RG states never enjoy this
property.

Proposition V.2. A randomized graph state is never maxi-
mally connected for p < 1.

Proof. Since for any pair of vertices {i,j} there is a nonzero
probability that either vertex i or j is isolated, the state cannot
be projected onto a Bell state |Bell〉i,j with certainty. �

The persistency P of a state is instead the minimal number
of local measurements needed to completely disentangle the
state. In Ref. [2], it was shown that, while every cluster
state is maximally connected, the persistency depends on its
specific structure. Results are known for one-dimensional (1D)
cluster states |Ln〉, where the persistencyP equals the Schmidt
rank n/2, and for two- or three-dimensional cluster states
where P approaches n/2 only asymptotically. The following
proposition shows that the RG state ρ

p

G is less robust than the
graph state |G〉.

Proposition V.3. The persistency of a randomized graph
state P(ρp

G) is always smaller or equal than P(|G〉):
P
(
ρ

p

G

)
� P(|G〉). (10)

Proof. Let P(|G〉) = m, and {M1, . . . ,Mm} be the mea-
surements that totally disentangle |G〉. Then the same set of
measurements {M1, . . . ,Mm} totally disentangles ρ

p

G too, as it
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disentangles each spanning subgraph state of |G〉. Therefore
the inequality P(ρp

G) � m follows. �
The two propositions above show that the bipartite entan-

glement of a given RG state is never as robust as the one of the
corresponding pure graph state. This observation is expected,
due to the method of construction, and is of particular interest
with regard to MBQC.

We finally quantify the amount of bipartite entanglement
by considering the negativity, evaluated with respect to all
possible bipartitions of the qubits. The negativity of a bipartite
state ρAB is defined [22] as

N (ρAB) =
∥∥ρ

�A

AB

∥∥ − 1

2
, (11)

where �A represents the partial transposition with respect to
the subsystem A, and ‖X‖ = Tr[

√
X†X] is the trace norm.

Notice that this is one of the few computable measures of
entanglement when mixed states are concerned.

We have evaluated the negativity numerically for some RG
states composed of a small number of qubits. The results for
the negativity of states corresponding to the complete graph Kn

and the star graph Sn up to n = 4 vertices are reported in Fig. 2.
As can be seen, in the studied cases the negativity exhibits a
monotonic behavior in terms of the randomness parameter p.
This suggests that the entanglement content might increase
monotonically in p with respect to any bipartition. Actually,
since for the extreme cases p = 0 and p = 1 we have a fully
separable state and an entangled state, respectively, one might
expect that, as the weight of entangled subgraph states in
ρ

p

G increases with increasing p, a corresponding growth of
the entanglement content of the RG state ρ

p

G. However, even
though this conjecture is supported by numerical evidence, it
is an open question whether the monotonic behavior of the
negativity in terms of the randomness p is a common feature
to all RG states.

VI. GENUINE MULTIPARTITE ENTANGLEMENT

In this section, we consider genuine multipartite entangle-
ment (GME) properties of RG states. We remind the reader
that a state which cannot be written as a convex combination
of biseparable states is called genuinely multipartite entangled
(GME) [7]. For example, in the case of three qubits, a state ρ

is genuinely multipartite entangled, if it cannot be expanded
in the following decomposition:

ρ = c1ρ1|23 + c2ρ2|13 + c3ρ3|12, (12)

where ρi|jk is a biseparable state regarding the bipartition
{i}|{jk}, and

∑3
i=1 ci = 1, with ci � 0. The condition of

being genuine multipartite entangled is thus stronger than
showing bipartite entanglement. As a direct consequence, the
recognition and evaluation of GME becomes much harder,
especially for mixed states. Nonetheless some investigations
can be still made for RG states.

As was the case for bipartite entanglement in Fig. 2, we
expect the randomness parameter p to tune the amount of GME
of a connected RG state from zero to its maximum value. Since
the two extreme cases p = 0,1 correspond to a fully separable
and a genuine multipartite entangled state, respectively, we
wonder whether the GME content of a general RG state ρ

p

G
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FIG. 2. (Color online) Negativity of some special RG states
composed of few qubits. “{a1, . . . }|{b1, . . . }” indicates the bipartition
with respect to which the negativity has been calculated. (a) Negativity
of all RG states ρKn

states up to n = 4 qubits. (b) Negativity of RG
states ρSn

composed of n = 3 qubits. (c) Negativity of RG states ρSn

composed of n = 4 qubits.

might still follow a monotonically increasing behavior in terms
of p.

In order to support this intuition, we have followed the
PPT mixer approach developed in Ref. [23]. In this approach
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one uses a semidefinite program to make an optimization over
all fully decomposable witnesses. An entanglement witness
is a Hermitian operator W such that there exists a ρ with
Tr[Wρ] < 0 and Tr[Wρsep] � 0 for all separable states ρsep.
A fully decomposable witness W is a witness operator that
can be decomposed into two positive semidefinite operators
Pγ and Qγ for all bipartitions γ , such that

W = Pγ + Q
�γ

γ , (13)

with Tr(W ) = 1, Pγ � 0, Qγ � 0 and �γ being the partial
transpose regarding bipartition γ . Such a witness is a GME
witness, if there exists a GME state ρ with Tr[Wρ] < 0, and
Tr[Wρ ′] � 0 for all non-GME states ρ ′. With a semidefinite
program one can minimize the expectation value Tr(Wρ)
over all fully decomposable witnesses, such that one can
numerically calculate the quantity

Epptmixer(ρ) =
∣∣∣min

(
0, min

W fully decomp.
Tr(Wρ)

)∣∣∣. (14)

Since Epptmixer is an entanglement monotone, it cannot solely
detect the presence of GME but also bound the amount of GME
[23]. Moreover it turns out to be necessary and sufficient for
entanglement detection in permutationally invariant states up
to three qubits [24], thus leading to a well defined measure of
GME. Notice that, for graph states and their randomization,
only the ones which are generated by complete graphs are
permutationally invariant. Hence we can solely use this PPT
mixer approach as GME measure for the three-qubit RG state
ρ

p

K3
, while as a GME monotone for the other RG states. With

the help of the online program [25], we obtain the numerical
results for RG states with three, four, and five qubits. These
are shown in Fig. 3. The behavior of the monotone of GME
derived from the PPT mixer is monotonic in p, supporting our
intuition. Whether the multipartite entanglement of RG states
is generally increasing with p remains an open question.

If the quantity Tr[Wρ
p

G] is monotonically decreasing with
respect to p, then it allows us to find a critical value of the
randomness parameter, pw, such that whenever p > pw the
state is guaranteed to show GME. A depiction of what could
happen is illustrated in Fig. 4. There, the expectation value of
a GME witness on the RG state ρ

p

G is plotted as a function
of p, and compared with the expected behavior of a general
measure of GME. By assuming the existence of a threshold
pc above which the state shows GME (according to the GME
measure), it is clear that pw is an upper bound for pc, i.e.,
pc � pw. Note that the presence of a threshold pc is supported
by results shown in Fig. 3, and that any negative expectation
value for a witness leads to a lower bound for a corresponding
entanglement measure [26].

A suitable witness to detect GME in a RG state ρ
p

G turns
out to be the projector-based witness [7–10],

WG = 1
21 − |G〉〈G|. (15)

Notice that the operator above involves only the projector onto
the pure graph state |G〉 that generates ρ

p

G, disregarding all its
subgraphs. In order to see whether WG of Eq. (15) provides a
negative expectation value for the state ρ

p

G, one has to compute
the overlap Tr[|G〉〈G|ρp

G]. Therefore we introduce the next
definition:

0.2 0.4 0.6 0.8 1.0
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p ρL3
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FIG. 3. (Color online) Multipartite entanglement monotone de-
rived from the PPT mixer as a function of the randomness p for RG
states up to five qubits; see Eq. (14).

Definition VI.1 (Randomization overlap). The overlap of a
graph state |G〉 and its randomization ρ

p

G is the randomization
overlap of ρ

p

G, i.e.,

L
(
ρ

p

G

)
:=Tr

[|G〉〈G|ρp

G

]
=

∑
F spans G

p|EF |(1 − p)|EG\EF |Tr[|G〉〈G|F 〉〈F |]. (16)

Due to the linearity of the trace, the calculation of the
randomization overlap L(ρp

G) of Eq. (16) thus reduces to the
calculation of the scalar product of the graph state |G〉 with all
its possible subgraph states |F 〉. Furthermore, exploiting the
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p

FIG. 4. (Color online) Relation between a measure of GME and
the expectation value of the witness W . The critical probability
pc is upper bounded by pw , i.e., the value of p where the
expectation value becomes negative. Notice that the existence of
pc and the monotonically increasing behavior of the GME measure
are not guaranteed. The same considerations apply to the monotonic
decreasing behavior of the expectation value. The dashed line depicts
an l-level approximated GME witness introduced in Sec. VI B.
In contrast with the nonapproximated witness, it is monotonically
decreasing for level l � |EG|/2 and randomness 1/2 � p � 1. The
value of the nonapproximated GME witness Tr(WGρ

p

G) is always
smaller than or equal to the l-approximated GME witness IF (�l) (ρp

G).

symmetric difference defined in Sec. II A and the definition of
a graph state in Eq. (1), each contribution Tr[|G〉〈G|F 〉〈F |]
can be rewritten as

Tr[|G〉〈G|F 〉〈F |] = Tr[|G∅〉〈G∅|G�F 〉〈G�F |], (17)

where |G∅〉 is associated with the empty graph. Therefore, the
overlap of any two graph states can be recast as the overlap of
the graph defined by the symmetric difference and the empty
one. However, even in this form the scalar product remains
highly nontrivial to compute. By the help of a specifically
developed algorithm [27], some special cases can be computed
efficiently and even an analytical formula can be given
(see Table I), especially when a small number of edges
is concerned. However, in the general case the overlap
can be given only via some iterative formula [28], which
unfortunately scales exponentially in the number of vertices.

TABLE I. Scalar product of some special graph states with |G∅〉.
The cluster graphs Ln in the table are one-dimensional. The results
are attained by using the formulas derived in Ref. [27].

Graph |G〉 Overlap |〈G∅|G〉|2

L2n 1/22n

L2n+1 1/22n

C2n 1/22n−2

C2n+1 0
Sn 1/4

Besides the difficulty to compute each single overlap,
another problem that inevitably affects the computation of
the randomization overlap L(ρp

G) consists of the large number
of contributions we have to account for. As a matter of fact,
since a RG state contains 2(|EG |

2 ) possible subgraphs, that is
exponentially increasing in the number of edges, the number
of overlaps contributing to L(ρp

G) increases exponentially
fast as well. Nonetheless there exist some special cases that
can be treated explicitly and where an analytical solution
can be found. These cases will be treated in the following,
before moving to a possible efficient approximation of the
randomization overlap L(ρp

G).

A. Calculation of the witness for special RG states

In Appendix B, we derive the randomization overlap of
both the RG state ρ

p

Sn
, corresponding to the star graph Sn, and

the randomized 1D cluster ρ
p

Ln
. The expectation value of the

witness WSn
on the state ρ

p

Sn
takes the form

Tr
[
WSn

ρ
p

Sn

] = 1
4 − 3

4pn−1, (18)

which is monotonically decreasing with respect to p. Therefore
the threshold probability turns out to be pw = 3−1/(n−1), and
upper bounds the critical randomness pc.

For the randomized 1D cluster state ρ
p

Ln
the witness gives

instead the following expectation value:

Tr
[
WLn

ρ
p

Ln

] = 1

2
− 1√

λp

(
1 − p

2
+

√
λp

2

)(
p

2
+

√
λp

2

)n

+ 1√
λp

(
1 + p

2
+

√
λp

2

)(
p

2
−

√
λp

2

)n

,

(19)

where λp = 1 − p + p2 (see Appendix B for details). Notice
that this function is also monotonically decreasing with respect
to p. Solving the above polynomial in p thus provides an upper
bound pw on pc for the RG state ρ

p

Ln
. Both the expectation

values above are plotted in Fig. 5.
The nonapproximated values pw of the RG cycle state

ρ
p

Cn
can also be computed numerically by the use of the

algorithm developed in Ref. [27], which will be compared
with approximated values in Fig. 6 in the next section.

5 10 15 20 25
n

0.4
0.5
0.6
0.7
0.8
0.9

pw

ρSn
p

ρLn
p

FIG. 5. (Color online) Probability pw for the randomized star
graph state ρ

p

Sn
and the randomized 1D cluster state ρ

p

Ln
.
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FIG. 6. (Color online) Accuracy of the approximated GME wit-
ness LF (�2) (ρp

Cn
) for the cycle RG graph ρ

p

Cn
. The parameter for

comparison is the threshold probability pw , calculated according to
the algorithm explained in Ref. [27].

It is worth mentioning that, as expected, pw increases
rapidly as the number of vertices increases. From an exper-
imental point of view, this means that the more edges one
creates, the higher gate quality is required to guarantee the
presence of GME in the final state.

In the following we will follow a different approach, namely
we will approximate the witness neglecting all contributions
of subgraphs too “different” from the generating one. This
approximation holds whenever the randomness parameter p is
high enough.

B. Approximated witness

Due to the structure of a general RG state, the computation
of the scalar product of the pure graph state with all spanning
subgraph states turns out to be too complex. Therefore, we
introduce an approximation of the randomization overlap
L(ρp

G), that defines the expectation value WG. Here we define
the l-level approximation of a randomization overlap by
dropping its subgraph components F (>l) which differ from
G by more than l edges, i.e.,

LF (�l)

(
ρ

p

G

)
:= Tr(|G〉〈G|ρF (�l) ), (20)

where ρF (�l) is defined as

ρF (�l) =
∑

F s.t. |EF�G|�l

p|EF |(1 − p)|EG\EF ||F 〉〈F |. (21)

The l-level approximated witness then reads

IF (�l)

(
ρ

p

G

)
:= 1

2 − LF (�l)

(
ρ

p

G

)
. (22)

The proof of the next statement is in Appendix C.

Proposition VI.2. The l-level approximated randomization
overlap LF (�l) (ρp

G) is monotonically increasing with respect to
the randomness p � 1/2 for all l � |EG|/2.

A good approximation, when p is close enough to 1,
consists in neglecting the subgraphs F (>2) that differ from
G by more than two edges. This corresponds to a reduced
RG state of |G〉 where only the most relevant subgraphs
appear. The following theorem states that instead of using
the full randomization overlap L(ρp

G) in the GME witness, we
can focus just on LF (�2) (ρp

G) with the advantage to make the
calculation easier.

Theorem VI.3 (Approximated GME witness). Let G be a
graph and dv be the degree of a vertex v. The quantity
LF (�2) (ρp

G) is a lower bound for the randomization overlap
L(ρp

G), namely

L
(
ρ

p

G

)
� LF (�2)

(
ρ

p

G

) = p|EG| + 1

4
(1 − p)p|EG|−1|EG|

+ 1

24
(1 − p)2p|EG|−2

⎡
⎣(|EG|

2

)
+ 3

∑
v∈VG

(
dv

2

)⎤
⎦ .

(23)

For p � 1/2, L(ρp

G) � LF (�2) (ρp

G). The following quantity can
be regarded as a GME witness for ρ

p

G:

IF (�2)

(
ρ

p

G

)
:= 1

2 − LF (�2)

(
ρ

p

G

)
. (24)

If IF (�2) (ρp

G) < 0, it is then guaranteed that the RG state ρ
p

G is
genuinely multipartite entangled.

See Appendix C for a proof. Notice that the value of the
randomness parameter pF that makes IF (�2) (ρp

G) vanishing is
still an upper bound of the critical randomness pc for the
RG state ρ

p

G. Notice that by construction the following chain
of inequalities holds: pc � pw � pF . Furthermore, according
to Proposition VI.2, the witness IF (�2) (ρp

G) is monotonically
decreasing as a function of p. Hence whenever p > pF the
RG state ρ

p

G shows GME.
By employing this theorem one can detect GME even for a

graph with relatively many edges, however a study about how
well the approximated witness performs is now needed. In
order to check the accuracy of our approximation, we consider
as an example the cycle RG graph ρ

p

Cn
and plot the relative

difference between pF and pw. As we can see in Fig. 6,
for n = 3 the value of pF equals pw, while for higher n

the approximation becomes more and more accurate as the
number of vertices increases. Note that the equality for n = 3
results from the fact that the single neglected contribution
Tr[|G∅〉〈G∅|C3〉〈C3|] in LF (�2) (ρp

C3
) is equal to zero.

In order to show the quality of our approximation we
consider here other relevant RG states, that is randomized 2D
and 3D cluster states. For these states we plot the approximated
pF in Figs. 7 and 8, as a function of the number of vertices
along each direction of the cluster. As we can see in Fig. 7, pF
for the two-dimensional RG state ρ

p

Lm×n
increases as the sum

m + n grows, where m and n are the number of vertices along
the x and y axes, respectively. It also turns out that the values
of pF for two RG cluster states ρ

p

Lm1×n1
and ρ

p

Lm2×n2
are very

close to each other whenever m1 + n1 = m2 + n2. The same
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FIG. 7. Threshold probability pF for randomized 2D cluster
states ρL

p
n×m

= Rp(|Ln×m〉). Here, m and n represent the number of
vertices along the x and y axes of the 2D cluster, respectively. The
quantity pF is depicted as a map in a (m,n) grid.

arguments hold also for the three-dimensional randomized
cluster state (see Fig. 8).

Notice that the approximated witness given in Eq. (24) can
be exploited to obtain a value of the randomness parameter
p above which the RG state shows GME. Vice versa, if we
have at disposal only CZ gates with a fixed parameter p, we
can then use the estimates given by the witness to find out
possible multipartite entangled RG states one could create
(see Figs. 5 and 6).

0.6

0.7

0.8

0.9

1.0

p

FIG. 8. Threshold probability pF for randomized 3D cluster
states ρ

p

Li×j×k
= Rp(|Li×j×k〉). The indices i, j , and k represent the

number of vertices along the x, y, and z axes of the 3D cluster,
respectively. The quantity pF is depicted in grayscale in a (i,j,k)
grid.

VII. BELL INEQUALITIES

In this section, we investigate when RG states cannot be
described in terms of local hidden variable (LHV) models
[29–31]. Any LHV model has to fulfill the constraints of
realism and locality. These two facts result in bounds on
the strength of correlations, which can be formally captured
in terms of Bell inequalities [29]. A violation of such an
inequality excludes the description of the correlations in terms
of an LHV model [30,31]. We will show that RG states violate
Bell inequalities developed for pure graph states, whenever the
randomization parameter p is high enough. In order to do so
we review the stabilizer description of graph states [17].

Given a graph G, we can associate to each vertex i a
stabilizing operator gi as follows:

gi = X(i)
⊗

j∈N(i)

Z(j ), (25)

where N (i) is the neighborhood of the vertex i, i.e., the set of
vertices connected to i. Here, X(i),Y (i),Z(i) denote the Pauli
matrices σx,σy,σz, acting on the ith qubit. The graph state
|G〉 associated with the graph G is the unique n-qubit state
fulfilling

gi |G〉 = |G〉, for i = 1, . . . ,n. (26)

The n operators gi turn out to be the generators of a group,
called stabilizer and denoted by S(G). The group S(G) can be
shown to be Abelian and is composed of 2n elements sj . By
this definition it straightforwardly follows that 〈G|sj |G〉 = 1
for any j = 1, . . . ,2n. As any sj can be expressed as a product
of n dichotomic local observables, we can thus define the
following Bell operator [32]:

B(G) = 1

2n

2n∑
j=1

sj . (27)

Furthermore since a graph state is a product of projectors of
its stabilizer generators, i.e., |G〉〈G| = ∏

i(1 + gi)/2 = B(G),
the expectation value of 〈B(G)〉 reaches its maximum value 1
only for the state |G〉. By defining the quantity

D(G) = max
LHV

|〈B(G)〉|, (28)

where the maximum is taken over all LHV models, equiv-
alently taken over all possible expectation values of local
observables 〈X(i)〉, 〈Y (i)〉, 〈Z(i)〉 within {−1,+1}, we then have
the following Bell inequality [32]:

〈B(G)〉 � D(G). (29)

As a straightforward consequence, given the graph state |G〉,
we are guaranteed that it cannot be described by a LHV model
whenever D(G) < 1.

For our purpose it is more convenient to rephrase the Bell
inequality (29) in terms of a detection operator. Keeping in
mind that the Bell operator B(G) is exactly the projector
|G〉〈G|, the following witness operator can be found [32,33]:

WLHV = D(G)1 − |G〉〈G|. (30)

Hence, whenever Tr[WLHVρ] < 0, i.e., the expectation value
of WLHV on the quantum state ρ is negative, the state ρ violates
local realism, and thus cannot be described by LHV models.
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FIG. 9. (Color online) The probability thresholds p
(l�2)
LHV for some

important RG states. These thresholds are the zero crossings of
Eq. (31). Due to the complexity of the calculation of the classical
bounds D(G), only the thresholds for the states up to ten qubits are
analyzed. The behavior of p

(l�2)
LHV is explained at the end of Sec. VII.

Note that the witness WLHV is similar to the witness for GME of
Eq. (15). They indeed differ only in the value of the coefficient
of the identity operator. Notice furthermore that the approxi-
mation techniques developed so far apply here too, allowing
us to proceed as in Eq. (22) in the previous section, i.e.,

I
(�l)
LHV

(
ρ

p

G

)
:= D(G) − LF (�l)

(
ρ

p

G

)
. (31)

In [32], the quantity D(G) has been calculated for different
graphs with number of qubits n up to 10. Our analysis consists
of calculating the approximated threshold p

l�2
LHV for a given

graph state |G〉, such that I
(�2)
LHV (ρpLHV

G ) = 0. Since I
(�2)
LHV (ρp

G)
is monotonically decreasing with respect to p for p > 1/2
(see Proposition VI.2), any randomness parameter p > p

(l�2)
LHV

will then lead to a RG state that cannot be described in terms
of a LHV model.

In Fig. 9, we show the achieved result for several important
RG states. In this figure one can see that the classical bounds
D(G) are crucial for the behavior of pLHV. For a given type
of graph, since the classical bound D(G) is decreasing with
respect to the number of vertices n, the threshold pLHV is not
monotonically increasing with respect to n. The ordering of
pLHV among different types of graphs can be explained via
the ordering of D(G). For n � 5, D(Cn) = D(Ln) = D(Sn)
holds. Therefore pLHV(Cn) > pLHV(Ln) > pLHV(Sn) has the
same ordering as the threshold pGME for GME; see Figs. 5
and 6. For n > 5, the ordering of the threshold values
pLHV(Sn) > pLHV(Ln) > pLHV(Cn) reflects the ordering of
the classical bounds for the different types of graphs, i.e.,
D(Sn) > D(Ln) > D(Cn). For larger n, we observe that the
nonlocality of the randomized star graph states is fragile with
respect to our noise model. This is analogous to the noise
resistance of GME for star graph states. The fragility of GME
states for other noise models has been investigated in [34].

Similar to the previous section, we can use the results
provided by ILHV of Eq. (31) in order to generate nonlocal
multiqubit states by using only CZ gates with a given success
probability p. For instance, if we have CZ gates with success
probability p = 0.84, we can then create a nonlocal six-qubit

system via generating a six-qubit randomized cycle graph state
by subsequently connecting the six qubits using solely the CZ

gates at disposal.

VIII. CONCLUSIONS

In this paper, we introduced a class of n-qubit mixed states
that we called randomized graph (RG) states because they can
be derived from pure graph states by applying a randomization
procedure. They represent a quantum analog of random graphs.
These states can also be regarded as the resulting states in an
imperfect graph state generation procedure [4–6]. We studied
in particular the entanglement properties of such states and
it turned out that their entanglement classification is quite
different from the one for graph states. We investigated whether
local unitary (LU) equivalence of pure graph states implies
LU equivalence of their randomized version, and answered
this question in a negative way. Although the presence of a
randomized edge guarantees bipartite entanglement between
the two parties that are linked by the edge, the bipartite
entanglement of RG states is more fragile under the action
of local measurements with respect to the one of their
corresponding graph states. We investigated this aspect by
evaluating the connectedness and persistency of RG states. We
then studied the multipartite entanglement properties of RG
states. Due to the fact that these multiqubit states are mixed,
we could evaluate the multipartite entanglement content only
in some particular cases, namely for states up to four qubits.
In such cases we could show that multipartite entanglement
exhibits a monotonic behavior as a function of the randomness
parameter p, while it is still an open problem whether the
entanglement of a general RG state grows monotonically with
p. In the general case we could define a critical value pc

for the randomness parameter above which the RG states are
guaranteed to be multipartite entangled by employing suitable
multipartite entanglement witnesses. The threshold pc also
provides an estimate of how much noise the CZ gates can be in
order to guarantee GME in the generated state. Furthermore,
the same approach was exploited to study the possibility to
describe such RG states in terms of local hidden variable
(LHV) models. Again, we could find a critical probability pLHV

above which the quantum state surely violates a Bell inequality.
The threshold pLHV also gives a hint regarding which kind
of nonlocal multiqubit states can be created by using solely
controlled-Z gates with a given success probability.

We point out that RG states have possible applications
in measurement based quantum computation, quantum key
distribution, quantum networks, etc. Since RG states are
derived by the use of imperfect controlled-Z gates, which is
unavoidable in a laboratory, it is more natural to consider these
states instead of pure graph states in the quantum information
processing task one wants to pursue.

As an outlook, the emergence of giant components of RG
states and the properties of RG states in the asymptotic limit
n → ∞ are interesting theoretical topics that deserve further
investigation. Other interesting questions that still need to
be addressed are for example the possibility of identifying
a Hamiltonian which has a RG state as eigenstate, or the
possibility of designing a protocol to herald the components
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of a RG state, such that one can perform a preselection of the
RG state to extract certain subgraph states from it.
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APPENDIX A: PROOFS OF THEOREMS IV.2 AND IV.3

The proofs of Theorems IV.2 and IV.3 are given below.
Notice that for Theorem IV.2 two proofs are provided, the
former being more intuitive, the latter being more formal.

Proof of Theorem IV.2. Let us denote the n-qubit state with
a single qubit in state 1 at position i as |1i〉. Then, from the
definition of graph states in terms of CZ operations [Eq. (1)]
it follows that the n linearly independent (but not mutually
orthogonal) states given by

|00 . . . 0〉 − |1i〉 for every i = 1, . . . ,n (A1)

are orthogonal to any subgraph state |Gi〉 of Kn. Thus it follows
that dim(�Kn

) � 2n − n, where �Kn
is the subspace spanned

by all possible subgraph states of Kn, i.e., all possible graph
states with n vertices. To prove that the equality holds, we
have to show that the state |Dn〉 = |00 . . . 0〉 + ∑n

i=1 |1i〉 and
any state with a number of qubits in state 1 (excitations) larger
than 2, denoted by |excn � 2〉, can be expressed as a linear
combination of graph states. This is clearly true in the simplest
case of two qubits, as |D2〉 ∝ |++〉 + | 〉 and |11〉 ∝
|++〉 − | 〉. In order to show that it holds for generic n

we proceed by induction. Suppose that for n qubits it is always
possible to express both |Dn〉 and the states |excn � 2〉 as∑

i αi |Gi〉. Then, it can be easily proved that one can achieve
both |Dn+1〉 and |excn+1 � 2〉 as follows.

Start from the state |excn � 2〉|+〉, that by hypothesis can
be written as

∑
i αi |Gi〉|+〉. Apply then a CZ on the qubit

n + 1 and on one of the qubits that correspond to state 1
in |excn � 2〉 so that the resulting state is CZ|excn � 2〉|+〉.
Then, take the following linear combination of the two states:
|excn � 2〉|+〉 and CZ|excn � 2〉|+〉 such that |excn+1 � 2〉 ∝
|excn � 2〉|+〉 ± CZ|excn � 2〉|+〉. It can be easily seen that
in this way almost all states of n + 1 qubits with more than
two excitations |excn+1 � 2〉 can be created (apart from some
with two excitations that will be discussed in the following).
Actually 2(2n − n − 1) states of the computational basis can
be derived from the procedure above. In order to generate
the n + 1 missing states [to achieve all the 2n+1 − (n + 1)
desired states] it is sufficient to start from the state |Dn〉|+〉 =∑

i αi |Gi〉|+〉 (instead of |excn � 2〉|+〉) and apply again the
same reasoning. If we now apply all possible CZ gates between
the qubit n + 1 and the rest we can derive the state |Dn+1〉. If
we apply a single CZ we can achieve the n missing states with
two excitations (one in the qubit n + 1 and the other in each
of the n qubits).

Therefore we have proved in this way that dim(�Kn
) �

2n − n and thus the equality dim(�Kn
) = 2n − n follows. �

We now introduce the following lemma that is needed for
proving Theorem IV.3.

Lemma A.1 (Rank of a general ρ). Suppose that ρ = ∑D
i=1

pi |vi〉〈vi | with pi > 0 and
∑D

i=1 pi = 1, where the states
{|vi〉}i=1,...,D span the space V of dimension d � D (thus
the set {|vi〉}i=1,...,D generally includes linearly dependent
vectors). Then the rank of ρ is

rank(ρ) = d. (A2)

Proof. It is straightforward to see that rank(ρ) � d. In
order to prove that the rank is exactly d, let us reason by
contradiction. Suppose that there exists |l〉 belonging to a
basis {|j 〉}j=1,...,d of V such that ρ|l〉 = 0. By rewriting |vi〉 =∑d

j=1 ci
j |j 〉, it follows that

ρ|l〉 =
D∑

i=1

pi

d∑
j=1

ci
j c

i∗
l |j 〉 =

d∑
j=1

αjl|j 〉 = 0, (A3)

with αjl = ∑D
i=1 pic

i
j c

i∗
l . This implies that for every j ,

αjl = 0. In particular, for j = l we have

αll =
D∑

i=1

pi

∣∣ci
l

∣∣2 = 0. (A4)

The equation above, as pi > 0, implies that ci
l = 0 for

every i, contradicting the hypothesis that the space V has
dimension d. �

Proof of Theorem IV.3. It is sufficient to apply the above
lemma and Theorem IV.2 to ρKn

. �
In the following we provide an alternative proof of

Theorem IV.2, via the following lemma concerning a useful
way to expand a pure state in �G in terms of single qubit states.

Lemma A.2 (Expansion of states in �G). Let |ψ〉 =∑
F spans G cF |F 〉 be a state in the G-subgraphs state space �G.

Then |ψ〉 can be decomposed with respect to the bipartition
involving the single vertex v as

|ψ〉 = 1√
2

(|0〉v|φ0〉 + |1〉v|φ1〉), (A5)

with

|φ0〉 =
∑

F spans G

cF |fF 〉,
(A6)

|φ1〉 =
∑

F spans G

σ⊗Nv (F )
z cF |fF 〉.

Here fF = F − v is the graph achieved by removing the vertex
v from F (and deleting all edges connected with v), and Nv(F )
is the neighborhood of the vertex v.

The state |φ0〉 is state in the (G − v)-subgraphs state space
�(G−v).

Proof. Obviously, any spanning subgraph state |F 〉 can
be generated by adding edges incident to the vertex v to a
suitable subgraph state |+〉v|F − v〉. In formulas, this fact can
be expressed as

|F 〉 =
∏

vi∈Nv (F )

(CZ)v,vi
|+〉v|F − v〉. (A7)

Therefore, any spanning subgraph |F 〉 can be rewritten as

|F 〉 = 1√
2

(|0〉v ⊗ |fF 〉 + |1〉v ⊗ σ⊗Nv (F )
z |fF 〉), (A8)
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with |fF 〉 = |F − v〉. Now applying what was just found in the
general decomposition of |ψ〉 = ∑

F spans G cF |F 〉, Eq. (A5)
follows. Since fF are subgraphs of (G − v), the state |φ0〉
belongs to the space �(G−v). �

Alternative proof of Theorem IV.2. Let us first prove that
dim(�Kn

) � 2n − n by showing that the n mutually orthogonal
states σvi

z |G∅
n〉 (i = 1, . . . ,n) are not in the space �Kn

. In order
to prove this we reason by induction. For n = 2, it is trivial
that there never exist coefficients c∅ and cS2 such that

σvi

z

∣∣G∅
2

〉 = c∅
∣∣G∅

2

〉 + cS2 |S2〉. (A9)

There σvi
z |G∅

2〉 /∈ �K2 .
We then assume that σvi

z |G∅
n〉 is not in �Kn

, and want to
prove that this is the case for n + 1 vertices too. Suppose
now by contradiction that σvi

z |G∅
n+1〉 ∈ �Kn+1 , by employing

Lemma A.2 and without loss of generality, we can then find
for the first vertex v1 that

σv1
z

∣∣G∅
n+1

〉 = 1√
2

(|φ0〉|0〉vn+1 + |φ1〉|1〉vn+1

)
, (A10)

with |φ0〉 ∈ �Kn
. On the other hand, the left-hand side of the

above equation is

σv1
z

∣∣G∅
n+1

〉 = 1√
2

(
σv1

z

∣∣G∅
n

〉|0〉vn+1 + σv1
z

∣∣G∅
n

〉|1〉vn+1

)
, (A11)

which leads to

σv1
z

∣∣G∅
n

〉 = |φ0〉 ∈ �Kn
. (A12)

This contradicts the assumption that no solution exists for n

vertices.
In order to prove that dim(�Kn

) � 2n − n we show that the
space spanned by �Kn

and {σvi
z |G∅

n〉}i=1,...n is the full Hilbert
space composed of n qubits. To this end we prove that

σVG

z

∣∣G∅
n

〉= n∑
i=1

[
(−1)i2

∣∣Svi+1
VG\Vi

〉∣∣G∅
Vi

〉− (−1)i
(
σvi+1

z + 1
)∣∣G∅

n

〉]
,

(A13)

where Vi = {v1, . . . ,vi} is a set of i vertices and |Svi+1
VG\Vi

〉 is
a star graph state on vertices VG\Vi and vi+1 as the central
vertex. According to Lemma A.2 we can write

∣∣Sv1
n

〉 = 1√
2

(|0〉v1 ⊗ ∣∣G∅
n−1

〉 + |1〉v1 ⊗ σVG\v1
z

∣∣G∅
n−1

〉)
, (A14)

and, since |0〉v1 |G∅
n−1〉 = 1√

2
(σv1

z |G∅
n〉 + |G∅

n〉), we can write

|1〉v1 ⊗ σVG\v1
z

∣∣G∅
n−1

〉 =
√

2
∣∣Sv1

n

〉 − 1√
2

(
σv1

z

∣∣G∅
n

〉 + ∣∣G∅
n

〉)
.

(A15)
It is also easy to see that

σVG

z

∣∣G∅
n

〉= |+〉v1 ⊗ σVG\v1
z

∣∣G∅
n−1

〉− √
2|1〉v1 ⊗ σVG\v1

z

∣∣G∅
n−1

〉
,

(A16)

and, by employing Eq. (A15), we finally arrive at the following
expression:

σVG

z

∣∣G∅
n

〉 = −2
∣∣Sv1

n

〉 + (
σv1

z + 1
)∣∣G∅

n

〉 − σVG\v1
z

∣∣G∅
n

〉
. (A17)

Hence, by using Eq. (A17) recursively we can achieve
Eq. (A13). Therefore, for any subset of vertices V ⊆ VG, we

have that the state σV
z |G∅

n〉 can be expressed as a superposition
of vectors in the subspaces �Kn

and {σvi
z |G∅

n〉}i=1,...n. As the set
of all vectors σV

z |G∅
n〉 forms the Hadamard basis, this finally

proves that

dim
(
�Kn

)
� 2n − n. (A18)

�

APPENDIX B: RANDOMIZATION OVERLAP
OF SOME SPECIAL RG STATES

In this appendix we derive an explicit analytical result
for the randomization overlap of random star states ρ

p

Sn
and

random 1D cluster states ρ
p

Ln
.

Solution B.1. Let Sn be an n-vertex star graph; its random-
ization overlap is then

L
(
ρ

p

Sn

) = 1
4 + 3

4pn−1. (B1)

Proof. The scalar product of |Sn〉 and any of its spanning
subgraph states |F 〉 always equals 1

4 (apart from the case when
|F 〉 = |Sn〉). therefore

L
(
ρ

p

Sn

) = 1

4

n−1∑
k=1

(
n − 1

k

)
pn−1−k(1 − p)k + pn−1

= 1

4
+ 3

4
pn−1. (B2)

�
Solution B.2. Let Ln be a linear cluster graph on n vertices,

its randomization overlap then reads

L
(
ρ

p

Ln

) = 1√
λp

(
1 − p

2
+

√
λp

2

)(
p

2
+

√
λp

2

)n

− 1√
λp

(
1 + p

2
+

√
λp

2

)(
p

2
−

√
λp

2

)n

, (B3)

with λp = 1 − p + p2.
Proof. Let us define F (n)

even (F (n)
odd) as the set of spanning

subgraphs of the cluster Ln that have paths with even (odd)
number of edges connected to the last vertex vn (see Fig. 10 for
a pictorial explanation). The randomization overlap can thus
be rewritten as

L
(
ρ

p

Ln

) = f (n)
even(p) + f

(n)
odd(p), (B4)

where f (n)
even(p) := Tr[|Ln〉〈Ln|

∑
F∈F (n)

even
pF |F 〉〈F |], and

f
(n)
odd(p) := Tr[Ln〉〈Ln|

∑
F∈F (n)

odd
pF |F 〉〈F |]. From the results

in Table I, it is then not difficult to notice that the following
recursive relations hold:

f
(n+1)
odd (p) = 1 − p

4
f (n)

even(p), (B5)

f (n+1)
even (p) = f

(n)
odd(p) + pf (n)

even(p). (B6)

Imposing the initial conditions f (2)
even = p and f

(2)
odd = (1 − p)/4,

the above relations can be solved, leading to the randomization
overlap (B3). �
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1 n 3 n 2 n 1 n

1 n 4 n 3 n 2 n 1 n

1 n 5 n 4 n 3 n 2 n 1 n

(a)

1 n 3 n 2 n 1 n

1 n 4 n 3 n 2 n 1 n

1 n 5 n 4 n 3 n 2 n 1 n

(b)

FIG. 10. (Color online) Examples of Feven(n) and Fodd(n). (a)
Examples of linear clusters inFeven(n). (b) Examples of linear clusters
in Fodd(n).

APPENDIX C: APPROXIMATION OF GME WITNESS

Before proving Theorem VI.3, it is convenient to first
make the following observation. The randomization overlap
can be easily rewritten in terms of the symmetric difference
F̃ := F�G as

1

p|EG| L
(
ρ

p

G

)
(C1)

=
∑

F spans G

(
1 − p

p

)|EF�G|
Tr[|G∅〉〈G∅|F�G〉〈F�G|],

=
∑

F̃ spans G

(
1 − p

p

)|EF̃ |
Tr[|G∅〉〈G∅|F̃ 〉〈F̃ |]

︸ ︷︷ ︸
=:cp

G(F̃ )

. (C2)

Equation (C2) makes it clear that the randomization overlap
can be recast as a sum of terms where any contribution c

p

G(F̃ )
depends on both the number of edges |EF̃ | and the scalar
product of |〈G∅|F̃ 〉|. It is clear that two isomorphic graphs
F̃1,F̃2, i.e., graphs that can be mapped into each other by just
relabeling the vertices, have the same contribution. Therefore,
it is convenient to divide the whole set of subgraphs F̃ into
different graph-isomorphic classes (as an example, Fig. 11
reports the isomorphic classes of subgraphs of the four-vertex
star graph). For values of the randomness parameter p � 1/2,
the isomorphic classes with fewer edges contribute the most

f0 :

(a)

f1 :

(b)

f2 :

(c)

f3 :

(d)

FIG. 11. (Color online) Four different isomorphic classes of star
graphs on four vertices. (a) The single graph isomorphic to the empty
graph. (b) Graphs isomorphic to the two-vertex graph S2. (c) Graphs
isomorphic to the star graph S3 with three vertices. (d) The graph
isomorphic to the four-vertex star graph S4.

to the randomization overlap. Therefore, whenever p � 1/2
holds, it makes sense to approximate the randomization
overlap as

L
(
ρ

p

G

)
� p|EG| ∑

f̃ ∈F (�2)

|f̃ |cp

G(f̃ ), (C3)

where we have defined F (�2) := {f̃ : |Ef̃ | � 2}, i.e., any f̃

represents an isomorphic class of graphs with a number of
edges smaller than 2. Notice that, since any F̃ ∈ f̃ contributes
equally, cp

G(f̃ ) can be regarded as c
p

G(F̃ ) in Eq. (C2), where F̃

represents any element of the class f̃ .
We are now ready to prove Proposition VI.2, which states

that the l-level approximated randomization overlap LF (�l) (ρp

G)
is monotonically increasing for any l � |EG/2|, whenever
p � 1/2.

Proof of Proposition VI.2. Let

λk := 1(|EG|
k

) ∑
F s.t. |EF |=k

Tr(|F 〉〈F |G〉〈G|) (C4)

be the average overlap Tr(|F 〉〈F |G〉〈G|) of all subgraphs
F with a fixed number of edges k. Since the overlap
Tr(|F 〉〈F |G〉〈G|) � 1, we have λk � 1, and thus the l-level
approximated randomization overlap becomes

L F (�l)

(
ρ

p

G

) =
l∑

k=1

λk

(|EG|
k

)
pk(1 − p)|EG|−k. (C5)

Now we order the indices k’s as follows. First we group
together the indices k’s that lead to the same value of the
coefficients λk , then we order all these sets for increasing
values of the coefficients λk . In the end we get the following
partition: {k(1)

1 , . . . ,k
(1)
i1

},{k(2)
1 , . . . ,k

(2)
i2

}, . . . ,{k(j )
1 , . . . ,k

(j )
ij

},
where λ

k
(1)
1

= · · · = λ
k

(1)
i1

> λ
k

(2)
1

= · · · = λ
k

(2)
i2

> λ
k

(j )
1

= · · · =
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, , ,

FIG. 12. (Color online) All the isomorphic classes F (�2) with a
number of edges smaller than or equal to 2.

λ
k

(j )
j

. For the sake of simplicity we define λ(j ) := λ
k

(j )
1

and

κ (j ) := {k(j )
1 , . . . ,k

(j )
ij

}.
Furthermore, we need the help of the following function:

f (κ) =
∑

F s.t. |EF�G|�∈κ |EF�G|�l

pF , (C6)

which represents the probability of finding a subgraph F

having k edges different from G, where k � l and it is
not contained in κ . The above formula can be conveniently
rewritten as

f (κ) =
l∑

k=1

(|EG|
k

)
pk(1 − p)|EG|−k

−
∑
k∈κ

(|EG|
k

)
pj (1 − p)|EG|−k (C7)

= 1 −
∑
k �∈κ

(|EG|
k

)
pk(1 − p)|EG|−k

−
|EG|∑

k=l+1

(|EG|
k

)
pk(1 − p)|EG|−k. (C8)

This function turns out to be monotonically increasing for ran-
domness p � 1/2 and l � |EG|/2. The l-level approximated
randomization overlap can be expressed in terms of functions
f (κ) as

LF (�l)

(
ρ

p

G

) = λ(1)f (∅) + (λ(2) − λ(1))f (κ (1))

+ (λ(3) − λ(2))f (κ (1) ∪ κ (2))

+ · · · + (λ(j ) − λ(j−1))f (κ (1) ∪ · · · ∪ κ (j−1))

+ (1 − λ(j ))f (κ (1) ∪ · · · ∪ κ (j )). (C9)

Since (λ(i+1) − λ(i)) > 0 and every f (κ (1) ∪ · · · ∪ κ (i)) is
monotonically increasing for randomness p � 1/2 and
l � |EG|/2, the l-level approximated overlap LF (�l) (ρp

G)
is monotonically increasing whenever p � 1/2 and l �
|EG|/2. �

Finally we prove Theorem VI.3 concerning a possible
approximation of the GME witness.

Proof of Theorem VI.3. The main idea of the approximation
is to neglect the subgraphs of G that contain more than
two edges and thus to calculate only the contribution of
the isomorphic classes of subgraphs with at most two edges

TABLE II. The cardinalities of isomorphic classes and their single
element contributions: dv is the vertex degree of vertex v in G, and
EG is the set of edges of G.

f̃ ∅
Bell2, S2 S2 S2 ⊗ S2

c
p

G(f̃ ) 1 1
4

( 1−p

p

)
1
4

( 1−p

p

)2 1
16

( 1−p

p

)2

|f̃ | 1 |EG| = 1
2

∑
v∈V dv

∑
v∈V

(
dv

2

) (
EG

2

) − ∑
v∈V

(
dv

2

)

(see Fig. 12). The approximated randomization overlap can
thus be expressed as in Eq. (C3) and, with the help of the
results listed in Table II, can be explicitly rewritten as

LF (�2)

(
ρ

p

G

) = p|EG| + 1

4
(1 − p)p|EG|−1|EG|

+ 1

24
(1 − p)2p|EG|−2

⎡
⎣(|EG|

2

)
+ 3

∑
v∈VG

(
dv

2

)⎤⎦,

(C10)

where dv is the degree of any vertex v. Since the contribution
of subgraphs with number of edges greater than 2 is always
non-negative, it follows that L(ρp

G) � LF (�2) (ρp

G). Therefore,
we have that

IF (�2)

(
ρ

p

G

)
:= 1/2 − LF (�2)

(
ρ

p

G

)
(C11)

is also a GME witness, in the sense that a negative value
indicates the presence of GME. Notice furthermore that
IF (�2) (ρp

G) � Iw(ρp

G), i.e., the approximated witness is obvi-
ously weaker than the complete one defined as Iw(ρp

G) =
Tr[WGρ

p

G] where WG is defined in Eq. (15).
The last point of the theorem says that pF � pw, where

pF (pw) represents the threshold probability for IF (�2) (ρp

G)
[Iw(ρp

G)], and thus it is an upper bound for the critical
probability pc also. In order to see this, let us consider the
following inequality:

IF (�2)

(
ρ

pw

G

) = Iw

(
ρ

pw

G

) + LF (>2)

(
ρ

pw

G

)
= LF (>2)

(
ρ

pw

G

)
� 0 = IF (�2)

(
ρ

pF
G

)
, (C12)

where LF (>2) (ρpw

G ) represents the scalar product of |G〉 with all
its subgraphs with a number of edges greater than 2.

Together with the fact that IF (�2) (ρp

G) is a
monotonically decreasing function of p for p � 1/2
(Proposition VI.2), it follows that pF is always an
upper bound for pw, whenever p � 1/2. As a last note,
notice that the following chain of inequalities thus holds:
pF � pw � pc. �
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