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Chirality asymptotic behavior and non-Markovianity in quantum walks on a line
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We investigate the time evolution of the chirality reduced density matrix for a discrete-time quantum walk
on a one-dimensional lattice. The matrix is obtained by tracing out the spatial degree of freedom. We analyze
the standard case, without decoherence, and the situation in which decoherence appears in the form of broken
links in the lattice. By examining the trace distance for possible pairs of initial states as a function of time, we
conclude that the evolution of the reduced density matrix is non-Markovian, in the sense defined by Breuer,
Laine, and Piilo [Phys. Rev. Lett. 103, 210401 (2009)]. As the level of noise increases, the dynamics approaches
a Markovian process. The highest non-Markovianity corresponds to the case without decoherence. The reduced
density matrix tends always to a well-defined limit that we calculate, but only in the decoherence-free case is this
limit nontrivial.
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I. INTRODUCTION

The Markov approximation is a valuable and powerful tool
for studying the dynamics of an open system interacting with
its environment. The random walk is an example of a classical
Markovian process that has found applications in many fields.
In quantum mechanics, important physical scenarios leading
to decoherence can be analyzed by means of simple Markovian
models. For instance, in quantum optics, the time evolution of
an open system characterized by a nonunitary behavior can be
described by a master equation written generally in the form
of a Lindblad equation [1].

In quantum information theory, the discrete-time quantum
walk (QW) on a line has been studied as a natural general-
ization of the classical random walk [2]. It has been shown in
detail how the unitary quantum-mechanical evolution of the
QW can be separated into Markovian and interference terms
[3,4]. The Markovian terms responsible for the diffusion obey
a master equation, while the interference terms are needed
in order to preserve the unitary character of the evolution.
The approach provides an intuitive framework which becomes
useful for analyzing the behavior of quantum systems in which
decoherence plays a central role. In other words, it shows in a
transparent form that the primary effect of decoherence here
is to make the interference terms negligible in the evolution
equation.

It is clearly important to find a way to evaluate how non-
Markovian a quantum system is. Reference [5] has proposed a
general measure for the degree of non-Markovian behavior in
open quantum systems. It is based on the trace distance, which
quantifies the distinguishability of quantum states, and it can be
interpreted in terms of the information flow between the open
system and its environment. The measure takes nonzero values
whenever there is a flow of information from the environment
back to the open system, and it has already been used in
different contexts [6].

On the other hand, the asymptotic behavior of the QW has
been recently investigated focusing on the chirality reduced
density matrix, obtained when the position degree of freedom

is traced out [7–10]. This matrix has a long-time limit that
depends on the initial conditions. One finds thus the following
situation: the dynamical evolution of the QW is a unitary
process, however the asymptotic behavior of the reduced
density matrix has some properties that are shared by some
diffusive Markovian processes. This allows to amalgamate
concepts such as thermodynamic equilibrium with the idea of
a system that follows a unitary evolution. References [8,10]
have developed a thermodynamic theory to describe the QW
equilibrium between the position and chirality degrees of
freedom; it is possible to introduce the concept of temperature
for an isolated quantum system that evolves in a composite
Hilbert space (i.e., the tensor product of several subspaces).
Additionally, Ref. [8] has shown that the transient behavior
toward thermodynamic equilibrium is described by a master
equation with a time-dependent population rate.

In this paper, we study the asymptotic QW behavior with
and without decoherence, and we exploit the measure proposed
in Ref. [5] to evaluate its non-Markovianity. We show that,
without decoherence, the reduced density matrix dynamics
has a clear time dependence and a well-defined limit that
can be calculated in terms of the initial conditions. This
corresponds, when comparing the evolution of two different
initial states, to a reduced asymptotic trace distance. The
introduction of decoherence translates, as far as the long-time
limit is concerned, into a trivial result, since all states evolve
toward the maximally decohered state (proportional to the
identity matrix).

The evolution during the first time steps of the QW
features an interesting phenomenon, i.e., the presence of
oscillations in the trace distance between pairs of states, which
is interpreted as a signature of a non-Markovian process. Such
oscillations occur both with and without decoherence, even
though they become more and more attenuated as the level
of noise increases. In agreement with our observations for
the asymptotic limit, the trace distance tends to zero when
decoherence affects the system.

This paper is organized as follows. In Sec. II we introduce
the basic features of the QW, and we obtain the asymptotic
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limit for the reduced density matrix in the chiral space. In
Sec. III we recast the QW in the form of a map equation for the
generalized chiral distribution (GCD), i.e., the diagonal terms
of the reduced density matrix. The asymptotic limit under the
effect of decoherence is addressed in Sec. IV. In Sec. V we
discuss the short-time behavior, where non-Markovian effects
clearly manifest as oscillations of the trace distance between
pairs of states. Section VI summarizes our main results.

II. ASYMPTOTIC REDUCED DENSITY MATRIX
FOR THE QW

The standard QW corresponds to the discrete (both in time
and in space) evolution of a one-dimensional quantum system
(the walker) in a direction that depends on an additional degree
of freedom, the chirality, with two possible states: “left” |L〉 or
“right” |R〉. The global Hilbert space of the system is the tensor
product Hs ⊗ Hc. Hs is the Hilbert space associated with the
motion on the line, and it is spanned by the basis {|x〉 : x ∈
Z}. Hc is the chirality (or coin) Hilbert space, defined as a
two-dimensional space that can correspond, for example, to a
spin-1/2 particle, or to a two-level energy system. Let us call
T− (T+) the operators in Hs that move the walker one site to
the left (right), and |L〉〈L| and |R〉〈R| the chirality projector
operators in Hc. We consider the unitary transformation

U (θ ) = {T− ⊗ |L〉〈L| + T+ ⊗ |R〉〈R|} ◦ {I ⊗ K(θ )}, (1)

where K(θ ) = σze
−iθσy , θ ∈ [0,π/2] is a parameter defining

the bias of the coin toss, I is the identity operator in Hs , and
σy and σz are Pauli matrices acting on Hc. The effect of the
unitary operator U (θ ) on the state of the system in one time
step τ is |�(t + τ )〉 = U (θ )|�(t)〉. The state vector can be
expressed as the spinor

|�(t)〉 =
∞∑

x=−∞

[
ax(t)
bx(t)

]
|x〉, (2)

where the upper (lower) component is associated with the left
(right) chirality. The unitary evolution implied by Eq. (1) can
be written as the map

ax(t + τ ) = ax+1(t) cos θ + bx+1(t) sin θ, (3)

bx(t + τ ) = ax−1(t) sin θ − bx−1(t) cos θ. (4)

In this paper, we select θ = π
4 to obtain an unbiased coin

(Hadamard coin).
The density matrix of the quantum system is

ρ(t) = |�(t)〉〈�(t)|. (5)

To study the QW time dependence on the initial conditions,
we take the initial state of the walker as sharply localized at
the origin with arbitrary chirality, thus

|�(0)〉 = |0〉 ⊗ |�0〉. (6)

Here

|�0〉 =
(

cos γ

2

eiϕ sin γ

2

)
, (7)

with γ ∈ [0,π ] and ϕ ∈ [0,2π ] defining a point on the unit
three-dimensional Bloch sphere. In this case, the initial density

matrix is

ρ(0) = |0〉〈0| ⊗ |�0〉〈�0|, (8)

where

|�0〉〈�0| =
(

cos2 γ

2
e−iϕ

2 sin γ
eiϕ

2 sin γ sin2 γ

2

)
. (9)

To use the affine map approach [11,12], Eq. (9) can be
transformed to express the two-by-two matrix as a four-
dimensional column vector, obtaining

|�0〉〈�0| = r0I + r1σ1 + r2σ2 + r3σ3

=

⎛
⎜⎝

r0

r1

r2

r3

⎞
⎟⎠ = 1

2

⎛
⎜⎝

1
cos ϕ sin γ

− sin ϕ sin γ

cos γ

⎞
⎟⎠ , (10)

with σi (i = 1,2,3) the Pauli matrices, and

ri = 1
2 tr(|�0〉〈�0|σi). (11)

The reduced density operator is defined as

ρc(t) = trs[ρ(t)]) =
∞∑

x=−∞
〈x|ρ(t)|x〉, (12)

where the partial trace is taken over the positions. Following
the method introduced in Ref. [11] and generalized in Ref. [12],
Eq. (12) can be transformed into

ρc(t) =
∫ π

−π

dk

2π
Lt

k|�0〉〈�0|, (13)

with Lk the superoperator defined as

Lk =

⎛
⎜⎝

1 0 0 0
0 0 sin 2k cos 2k

0 0 − cos 2k sin 2k

0 1 0 0

⎞
⎟⎠ . (14)

To obtain the eigenvalues of Lk , it is necessary to find the
eigenvalues of the following associated matrix:

Mk =
⎛
⎝0 sin 2k cos 2k

0 − cos 2k sin 2k

1 0 0

⎞
⎠ . (15)

The eigenvalues of Eq. (15) are

λ1 = 1, λ2 = ei(α+π), λ3 = e−i(α+π), (16)

where

cos α = 1
2 (1 + cos 2k) = (cos k)2. (17)

The corresponding eigenvectors are

→
v1 =

⎛
⎝v11

v21

v31

⎞
⎠

=
√

2 cos k√
3 + cos 2k

⎛
⎝ 1

(1 − cos 2k)/ sin 2k

1

⎞
⎠, (18)
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→
v2 =

⎛
⎝v12

v22

v32

⎞
⎠

= 1

N2

⎛
⎝ ei(α+π)

−(ei(α+π) − 2 cos 2k)/(2 sin 2k)
1

⎞
⎠, (19)

→
v3 =

⎛
⎝v13

v23

v33

⎞
⎠

= 1

N3

⎛
⎝ e−i(α+π)

−(e−i(α+π)−2 cos 2k)/(2 sin 2k)
1

⎞
⎠, (20)

with N2 and N3 normalization factors. It is now straightforward
to obtain (Lk)t using the diagonal expression for Lk , that is,

Lk = B

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 eit(α+π) 0
0 0 0 e−it(α+π)

⎞
⎟⎠ B†. (21)

Here, B is the eigenvector matrix,

B =

⎛
⎜⎝

1 0 0 0
0 v11 v12 v13

0 v21 v22 v23

0 v31 v32 v33

⎞
⎟⎠ , (22)

and B† is its conjugate transpose. Substituting Eq. (22) into
Eq. (21) and exploiting the stationary phase theorem to neglect
the oscillatory terms e±it(α+π) when time goes to infinity, one
finds the following asymptotic equation:

(Lk)t −→

⎛
⎜⎜⎝

1 0 0 0
0 |v11|2 v11v

∗
21 v11v

∗
31

0 v21v
∗
11 |v21|2 v21v

∗
31

0 v31v
∗
11 v31v

∗
21 |v31|2

⎞
⎟⎟⎠ . (23)

The reduced density matrix in the asymptotic regime, ρ̃c, can
be calculated using Eq. (13) as

ρ̃c ≡ lim
t→∞ ρc(t) = limt→∞

∫ π

−π

dk

2π
Lt

k|�0〉〈�0|. (24)

To work out this expression, it is necessary to solve the
following integrals:∫ π

−π

|v11|2
2π

dk = 1 − 1√
2
, (25)

∫ π

−π

|v21|2
2π

dk =
√

2 − 1, (26)

∫ π

−π

|v31|2
2π

dk = 1 − 1√
2
, (27)

∫ π

−π

v11v
∗
21

2π
dk =

∫ π

−π

v11v
∗
31

2π
dk

=
∫ π

−π

v21v
∗
31

2π
dk = 0. (28)

Therefore, we obtain analytically the QW reduced density
matrix in the asymptotic regime,

ρ̃c =

⎛
⎜⎜⎝

r0(
1 − 1√

2

)
(r1 + r3)

(
√

2 − 1)r2(
1 − 1√

2

)
(r1 + r3)

⎞
⎟⎟⎠

= 1

2

⎛
⎜⎜⎝

1(
1 − 1√

2

)
(cos ϕ sin γ + cos γ )

(
√

2 − 1) sin ϕ sin γ(
1 − 1√

2

)
(cos ϕ sin γ + cos γ )

⎞
⎟⎟⎠ . (29)

Going back to the 2 × 2 matrix formalism, the reduced density
matrix in the asymptotic regime can finally be written as

ρ̃c =
(

L Q0

Q∗
0 R

)
, (30)

where

L = 1

2

[
1 +

(
1 − 1√

2

)
(cos ϕ sin γ + cos γ )

]
,

R = 1

2

[
1 −

(
1 − 1√

2

)
(cos ϕ sin γ + cos γ )

]
,

Q0 = 1

2

(
1 − 1√

2

)
[(cos ϕ sin γ + cos γ )

−i
√

2 sin ϕ sin γ

]
. (31)

III. QW MAP EQUATION

The aim of this section is to study the populations of the
reduced density matrix for the standard (decoherence-free)
QW. Using Eqs. (2), (5), and (12), this matrix is expressed as

ρc(t) =
(

PL(t) Q(t)
Q∗(t) PR(t)

)
, (32)

where

PL(t) =
∞∑

k=−∞
|ak(t)|2, (33)

PR(t) =
∞∑

k=−∞
|bk(t)|2, (34)

Q(t) ≡
∞∑

k=−∞
ak(t)b∗

k (t). (35)

The global chirality distribution (GCD) is defined as the
distribution [

PL(t)
PR(t)

]
, (36)

with PR(t) + PL(t) = 1.
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It is shown in Ref. [7] that the GCD satisfies the following
map: [

PL(t + 1)
PR(t + 1)

]
=

(
cos2 θ sin2 θ

sin2 θ cos2 θ

) [
PL(t)
PR(t)

]

+ Re [Q(t)] sin 2θ

[
1

−1

]
. (37)

We observe that, if the “interference term”

Re[Q(t)] sin 2θ

[
1

−1

]
(38)

in Eq. (37) is neglected, the time evolution of the GCD
could be described by a classical Markovian process. The
two-dimensional matrix(

cos2 θ sin2 θ

sin2 θ cos2 θ

)
(39)

can be interpreted as the corresponding transition probability
matrix for a Markov chain, since it satisfies the necessary
requirements: all its elements are positive, and the sum over
the elements of any column or row is equal to 1. However,
Q(t) [together with PL(t) and PR(t)] is a time-dependent
function. This implies that the map defined by Eq. (37) does
not correspond to a classical Markovian process. It is important
to stress that, here, we are just analyzing the GCD (i.e., the
left and right populations of the chiral degree of freedom) in
terms of classical Markovian behavior. A study of quantum
Markovianity requires, on the other hand, that we consider the
evolution of the complete matrix ρc(t). This will be performed
in Sec. V.

In spite of the time dependence manifested by Eq. (37), the
GCD does possess a long-time limiting value, as obtained in
the previous section. Equation (37) can be used to derive a
consistency condition relating L, R , and Q0, by taking the
limit t → ∞. One then finds[

L

R

]
= 1

2

[
1 + 2 Re(Q0)/ tan θ

1 − 2 Re(Q0)/ tan θ

]
. (40)

When θ = π/4, Eq. (40) agrees with the expressions given
by Eq. (31). This interesting result shows that the long-time
probability to find the system with left or right chirality only
depends on the asymptotic interference term. Although the
dynamical evolution of the QW is unitary, the evolution of its
GCD has an asymptotic limit, a feature that is characteristic
of a diffusive behavior. The situation is even more surprising
if we compare our case with the case of the QW on finite
graphs [2], where it is shown that there is no convergence to a
stationary distribution. To quantify how much the asymptotic
limit keeps track of the initial state, we use the trace distance

D(ρ1 − ρ2) = 1
2 tr|ρ1 − ρ2|,

which gives us a measure for the distinguishability of two
quantum states. Here, |ρ| =

√
ρ†ρ. We calculate this quantity

for two reduced density matrices (in the chiral space) that
correspond to two different initial states of Eq. (9). Following
the notation defined in Eq. (32), we write

ρ1(t)−ρ2(t) =
(

P1L(t) − P2L(t) Q1(t) − Q2(t)
Q∗

1(t) − Q∗
2(t) P1R(t) − P2R(t)

)
. (41)

0
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D(ρ̃12)
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−1
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1
−1

0

1

xy

z

FIG. 1. (Color online) Left panel: Asymptotic trace distance as
a function of the angles γ and ϕ, representing the initial conditions
of ρ2. The initial conditions of ρ1 are given by γ = 0. Right panel:
The contour levels corresponding to the left panel are mapped to the
Bloch sphere, using the same color convention.

We now evaluate the trace distance between the asymptotic
reduced density matrices for the QW without decoherence,
while in the next section we extend the investigation to the sce-
nario that takes into account decoherence introduced by broken
links. Considering two different initial conditions, the differ-
ence between their asymptotic reduced density matrices is

ρ̃12=
(

1L − 2L Q10 − Q20

Q∗
10 − Q∗

20 1R − 2R

)
. (42)

Therefore, the distance between the asymptotic reduced
density matrices is defined as

D(ρ̃12) = 1
2 tr|ρ̃12|. (43)

After some algebra, taking into account Eq. (40) with
θ = π/4, the asymptotic trace distance can be expressed, in
terms of the initial conditions, as

D(ρ̃12) =
√

2[Re(Q10 − Q20)]2 + [Im(Q10 − Q20)]2. (44)

Here, Re(Q0) [Im(Q0)] is the real (imaginary) part of Q0, and
Q0 is given by Eq. (31). To study the dependence on the initial
conditions, we consider the evolution of pairs of independent
states under the QW map. We fix the initial conditions for the
first state and study Eq. (44) by considering different points on
the Bloch sphere as the initial conditions for the second state.

Figures 1 and 2 show our results in two nonequivalent
scenarios. As can be seen from these figures, the asymptotic
trace distance has a nontrivial behavior as a function of the
second state, once the first one is fixed. The left panel gives an
idea of how much the trace distance is reduced (the minimum
reduction being of the order of 1/2 in the case represented in
Fig. 1, whereas lower values are reached for the parameters

0

1

0
1

2
0

0.1

0.2

0.3

�/πγ/π

D(ρ̃12)

−1
0

1

−1
0

1
−1

0

1

xy

z

FIG. 2. (Color online) Same as Fig. 1, but now the initial condi-
tions for ρ1 are given by γ = π/4 and ϕ = π .
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that correspond to Fig. 2). The contour levels can be mapped to
the points of the Bloch sphere associated with the second state
(right panel), thus providing a closer relationship to physical
states. As we see by comparing the two figures, changing the
first state does not translate into a simple rotation of the Bloch
sphere representation, the reason being that the coin operator
does not commute with arbitrary rotations.

IV. ASYMPTOTIC DENSITY MATRIX WITH
DECOHERENCE

We now study the dynamics of the reduced density matrix
for the QW under the effect of decoherence. We exploit the
model, known as broken links, that was proposed for the first
time in Ref. [13] and analyzed in the frame of the previous
section in Ref. [12]. It induces decoherence in both degrees
of freedom, i.e., coin and position. Similar results to those
presented here can also be found for other decoherence models.

At each time step t , the state of the links in the line is
defined. Each link has a probability p of breaking in a given
time step. Clearly, for p = 0, the ideal decoherence-free QW
is recovered. During the movement stage, if the walker is in
a site with both the links on the right and left broken (this
happens with probability p2), the walker does not move. With
probability (1 − p)2, both links are not broken and, in this case,
the evolution normally occurs. With probability p(1 − p), only
one link is broken and the walker is forced to move to the other
direction. Notice, however, that the limit p −→ 1 implies that
the walker is forced to stay at the initial position, since the
links with neighboring sites are broken with probability 1 (or
close to 1), and only the coin operator acts. This limit is no
longer connected with the QW, and, for this reason, we restrict
ourselves to small values of p.

Reference [12] obtains the superoperator Lk that determines
the dynamical evolution of the QW with broken links,

Lk =

⎛
⎜⎝

1 0 0 0
0 0 e f + p2

0 0 p2 − f e

0 1 − 2p −2g −2h

⎞
⎟⎠ , (45)

where

e = (1 − p)2 sin 2k,

f = (1 − p)2 cos 2k,
(46)

g = p(1 − p) sin k,

h = p(1 − p) cos k.

The dynamics of the reduced density matrix is again described
by Eq. (24), but now Lk is given by Eq. (45). Redefining Mk as

Mk =
⎛
⎝ 0 e f + p2

0 p2 − f e

1 − 2p −2g −2h

⎞
⎠ , (47)

its eigenvalues {λi : i = 1,2,3} satisfy |λi | < 1 for 0 < p < 1.
If A is the matrix constructed from the eigenvectors of Mk , and
� is the diagonal matrix with the corresponding eigenvalues
as elements, it is straightforward to prove that

lim
t→∞ Mt

k = lim
t→∞(A�tA†) = 0. (48)

In this case, Eq. (24) gives us

ρ̃c =
∫ π

−π

dk

2π

⎛
⎜⎝

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎠

⎛
⎜⎝

r0

r1

r2

r3

⎞
⎟⎠ . (49)

In other words, going back to the formalism of 2 × 2 matrices,
the reduced density matrix in the asymptotic regime is simply

ρ̃c = 1

2

(
1 0
0 1

)
, (50)

regardless of the initial state. Thus, in the presence of noise,
the trace distance between any two different initial states
approaches zero, i.e.,

lim
t→∞ D(ρ1(t) − ρ2(t)) = 0. (51)

V. SHORT-TIME BEHAVIOR

So far we have investigated the properties of the reduced
density matrix in the long-time regime. We have obtained
a well-defined limit for both the decoherence-free scenario
and the case with decoherence. We now discuss the situation
in which one considers not the asymptotic limit but a finite
number of steps in the QW. Our study, as before, is focused on
the time evolution of D(ρ1 − ρ2).

The measure of quantum non-Markovianity given by Ref.
[5] is based on the rate of change [14] of the trace distance,

σ (t,ρ1,2(0)) = d

dt
D(ρ1(t) − ρ2(t)). (52)

Figure 3 shows the time evolution of the trace distance, both for
the whole density matrices and for the corresponding reduced
density matrices. We have taken, as initial conditions, the pair
of states giving the maximum value of the measure (see below).
If one starts from a different pair of states, the curves look
qualitatively similar, although the overall scale is smaller.

We have considered various values of the decoherence
parameter p, the case p = 0 corresponding to the absence of

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

D
(ρ

1−
ρ 2)

t

 

 

p=0

p=0.01

p=0.02

p=0.03

FIG. 3. (Color online) Trace distance, as a function of the number
of time steps, between the whole density matrices (dashed lines) and
between the corresponding reduced density matrices (solid lines).
The initial state ρ1(0) is defined by Eq. (9) with γ = 0, while ρ2(0)
with γ = π . Different values of the decoherence parameter p have
been considered.
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0 20 40 60 80 100
0

1

2

3

4

5

6

t

N

p=0
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FIG. 4. (Color online) Contribution to the non-Markovianity
measure, as a function of the number of time steps, evaluated for
the pair of initial states ρ1(0) and ρ2(0) that maximizes the integral in
Eq. (53). Different values of the decoherence parameter p have been
considered.

decoherence. Without decoherence, the QW evolves unitarily,
so the trace distance between two total states is preserved. If
p > 0, the evolution for the total state is clearly Markovian,
as indicated by a monotonous decrease in the trace distance
(this happens of course for any possible pair of initial states).
The reduced density matrices, however, show a completely
different behavior. Analyzing first the case p = 0, we observe
the presence of oscillations. In other words, the trace distance
increases during some time intervals, giving a positive value
of σ in Eq. (52). As discussed in Ref. [5], this feature is
a clear signature of a quantum non-Markovian process. We
notice that the amplitude of these oscillations decreases with
t . For values p > 0, we also observe the presence of such
oscillations. In fact, the curves look similar during the first
time steps. However, as t increases, the oscillations are more
strongly damped than in the decoherence-free case. This effect
is even more pronounced for larger values of p. In addition
to these features, we also notice that the trace distance goes
asymptotically to zero, consistently with our results in Sec. IV.

To obtain a quantitative idea about the degree of the non-
Markovianity observed in the previous plots, the authors in
Ref. [5] suggest, as a figure of merit, the accumulated area of
the trace distance variation for those time intervals where the
trace distance is increasing, which amounts to calculating

Nmax = max
ρ1,ρ2

∫
σ>0

σ (τ,ρ1,2(0))dτ. (53)

The maximization is performed over all the possible pairs of
initial states ρ1(0) and ρ2(0). We have checked numerically
that the pair of states maximizing Eq. (53) is the same both
with and without decoherence, and corresponds to the north
and south poles of the Bloch sphere. We have verified, by
performing several numerical simulations, that this does not
depend either on the total number of time steps considered or
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FIG. 5. (Color online) Contribution to the non-Markovianity
measure, as a function of the decoherence parameter, calculated for
the pair of initial states ρ1(0) and ρ2(0) that maximizes the integral in
Eq. (53), and for the time interval [0,200].

on the value of p. We have therefore plotted in Fig. 4 the value

N (t) =
∫

σ>0;τ∈[0,t]
σ (τ,ρ1,2(0))dτ, (54)

evaluated for this pair of initial states. N (t) can be seen
as the contribution to the non-Markovianity measure in the
time window [0,t]. Even if in the time window allowed by
our computational power it is not possible to evaluate (if
any) the asymptotic value of N (t) for t → ∞ (i.e., the non-
Markovianity measure Nmax) in the decoherence-free case, the
results reported in Fig. 4 give already a very precise picture of
how the decoherence affects the degree of non-Markovianity
of the coin evolution. The non-Markovianity is stronger as
the magnitude of decoherence decreases, with the largest
value of its measure corresponding to the decoherence-free
case. This feature is clearly shown in Fig. 5, where we have
plotted the contribution to the non-Markovianity measure Nmax

calculated for the time interval [0,200] as a function of p, for
the north-south pair of states.

VI. CONCLUSIONS

In this work, we have analyzed both the short-time behavior
and the asymptotic limit of the reduced (or chiral) density
matrix for the discrete-time QW on a one-dimensional lattice.
We have found that this reduced system shows clear features
that can be associated with a non-Markovian evolution. First,
we have considered the case in which the QW proceeds
without decoherence. The chiral density matrix possesses
a well-defined asymptotic limit in time. This allows us to
calculate the limiting value of the trace distance for pairs of
different initial states.

We have studied the effect of decoherence, modeled as
the random presence of broken links on the lattice. The case
with decoherence possesses a trivial asymptotic limit, since all
states converge to (one-half of) the identity, so that the trace
distance between pairs of them always tends to zero.
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The short-time behavior of the reduced system features
quite interesting results. One observes the presence of os-
cillations in the trace distance for reduced matrices that
correspond to two different initial states, a phenomenon
that clearly indicates a non-Markovian time evolution. These
oscillations appear even when the system does not suffer from
decoherence, and they are damped as the number of time steps
increases, thus allowing for a convergence of the trace distance
in accordance with our previous observations. As the level
of noise becomes larger, the amplitude of the oscillations is
also reduced for a given number of time steps. In addition,
the trace distance approaches zero asymptotically, as already
predicted from our long-time analysis. The contribution to the
non-Markovianity measure reported in Eq. (53), as a function
of the number of time steps, then tends to a value that decreases
as the level of decoherence increases.

To conclude, we have found and characterized a non-
Markovian behavior for a relatively simple and yet nontrivial
system as the coin in a QW on a line. The results that we have

presented for the particular model of decoherence chosen here
can also be found for other models, such as the one investigated
in Ref. [9]. They provide a step forward in our understanding
of phenomena such as the transition from unitary to diffusive
processes and of the thermalization of quantum systems, and
they clearly deserve further attention.
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