
PHYSICAL REVIEW A 89, 052323 (2014)

Creating and manipulating entangled optical qubits in the frequency domain

Laurent Olislager,1,* Erik Woodhead,2 Kien Phan Huy,3 Jean-Marc Merolla,3 Philippe Emplit,1 and Serge Massar2
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Radio-frequency phase modulation of frequency-entangled photons leads to a two-photon interference pattern
in the frequency domain. In recent experiments, the pattern was measured with narrow-band frequency filters
which select photons belonging to a given frequency bin. Here we show how photons can be grouped into even
and odd frequencies by using periodic frequency filters called interleavers. In our theoretical analysis we show
how this reduces the high-dimensional photon state to an effective two-dimensional state. This is of interest for
applications such as quantum cryptography or low-dimensional tests of quantum nonlocality. We then report
an experimental realization of this proposal. The observed two-photon interference pattern and violation of the
CHSH inequality—the simplest binary-outcome Bell inequality—are in good agreement with the theoretical
predictions.
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I. INTRODUCTION

Entangled photons are a key resource for quantum infor-
mation processing and communication. During past decades,
all degrees of freedom of photons have been used for entan-
glement experiments, including polarization [1–3], position
and momentum [4], angular momentum [5], and time-energy
[6–11]. The latter degree of freedom is particularly interesting
for long-distance quantum communication, as it propagates
essentially undisturbed through optical fibers over large
distances. Most experiments exploited the concept of time bins
originally proposed in Refs. [12,13], in which the photons are
detected at discrete times. Recently we have introduced the
concept of frequency bins, in which the photons are detected
within discrete frequency intervals [14,15]. The latter works
are based on earlier works in which the frequency degree of
freedom was used to code information in attenuated coherent
pulses for quantum key distribution applications [16–18].
Phase modulation of quantum light has also been studied in,
e.g., Refs. [19–21].

The advantages of frequency-bin entanglement are that it
can be manipulated and measured using standard telecommu-
nication components such as electro-optic phase modulators
and narrow-band fiber Bragg gratings, that raw visibilities
in excess of 99% can readily be obtained (comparable to
the highest visibilities obtained using other photonic degrees
of freedom), that high-dimensional quantum states can be
manipulated (dimension as high as 11 easily obtained), and
that no interferometric stabilization is required over laboratory
distance scales (meters of optical fibers).

In the experiments [14,15], electro-optic phase modulators
generated a high-dimensional frequency interference pattern
which was observed with narrow-band frequency filters, each
selecting a given frequency bin. While the high dimensionality
of the entangled state can be beneficial in some quantum in-
formation applications, it is sometimes desirable to work with
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well-known two-dimensional states for which most quantum
communication protocols, such as the BB84 key distribution
scheme [22], are designed. In addition, when the states are two
dimensional, it is easier to access all measurement outcomes
simultaneously since only four detectors are needed, which is
better suited for tests of the CHSH Bell inequality [23]. (By
contrast, in our earlier work [14,15], the reported violation of
the CH74 inequality [24] on a higher-dimensional frequency
entangled state was based on a simplifying assumption on the
marginal statistics that was not tested directly.) The CHSH
inequality is the standard and simplest inequality to use when
checking for violation of local causality. It has been used for
instance in experiments involving photons [2–4,9], trapped
ions [25], and superconducting qubits [26]. It is also the
basis for some of the most important potential applications
of nonlocality, such as device-independent key distribution
[27] and randomness expansion [28].

Here we show how to define, manipulate, and measure
effective two-dimensional states in the frequency domain. The
key idea is to use as measurement device a periodic filter that
selects two sets of frequency bins, those with even and odd
frequencies respectively. This implements a coarse-grained
measurement that projects onto two orthogonal subspaces.
Such periodic frequency filters are standard components in
the telecommunication industry, known as interleavers. With
this approach, we observe a two-dimensional two-photon
interference in the frequency domain and violation of the
CHSH Bell inequality [23]. This is realized by simultaneously
measuring all coincidence probabilities (no further assumption
is needed for the Bell test, contrary to Refs. [14,15]).

A further interest of the present approach is that it allows one
in principle to manipulate and measure frequency-entangled
photons that are produced by a broadband source with
low spectral brightness, as the interleavers that separate the
even and odd frequencies act over a very broad bandwidth.
This, however, requires dispersion compensation, as otherwise
photons with different detunings exhibit different interfer-
ence patterns that average to zero over the bandwidth of
the photons.
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The paper is divided into two main parts. In the first
part we describe theoretically how effective qubits corre-
sponding to even and odd frequencies can be introduced
and how electro-optic phase modulators realize rotations in
this two-dimensional space. We compute how the two-photon
correlations depend on the amplitude and phase of the radio-
frequency signals driving the phase modulators. From these
expressions we show that the maximum possible violation of
the CHSH inequality is 2.566. In the second part we describe
our experimental setup. We report two-photon interference
patterns in good agreement with the theoretical predictions and
report a violation of the CHSH inequality of 2.334 ± 0.008.
The reader principally interested in the experiment may skip
directly to Sec. IV.

II. OUTLINE OF THE EXPERIMENT

Our experiment is schematized in Fig. 1. It is based on three
components that we briefly describe:

(1) A source S produces the frequency-entangled state

|�〉 =
∫

dω f (ω)|ω0 + ω〉|ω0 − ω〉

�
∫

dω|ω0 + ω〉|ω0 − ω〉, (1)

where f (ω) characterizes the two-photon bandwidth. Because
f varies slowly with frequency, for the theoretical analysis it
is often useful to approximate it as constant as in the second
line.

(2) A phase modulator driven by a radio-frequency signal
v cos(�t − γ ) with adjustable amplitude v and phase γ

realizes the unitary transformation

|ω〉 �→
∑
p∈Z

Jp(c)eip(γ−π/2)|ω + p�〉, (2)

Jp(c) being the pth-order Bessel function of the first kind, with
normalized amplitude c = πv/Vπ where Vπ characterizes the
response of the modulator.

(3) An interleaver is a component used in the telecommu-
nication industry that separates the frequencies centered on
ω0 + 2n� from those centered on ω0 + (2n + 1)�, where ω0

is a fixed offset, and n ∈ Z. We use interleavers as components
that allow the measurement of even and odd frequencies. If we
follow the interleaver by single-photon detectors, then a click
of one of the detectors corresponds to the projection onto one

FIG. 1. (Color online) Simple schematic of the experiment. The
source (S) produces frequency-entangled photons. Two electro-optic
phase modulators (EOPM) driven by radio-frequency signals with
identical frequency � but different amplitudes and phases, (a,α) and
(b,β), realize interference in the frequency domain. Interleavers (IL)
send the even (E) and odd (O) frequency bins to separate single-
photon detectors (det).

of the two operators:

	E =
∫ +�

−�

dω g(ω)
∑

n

	ω0+ω+2n�, (3)

	O =
∫ +�

−�

dω g(ω)
∑

n

	ω0+ω+(2n+1)�, (4)

where 	ω = |ω〉〈ω| is the projector onto the frequency state
|ω〉 and g(ω) is a function characteristic of the interleaver
which is maximal in the vicinity of ω = 0 and very small when
|ω| > �/2. Examples of transmission spectra of interleavers
can be found in Fig. 2.

The experiment consists of preparing the state, sending
Alice’s and Bob’s photons through phase modulators driven
by radio-frequency signals with identical frequency � but
different amplitudes and phases, (a,α) and (b,β), and finally
determining whether the frequency is even or odd by passing
the photon through interleavers and then sending the output to
single-photon detectors.

III. THEORETICAL ANALYSIS

A. Discrete and offset space

Because the phase modulator shifts the frequency by � and
the interleaver is sensitive only to frequency modulo 2�, it is
convenient to rewrite the state as

|�〉 =
∫ +�/2

−�/2
dω

+∞∑
n=−∞

f (ω + n�)

× |ω0 + ω + n�〉|ω0 − ω − n�〉

�
∫ +�/2

−�/2
dω

+∞∑
n=−∞

fn|n,ω〉| − n,−ω〉

=
∑
n∈Z

fn|n〉| − n〉 ⊗
∫ �/2

−�/2
dω|ω〉|−ω〉

= |�	〉 ⊗ |�off〉, (5)

where we suppose that f varies slowly so that we can neglect
the dependence on ω: f (ω + n�) � fn. The identification
|n〉 ⊗ |ω〉 = |n,ω〉 = |ω0 + n� + ω〉 defines a factorization
HF = H	 ⊗ Hoff of the Hilbert space HF of frequency states
into separate “discrete” and “offset” spaces, H	 and Hoff ,
respectively, with respect to which the source state |�〉 is
(approximately) separable. We adopt the normalization

〈m|n〉 = δmn, (6)

〈ω′|ω〉 = δ(ω′ − ω). (7)

We factorize the projections (3) in a similar manner,

	E �
∑

n

|2n〉〈2n| ⊗
∫ �/2

−�/2
dω g(ω)|ω〉〈ω|,

(8)

	O �
∑

n

|2n + 1〉〈2n + 1| ⊗
∫ �/2

−�/2
dω g(ω)|ω〉〈ω|,

where our requirement that g(ω) is negligible for |ω| >

�/2 justifies restricting the integration over ω to the range
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FIG. 2. (Color online) Spectrum of the filters used in the ex-
periment. Since λp = 776.1617 nm, 1552.3234 nm corresponds to
the degeneracy frequency ω0. From top to bottom: (a) Output of
the 12.5–25 interleaver. (b) Even (red [gray] curve labeled E) and
odd (blue [gray] curve labeled O) outputs of a 25–50 interleaver.
(c) Programmable WaveShaper filter; photons belonging to the red,
labeled A (resp. blue, labeled B) output are sent to Alice (resp.
Bob). (d) Spectrum obtained when cascading 12.5–25 interleaver,
WaveShaper, and 25–50 interleaver; red (gray) curve labeled AE:
Alice, even; black curve labeled AO: Alice, odd; magenta (gray)
curve labeled BE: Bob, even; and blue (gray) curve labeled BO: Bob,
odd. Note that whereas the outputs of the 25–50 interleavers [panel
(b)] have ≈25 dB extinction at the center of each pass band, they only
have ≈3 dB extinction at the edges of the band (where the red and
blue curves cross). Hence photons at the edges of the pass bands have
quite high and equal probabilities to exit the even and odd ports, which
would result in an important decrease of visibility of interference if
the 25–50 interleavers were used alone. The spectra in panel (d) show
that upon using the initial 12.5–25 interleaver [depicted in panel (a)]
that removes the photons at the edges of the pass bands, the even and
odd outputs are now separated by 25 dB over the whole frequency
band.

[−�/2,�/2]. Finally, in this representation, the action (2) of
a phase modulator takes the expression

|n〉 ⊗ |ω〉 �→
∑
p∈Z

Jp(c)eip(γ−π/2)|n + p〉 ⊗ |ω〉

= (U (c,γ ) ⊗ 1off)|n〉 ⊗ |ω〉, (9)

with the unitary transformation U (c,γ ) acting only on H	,
and 1off is the identity in the “offset” space.

We see explicitly, then, that the description of the relevant
part of our setup is entirely contained in the discrete space H	:
Indeed, the offset frequency ω only affects the probability
of response of the interleaver via the factor |g(ω)|2, and is
otherwise never measured or recorded in the course of the
experiment. Consequently, we restrict the remainder of the
theoretical analysis to this space. Note that the factorization
and isolation of the discrete space H	 detailed here for-
malizes the concept of “frequency bin” previously used in
Refs. [14,15].

B. Phase states and effective qubits

The effective qubits manipulated in our setup are made
explicit when we express the source state |�	〉 and actions
of the phase modulators and interleavers in the basis of even
and odd phase states. These states can be derived from our
setup’s symmetries with respect to translations of frequency
bins. Formally, let us denote

Tk : |n〉 �→ |n + k〉 (10)

the (unitary) operation consisting of translation in the fre-
quency domain by k frequency bins. The phase modulator and
interleaver actions are symmetric with respect to translations
by k and 2k, respectively, in the sense that

[U (c,γ ),Tk] = 0, k ∈ Z, (11)

and

[	E,Tk] = [	O,Tk] = 0, k ∈ 2Z, (12)

while, using that the amplitude fn varies slowly, the source
state has the approximate symmetry

Tk ⊗ T−k|�	〉 � |�	〉. (13)

Consequently, the phase modulators and source will share
eigenstates with the T1 operator, while the interleaver action
eigenstates will coincide with those of T2.

A full set of eigenstates of the T1 operator is given by the
phase states, which we define by

|ϕ〉 = 1√
2π

∑
n∈Z

einϕ|n〉, (14)

such that Tk|ϕ〉 = e−ikϕ|ϕ〉. The inverse of this expression is
given by

|n〉 = 1√
2π

∫ π

−π

dϕ e−inϕ |ϕ〉. (15)

For the T2 operator, a complete basis of eigenstates that
will prove convenient is given by the even and odd phase
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states

|ϕ〉E = 1√
π

∑
n∈2Z

einϕ |n〉, (16)

|ϕ〉O = 1√
π

∑
n∈2Z+1

einϕ |n〉, (17)

with T2|ϕ〉E = e−2iϕ |ϕ〉E and T2|ϕ〉O = e−2iϕ |ϕ〉O. Note that

|ϕ〉 = 1√
2

[|ϕ〉E + |ϕ〉O],

(18)
|ϕ + π〉 = 1√

2
[|ϕ〉E − |ϕ〉O].

In terms of these states, the even and odd projection operators
(restricted to the discrete space) take the expressions

	E =
∫ π

0
dϕ|ϕ〉E〈ϕ|E, (19)

	O =
∫ π

0
dϕ|ϕ〉O〈ϕ|O, (20)

and the entangled source state can be rewritten

|�	〉 � 1√
N

∑
n

|n〉| − n〉 = 1√
N

∫ π

−π

dϕ|ϕ〉|ϕ〉
(21)

= 1√
N

∫ π

0
dϕ(|ϕ〉E|ϕ〉E + |ϕ〉O|ϕ〉O),

where we idealize |�	〉 as an infinite sum, and N is a
normalization constant symbolically representing the number
of frequency bins over which fn is nonzero, and formally
equal to 2πδ(0) (see also the discussion of normalization in
Ref. [14]). To obtain the second line, we used that∑

n∈Z
einθ = 2π

∑
k∈Z

δ(θ − 2πk). (22)

The action of a phase modulator on a phase state is found
to be

U (c,γ )|ϕ〉 = 1√
2π

∑
m

eimϕ
∑

p

Jp(c)eip(γ−π/2)|m + p〉

=
∑

p

Jp(c)eip(γ−ϕ−π/2) 1√
2π

∑
n

einϕ |n〉

= e−ic cos(γ−ϕ)|ϕ〉, (23)

where, to obtain the last line, we used a version of the Jacobi-
Anger expansion [29]:

e−ic cos(θ) =
∑

n

Jn(c)ein(θ−π/2). (24)

Using Eqs. (18) and (23) we readily find

U (c,γ )|ϕ〉E = cos(θ )|ϕ〉E − i sin(θ )|ϕ〉O,
(25)

U (c,γ )|ϕ〉O = −i sin(θ )|ϕ〉E + cos(θ )|ϕ〉O,

where we have set θ = c cos(γ − ϕ). For a fixed phase ϕ, we
see that, varying the modulation parameters c and γ , we can
implement a σx rotation of any desired angle between the even
and odd phase states.

The above construction thus shows how to define effective
qubits {|ϕ〉E,|ϕ〉O} in the frequency domain, and how phase
modulators realize σx rotations on the effective qubits. How-
ever, the angle of the rotation depends on the phase ϕ of the
effective qubit. This phase is not experimentally accessible.
Since the entangled state Eq. (21) is given by an integral
over ϕ, this will imply a modified interference pattern with
reduced visibility. In the next section we quantify this and show
that the proposed experiment allows violation of the CHSH
inequality.

C. Two-photon interference pattern

Modulating each arm of our setup with the modulation
parameters A = (a,α) and B = (b,β) transforms the initial
source state to

|�AB〉 = 1√
N

∫ π

0
dϕ{cos(θA + θB)|φ+

ϕ 〉

− i sin(θA + θB)|ψ+
ϕ 〉}, (26)

where we have set θA ≡ θA(ϕ) = a cos(ϕ − α) and θB ≡
θB(ϕ) = b cos(ϕ − β), and

|φ+
ϕ 〉 = |ϕ〉E|ϕ〉E + |ϕ〉O|ϕ〉O, (27)

|ψ+
ϕ 〉 = |ϕ〉E|ϕ〉O + |ϕ〉O|ϕ〉E. (28)

Via elementary trigonometric identities, we have

θA(ϕ) + θB(ϕ) = D cos(ϕ − �) ≡ θAB(ϕ), (29)

with

D2 = a2 + b2 + 2ab cos(α − β) (30)

and

tan(�) = a sin(α) + b sin(β)

a cos(α) + b cos(β)
. (31)

The probability of jointly detecting two photons in even
frequency bins is then given by

P (E,E) = 〈�AB |	E ⊗ 	E|�AB〉

= 1

N

∫ π

0
dϕ′

∫ π

0
dϕ cos(θAB(ϕ′)) cos(θAB(ϕ))

×〈ϕ′|E	E|ϕ〉E〈ϕ′|E	E|ϕ〉E

= δ(0)

N

∫ π

0
dϕ cos(θAB(ϕ))2

= 1

4
+ 1

4π

∫ π

0
dϕ cos(2D cos(ϕ − �))

= 1

4
[1 + J0(2D)]. (32)

To reach the last line, we used the integral expression

J0(x) = 1

π

∫ π

0
dt cos(x sin(t)) (33)

for the zeroth Bessel function of the first kind, and that the
function t �→ cos(x sin(t)) is π -periodic in t . We similarly
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find

P (O,O) = 1
4 [1 + J0(2D)] (34)

and

P (E,O) = P (O,E) = 1
4 [1 − J0(2D)]. (35)

Note that P (E,E) and P (O,O) never vanish, whereas
P (E,O) and P (O,E) vanish whenever D = 0, which occurs
whenever a = b and α − β = π . Because of the average
over ϕ, the interference pattern differs from the traditional
sine-squared function.

D. Maximal violation of the CHSH inequality

The main result of our experiment consists of an estimation
of the CHSH expression

S = E(A0B0) + E(A0B1) + E(A1B0) − E(A1B1), (36)

where Ai ≡ (ai,αi) and Bj ≡ (bj ,βj ) denote choices of
modulation amplitudes and phases,

E(AiBj ) = Pij (E,E) − Pij (E,O) − Pij (O,E) + Pij (O,O),

(37)

and, e.g., Pij (E,E) is the probability of detecting two photons
of even parity following modulation with the parameters Ai

and Bj . Using Eqs. (32), (34), and (35), the CHSH correlator
is given by

S = J0(2D00) + J0(2D01) + J0(2D10) − J0(2D11) (38)

with

D 2
ij = a 2

i + b 2
j + 2aibj cos(αi − βj ). (39)

Following reasoning similar to that in Ref. [15], we find
that S is maximized by choosing modulation amplitudes
and phases in such a way that D00 = D01 = D10 = D11/3.
This is achieved with phases given by α0 = β0 = γ and
α1 = β1 = γ + π for some γ , and modulation amplitudes
satisfying a0 = b0 = c and a1 = b1 = 3c. We take, for c, the
value that maximizes

S(c) = 3J0(4c) − J0(12c), (40)

which is readily found numerically. The optimal modulation
amplitudes are found this way to be a0 = b0 = 0.2318 and
a1 = b1 = 0.6955. With these parameters, the CHSH correla-
tor attains a maximal theoretical value of S = 2.566, thereby
demonstrating that even though the interference is not perfect,
a significant violation of the CHSH inequality is possible in
this experiment.

IV. EXPERIMENTAL SETUP

The details of our experimental setup are depicted in Fig. 3.
It is composed of commercially available fiber-pigtailed and
opto-electronic components and operates in the telecommuni-
cation C band.

A continuous laser (Sacher) with power P ≈ 0.7 mW
and stabilized wavelength λp = 776.1617 nm pumps a pe-
riodically poled lithium niobate waveguide (HC Photonics),

generating the frequency-entangled state

|�〉 =
∫

dω f (ω)|ω0 + ω〉|ω0 − ω〉, (41)

where ω0/2π = c/2λp = 193.125 THz and f (ω) character-
izes the two-photon bandwidth (approximately 5 THz). In what
follows, we relate frequencies to the International Telecommu-
nication Union Dense Wavelength Division Multiplexing grid
in the C band: Multiples of 50 GHz are said to be on the 50 grid,
multiples of 25 GHz are on the 25 grid, and other frequencies
are off the grid.

In order to create a nice frequency comb, the photons
pass through a 12.5–25 frequency interleaver (Optoplex). The
photons whose frequencies belong to few-GHz-wide intervals
centered on the 25 grid are collected at the output, while those
centered on intervals with a 12.5 GHz offset are thrown away
with more than 25 dB extinction. The reason for using this first
filter is explained in the caption of Fig. 2, where the transmis-
sion spectra of all filters used in the experiment are shown.

The state at the output of this periodic filter can be written
as in Eq. (5):

|�〉 =
∑
n∈Z

fn|n〉| − n〉 ⊗
∫ �/2

−�/2
dω h(ω)|ω〉|−ω〉, (42)

where � = 25 GHz and h(ω) is a function that represents
the effect of the 12.5–25 frequency interleaver (it is maximal
around ω = 0 and tends rapidly to zero). The pump is rejected
with more than 100 dB extinction when taking into account all
filters preceding detection.

Photons then pass through a programmable filter (Wave-
Shaper from Finisar), which is configured to direct photons
from bins n = +(resp. −)1,2,3,4,5,6 to Alice (resp. Bob).
Thus we obtain the state

|�〉 = 1√
6

6∑
n=1

|n〉| − n〉 ⊗
∫ �/2

−�/2
dω h(ω)|ω〉|−ω〉, (43)

where we omit the factors fn on such a reduced bandwidth. The
restriction to only 6 frequency bins is realized so that dispersion
can be neglected. Otherwise, photons in different frequency
bins accumulate different phase shifts during propagation
through the optical fibers that deteriorate the two-photon
interference pattern. The number of frequency bins could be
increased if dispersion compensation were implemented. Note
that limiting the number of frequency bins will decrease the
visibility of the interference pattern.

On each arm, a polarization controller followed by a
polarizer ensures that the polarization of the photons is
aligned with the axis of an electro-optic phase modulator
(EOspace) driven by an adjustable 25-GHz radio-frequency
signal. The radio-frequency architecture shown in the inset
of Fig. 3 allows the phase modulation of each photon by
radio-frequency signals a cos(�t − α), b cos(�t − β) with
independently adjustable amplitude a,b and phase α,β.

Finally, the photons are directed to a 25–50 frequency
interleaver. One output collects photons belonging to the 50
grid, i.e., frequency bins with n odd (result O), while the other
collects photons remaining from the 25 grid, i.e., frequency
bins with n even (result E).
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FIG. 3. (Color online) Experimental setup. Continuous red (gray) links are optical fibers and dashed blue (gray) links are electronic
connections. A pump laser whose power P and wavelength λ are continuously monitored is directed through a periodically poled lithium
niobate waveguide (PPLN). (Upper right: measurements of P and λ during the experiment; although P fluctuates, a retroaction loop acting on
the piezoelectric element of the external cavity diode laser ensures that λ is constant.) Generated photon pairs pass through a 12.5- to 25-GHz
interleaver (IL12.5−25) and a programmable filter (WS) which separates signal and idler photons, respectively, sent to Alice and Bob. On each
arm, photons pass through a fiber polarization controller (FPC), a polarizer (pol), and an electro-optic phase modulator (EOPM) driven by
a radio-frequency (rf) signal. (Upper left: schematic of the rf circuit. rf signals are generated by a 25-GHz rf generator whose power is split
between Alice and Bob. On each arm, a variable phase shifter, an amplifier, and a variable attenuator ensure the precise adjustment of phase
α,β and amplitude a,b, this last quantity being measured by a powermeter at the 10% output of a directional coupler placed before the EOPM.
Isolators in the circuit (not shown) ensure that unwanted reflections do not distort the values of a,b,α,β.) After a 25- to 50-GHz interleaver
(IL25−50), single-photon detectors (det) record even (E) and odd (O) results. A data acquisition system (DAQ) registers detection coincidences
and outputs histograms of these events. The DAQ is triggered by the arrival of a photon in one of Alice’s detectors (start signal). The DAQ then
records the exact time of arrival τ

A,B
E,O of photons coming from Alice’s and Bob’s detectors. (Bottom: typical results when no phase modulation

is applied: one observes only EE and OO coincidences; with phase modulation, EO and OE coincidences would appear due to two-photon
interference in the frequency domain.)

Four single-photon detectors (avalanche photodiodes id200
and id201 from idQuantique, efficiency 10%, repetition rate
100 kHz, gate width 100 ns, dark-count rates 0.2–0.6 kHz)
allow the simultaneous acquisition of EE, EO, OE, and OO
coincidences by a data acquisition system (Agilent Acqiris).
Triggered by a detection on Alice’s side, it registers the relative
times between detections and outputs histograms of these
events.

V. EXPERIMENTAL RESULTS

Histograms at the bottom of Fig. 3 correspond to coinci-
dences in 0.5-ns steps measured during half an hour when no
phase modulation was applied. One can see that only EE and
OO coincidences are present, as expected by Eq. (43). We note
that it is possible to change the correlations by changing the
wavelength of the pump: e.g., when λp = 776.1115 nm, we
measure inverted correlations.

Coincidences are measured at a rate of ≈1.5 Hz and with
a coincidence-to-accidental ratio of ≈2. These low values are
due to the high losses from pair creation to detection (≈18 dB

for each channel), and to the gated operation and high dark-
count rates of the detectors used.

The experimental measurements, some of which are shown
and discussed in Fig. 4, are in good agreement with the
theoretical predictions, Eqs. (32), (34), and (35). When
a = b, the probabilities P (E,O) and P (O,E) should vanish
when the phase difference α − β is scanned, which enables
one to define the visibility of the interference fringes as
V = (Nmax − Nmin)/(Nmax + Nmin), where Nmax,min are the
net (dark counts subtracted) maximum and minimum number
of counts per unit time. For the value a = b = 0.6955 used
in the figure, we measure V = 90% and V = 80% depending
on which combination, EO or OE, is considered. This limited
visibility is attributed to nonideal state preparation: limited
bandwidth and dispersion.

Finally, we demonstrate experimental violation of the
CHSH Bell inequality Eq. (36). Experimentally, we evaluate

Cij = N−
ij

N+
ij

, (44)
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FIG. 4. (Color online) Two-dimensional two-photon interfer-
ence patterns. Parameters are: a = b = 0.6955, and α is changed with
β kept constant. Curves are theoretical predictions for coincidence
probabilities P (E,E), P (E,O), P (O,E), and P (O,O); see Eqs. (32),
(34), and (35). Symbols are experimental results: They correspond to
the number of coincidences N (E,E), N (E,O), N (O,E), and N (O,O)
simultaneously registered for each combination of outputs. Note
that a normalization based on the coincidence rates registered when
modulation is off is realized; error bars are statistical; background
noise of the histograms has been subtracted. The net interference
visibility (calculated on curves that should cancel) is evaluated to be
(85 ± 5)%, depending on the combination considered.

with

N±
ij ≡ N (E,E | Ai,Bj ) + N (O,O | Ai,Bj )

± [N (E,O | Ai,Bj ) + N (O,E | Ai,Bj )], (45)

from the number of coincidences N (E,E), N (E,O), N (O,E),
and N (O,O) simultaneously registered for each combination
of outputs, with parameters Ai and Bj deterministically and
sequentially selected.

Our results are shown in Table I. One can see that the CHSH
inequality is violated by more than 40 standard deviations.
Although noise is subtracted, the theoretical optimum is
not attained due to other experimental imperfections, mainly
limited visibility.

TABLE I. CHSH Bell inequality violation. The first column
corresponds to the optimal settings, Ai = (ai,αi), Bj = (bj ,βj ),
i,j = 0,1, computed in Sec. III D. Second and third columns are
theoretical predictions and experimental results, respectively.

Theory Experiment

A0,B0 0.796 0.764 ± 0.002
A0,B1 0.796 0.698 ± 0.002
A1,B0 0.796 0.714 ± 0.002
A1,B1 −0.178 −0.158 ± 0.002
S 2.566 2.334 ± 0.008

VI. CONCLUSION

In summary, we have demonstrated by two-photon in-
terference and Bell inequality violation the manipulation of
effective frequency qubits directly in the frequency domain at
telecommunication wavelengths using standard telecommuni-
cation components. This further demonstrates the potential
of frequency entanglement: One has the choice to exploit
high-dimensional entanglement as in Refs. [14,15] or to
manipulate more conventional two-dimensional entanglement,
on which most quantum information protocols are based.

The reported experiment could be further improved. The
coincidence rate, coincidence-to-accidental ratio, and inter-
ference visibility could be enhanced by the use of supercon-
ducting detectors. Using a designated filtering line and/or a
source based on a resonator which would directly produce a
frequency comb of the form Eq. (42) would limit losses and
enhance purity of the quantum state. The full bandwidth of
the two-photon state could be exploited provided dispersion
management is realized. These improvements would bring the
method demonstrated here closer to practical applications.
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