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In this work, we revisit the problem of finding an admissible region of fidelities obtained after the application
of an arbitrary 1 → N universal quantum cloner which has been recently solved in A. Kay et al. [Quant. Inf.
Comput 13, 880 (2013)] from the side of cloning machines. Using group-theory formalism, we show that the
allowed region for fidelities can be alternatively expressed in terms of overlaps of pure states with recently found
irreducible representations of the commutant U ⊗ U ⊗ · · · ⊗ U ⊗ U ∗, which gives the characterization of the
allowed region where states being cloned are a figure of merit. Additionally, it is sufficient to take pure states
with real coefficients only, which makes calculations simpler. To obtain the allowed region, we make a convex
hull of possible ranges of fidelities related to a given irrep. Subsequently, two cases, 1 → 2 and 1 → 3 cloners,
are studied for different dimensions of states as illustrative examples.
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I. INTRODUCTION

A basic feature of entanglement is that contrary to classical
correlations, it is monogamous. For example, if there is
maximal entanglement between two parties, then no other
party can be entangled with those parties. More generally,
if A is entangled with B and C, then the entanglement must
be considerably weaker. This phenomenon gives rise to the
fact that quantum information cannot be copied, in contrast to
information from the “classical world.” In other words, one is
not able to copy perfectly an arbitrary quantum state. In terms
of monogamy, if one wants to prepare some number of copies
of the initially unknown quantum state, the fidelities of cloning
cannot all be equal to 1; there is a trade-off. This basic feature
is known as the “no-cloning theorem” and was recognized by
Wootters and Żurek [1] and Dieks [2].

On the other hand, copying is possible, but the quality of
the copy can be very bad sometimes. That is why the goal of
finding the ultimate bounds for the quality of copying is an
important task. A big effort has been made to solve it, starting
from the work of Hillery and Bužek [3]. In general, the subject
was studied intensively, both for symmetric (all fidelities are
equal) universal quantum cloning machines (UQCM) [4–8]
and asymmetric (unequal fidelities) UQCM [8–16]. See also
[17,18] for reviews. Nevertheless, for a long time there was a
“gap” in studies of quantum cloning: there were no general
results on an admissible region of fidelities for universal
asymmetric 1 → N quantum cloning machines. The problem
has been solved just recently in a series of papers [14,15] from
the point of view of cloning machines. In [19] the problem
for qubits has been revisited using a group-representation
approach, namely, Schur-Weyl duality, where the authors
characterized the problem from the side of a cloned state and
obtained that regions for fidelities can be obtained from plain
and basic calculations of overlaps of pure quantum states with
irreps of a symmetric group S(n).

In this paper, we shall consider a 1 → N quantum cloning
machine for qudits. Our task it to obtain an admissible region
of fidelities after an application of that UQCM. In [19], it
has been shown that it is possible to solve the problem for

qubits using Schur-Weyl duality. Unfortunately, it works only
for that dimension of states, and there is no way to extend
it to higher dimensions by using that dualism. Motivated by
this, we turn our attention to a recently developed systematic
method, decomposition of a partially transposed permutation
operator into its irreducible components [20,21], which allows
us to omit severe restrictions for the dimensions of states that
has appeared previously. However, some modifications are
necessary first so that the method suits our problem of cloning
machines.

This work is organized as follows. In Sec. II, we formulate
our main problem: which values of fidelities are allowed after
applying a 1 → N quantum cloning machine for qudits. First,
we reformulate the cloning problem in terms of entanglement
sharing and recall that cloning fidelity can be connected
with a singlet fraction value. Then, we point out that the
strategy used in [19] to solve a 1 → N UQCM for qubits
is insufficient when one deals with higher dimensions of states
d (d > 2) since using Schur-Weyl duality, one is not able
to find a maximally entangled state that is invariant under
U ⊗ U transformations; the only thing that is known is the
invariance under U ∗ ⊗ U transformations. That is why the
commutant structure of U ∗ ⊗ U ⊗ · · · ⊗ U is needed instead
of that known from Schur-Weyl duality: U ⊗ U ⊗ · · · ⊗ U .
In Sec. II B, mathematical tools from [20] that are necessary
to solve the problem are very briefly mentioned, namely,
examples of irreducible representations that are needed in our
case study problems: 1 → 2 and 1 → 3 UQCM. Then, we
proceed in Sec. II C to show how to connect the method of
calculations of the admissible region of fidelities from [19]
with mathematical tools from the previous section. It allows
us to present in Sec. II D the regions (focusing mainly on our
examples of 1 → 2 and 1 → 3 machines) that are allowed
in the problem of 1 → N cloning. Finally, we compare our
results in Sec. II E with those obtained in [6], where results for
symmetric cloning has been presented, and those from [14,15],
where the same problem as ours has been solved but cloning
machines were figures of merit. We obtain matching of results
in both cases.
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II. FORMULATION AND SOLUTION TO THE PROBLEM

A. Background of the problem

Suppose that one has a universal cloning machine that
produces clones with cloning fidelities f1k , where k ∈ 2,3 . . . n

and the general admissible region of fidelities is the figure of
merit. The question that one can ask is the following: Which
values of cloning fidelities (f12,f13 . . . f1n) are allowed for
a (qudit) universal cloning machine? Keeping in mind that
quantum cloning can be recast in a picture where one wants
to share entanglement between some number of parties (see,
for example, [19,22]), we can equivalently state our problems
in this formalism, where one evaluates singlet fractions F1i

between the initial state and one of the copies. This allows us
to restate our question as follows: Which values of n-tuples of
singlet fractions (F12,F13 . . . F1n) are allowed for an arbitrary
state of a maximally mixed first subsystem?

Remark 1. Since these two quantities, cloning fidelities and
singlet fractions, are connected [22], in the next section we
will adapt the term “fidelities” for the latter.

Let us now consider in more detail the relation between
cloning fidelities f and the fidelities (singlet fractions) F .

Suppose that we are given the maximally entangled qudit
state

|ψ+〉 = 1√
d

d∑
i=1

|ii〉, (1)

and we apply the 1 → N cloning machine CM to the second
subsystem of |ψ+〉 when the first is untouched.1 As a result
we obtain an (N + 1)-partite mixed state that possesses all the
information about the cloning map �̃. The state is of the form

ρ1...n = (1⊗�̃)(|ψ+〉〈ψ+|), (2)

where n = N + 1, so that the index i = 1 is related to an initial
state and i = 2, . . . N + 1 are related to clones. The fidelities
of clones are strictly related to the fidelities of reduced states
ρ1k with the maximally entangled state [22]:

fi = Fid + 1

d + 1
. (3)

Here fi = 〈ψin|ρi
out|ψin〉 is the fidelity of ith clone, where

〈· · · 〉 is the uniform average over an input state ψin, and Fi =
〈ψ+|ρ1,i |ψ+〉.

An allowed region for quantum cloning can then be
calculated by evaluating singlet fractions F1i between the
initial state and one of the copies, denoted by

F1i =〈ψ+
1i | Tr1i(ρ1...n)|ψ+

1i 〉 or F1i =〈ψ−
1i | Tr1i(ρ̃1...n)|ψ−

1i 〉,
(4)

where 1 < i � n, Tr1i means the partial trace over all systems
except 1i, and |ψ−

1i 〉 and ρ̃1...n are defined below.
Let us show here why we have been able to use Schur-

Weyl duality and the commutant structure of U⊗n for qubit
cloning machines [19] and explain why it does not work for

1The 1 → N cloning machine is described by a completely positive,
trace-preserving map �̃.

higher dimensions of states (d > 2). For qudits, in principle,
the vector |ψ−

1i 〉 = U ⊗ 1|ψ+
1̃1

〉, |ψ−〉 needs to be obtained
after an application of U . For qubits, one can use Bell states
|ψ+〉 = 1√

2
(|00〉 + |11〉) and |ψ−〉 = 1√

2
(|01〉 − |10〉) and can

show that the vector |ψ−〉 is obtained after the action of the
Pauli matrix −iσy on |ψ+〉. Using that, we can write

|ψ−
1̃1

〉 = U ⊗ 1|ψ+
1̃1

〉, (5)

where U = −iσy . State ρ̃1234 from Eq. (4) is obtained after the
following transformation:

ρ̃1...n = (1⊗�̃)|ψ−
1̃1

〉〈ψ−
1̃1

|
= (U ⊗ 1)[(1⊗�̃)|ψ+

1̃1
〉〈ψ+

1̃1
|](U ⊗ 1)†. (6)

The n-partite states ρ̃1...n, with the constraint ρ̃1 = 1/2, are in
one-to-one correspondence with cloning machines.

However, now the problem is formulated in terms of singlet
fractions with states |ψ−〉 rather than |ψ+〉. The former states
are invariant under the U ⊗ U transformation for any U .
Therefore to obtain the region of fidelities with |ψ−〉 states
it is enough to consider states ρ1...n that are invariant under
U⊗n transformations. There exists a well-known formalism
that allows us to deal with states possessing such symmetry,
called Schur-Weyl duality, that combines representation theory
for a unitary group with that of a group of permutations. We
have successfully applied this formalism in [19]. However,
in dimensions d > 2 there is no maximally entangled state,
which would be U ⊗ U invariant. Therefore the Schur-Weyl
formalism cannot be used.

Instead, it is known that the state |ψ+〉 is U ∗ ⊗ U invariant
[23]; hence we should consider U ∗ ⊗ U⊗n−1 invariant states.
The formalism related to this kind of symmetry is not as well
developed as the previous one, and there are quite basic differ-
ences between the two. In particular, while the representation
of U⊗n is dual to the representation of another group, the
symmetric group, that is not the case for U ∗ ⊗ U⊗n−1, which
is dual to the representation of an algebra that does not satisfy
group axioms, an instance of the so-called Brauer algebra.
While some general results concerning this type of algebra
have been given in the literature (see, for example, [24–26]), it
has not been described in depth, in contrast to the Schur-Weyl
theory. In particular, the explicit form of matrix elements of
representations of the algebra have been provided recently
in [20,21]. In the following we solve the cloning problem
applying these new tools.

B. Mathematical tools

As stated before, to solve our problem, the knowledge
of irreducible representations of a U ∗ ⊗ U ⊗ · · · ⊗ U case
is necessary. In recent papers [20,21] this problem has been
addressed, so we can use the formalism presented there.2

In Refs. [20,21], the authors presented irreducible represen-
tations of partially transposed permutation operators Vtn (σ ),
where σ ∈ S(n) and tn denotes partial transposition over the
last subsystem. In our approach, we need similar results
for irreps when partial transposition is taken over the first

2See also Sec. A1 for a short review of this topic.
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subsystem, i.e., we need irreps of Vt1 (1k), where 1 � k � n

for U ∗ ⊗ U ⊗ · · · ⊗ U instead of U ⊗ · · · ⊗ U ⊗ U ∗. That is
why, first, some work needs to be done to adapt the results so
they suit our problem. One can see that to obtain the correct
results, we have to take irreps for permutations in the form (in),
where 1 � i � n − 1, i.e., we have the following mapping:

(12) 	→ (1n), (13) 	→ (2n) . . . (1n) 	→ (n − 1n). (7)

In the next sections, for simplicity, we introduce the notation
that tn ≡ ′. Now we are ready to present all irreps that are
essential for our paper (case study examples). Of course our
method works efficiently for an arbitrary number of particles
n and dimensions of Hilbert space d, but here we present
them only for n = 3,4 because for these cases we are able to
represent our results graphically.

(i) In the case when n = 3, in algebra M we have only one
irrep labeled by trivial partition α = (1).

V ′
α(13) = 1

2

(
d + 1 −√

d2 − 1

−√
d2 − 1 d − 1

)
,

(8)

V ′
α(23) = 1

2

(
d + 1

√
d2 − 1√

d2 − 1 d − 1

)
.

(ii) In the case when n = 4, in algebraMwe have two irreps
labeled by partitions α1 = (2) and α2 = (1,1). For partition α1

we deal with 3 × 3 matrices for any d � 1:

V ′
α1

(14) = 1

3
Dα1

⎛⎜⎜⎝
1
6

−1
2
√

3
1

3
√

2
−1

2
√

3
1
2

−1√
6

1
3
√

2
−1√

6
1
3

⎞⎟⎟⎠ Dα1 ,

V ′
α1

(24) = 1

3
Dα1

⎛⎜⎜⎝
1
6

1
2
√

3
1

3
√

2
1

2
√

3
1
2

1√
6

1
3
√

2
1√
6

1
3

⎞⎟⎟⎠ Dα1 , (9)

V ′
α1

(34) = 1

3
Dα1

⎛⎜⎝
2
3 0 −2

3
√

2

0 0 0
−2

3
√

2
0 1

3

⎞⎟⎠ Dα1 ,

where

Dα1 =

⎛⎜⎝
√

d − 1 0 0

0
√

d − 1 0

0 0
√

d + 2

⎞⎟⎠ (10)

and ε2 = 1. For partition α2 the situation is more complicated.
The dimension of irrep α2 depends on the dimension of the
local Hilbert space d. Namely, for any d � 3 we have

V ′
α2

(14) = 1

3
Dα2

⎛⎜⎜⎝
1
2

−1
2
√

3
−1√

6
−1

2
√

3
1
6

1
3
√

2
−1√

6
1

3
√

2
1
3

⎞⎟⎟⎠ Dα2 ,

V ′
α2

(24) = 1

3
Dα2

⎛⎜⎜⎝
1
2

1
2
√

3
1√
6

1
2
√

3
1
6

1
3
√

2
1√
6

1
3
√

2
1
3

⎞⎟⎟⎠ Dα2 ,

V ′
α2

(34) = 1

3
Dα2

⎛⎜⎜⎝
0 0 0

0 2
3

−√
2

3

0 −√
2

3
1
3

⎞⎟⎟⎠ Dα2 , (11)

where

Dα2 =
⎛⎝√

d + 1 0 0
0

√
d + 1 0

0 0
√

d − 2

⎞⎠ . (12)

For every d < 3 (in our case only d = 2 is interesting) we deal
with 2 × 2 matrices:

V ′
α2

(14) = 3

(
1
2

−1
2
√

3
−1

2
√

3
1
6

)
,

V ′
α2

(24) = 3

(
1
2

1
2
√

3
1

2
√

3
1
6

)
, (13)

V ′
α2

(34) = 3

(
0 0

0 2
3

)
.

The full knowledge of irreps of V′(σab), where σab ∈ S(n)
(see Notation 1 in Sec. A1), allows us to decompose these
operators and density operators ρ1...n, which are U ∗ ⊗ U ⊗
· · · ⊗ U invariant, into block diagonal form:

V′(σab) =
⊕

α

1r(α) ⊗ V ′
α(σab), ρ1...n =

⊕
α

1r(α) ⊗ ρ̃α,

(14)

where the direct sum runs over all inequivalent irreps α, r(α)
denotes the dimension of irrep α, and ρ̃α is a representation of
operator ρ1...n on irrep α. In the next paragraph we present how
to use the decomposition from formula (14) and the explicit
matrix form of irreps of V′(σab) to calculate fidelities.

C. Method of calculations

Since, in principle, calculation techniques are similar to
those from [19], in most cases, proofs are skipped, and unless
specified otherwise, we refer to the above-mentioned work for
them.

In this section we provide a general formula for an allowed
region of N -tuples of fidelities in terms of overlaps of
pure states with irreducible representations from the previous
section. This is contained in Theorem 1.

Lemma 1. Fidelity F1k as defined in (4) is of the form

F1k =
∑

α

F α
1k, (15)

where

Fα
1k = 1

d
Tr[ραV ′

α(k − 1n)], (16)

the index (k − 1n) means a permutation that swaps k − 1 and
n, and ρα’s are arbitrary normalized states on partition α.

Again, from Refs. [20,21] we know that the algebra of
partially transposed permutation operators A′

n(d) splits into
the sum of two ideals, i.e., we have A′

n(d) = M ⊕ N . In
Lemma 1 we derived formulas for fidelities for elements in
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ideal M; now we give similar formulas for elements in ideal
N . Physically, this means that we are looking for fidelities
between a maximally entangled state and some product state
between the input state and clones.

Fact 1. Fidelity FN
1k between state |ψ1k〉 and a product state

ρ1k = 1
d

Tr1k (11 ⊗ ρ2...n) is equal to 1/d.3

Now we are in a position to formulate the main theorem of
this section:

Theorem 1. The set F of admissible vectors of fidelities
{F12 . . . F1n} is of the form

F = conv

(⋃
α

Fα

)
, (17)

where conv stands for a convex hull, the union runs over all
irreps, and

Fα = {(
Fα

12 . . . F α
1n

)
: |ψ〉 ∈ Cdα

}
, (18)

where Fα
1k are of the form Fα

1k = 1
d
〈ψ |V ′

α(k − 1n)|ψ〉 and
where |ψ〉 is a pure state.

Let us note that to determine the allowed region of fidelities,
it is enough to consider only vectors of real coefficients.

Lemma 2. To generate a convex hull of the allowed region
of fidelities, it is sufficient to consider pure states of real
coefficients only.

D. Main result

In this section we present our results for two particular
cases, 1 → 2 and 1 → 3 universal quantum cloners.

Let us start with noting that to obtain a general answer to our
question from Sec. II, we need to have a mixture of all fidelities
connected with our irreps:

∑
α pαFα

1N . This implies that a
convex hull is needed. In Figs. 1 and 2 we show plots for N =
2,3 and different dimensions d before taking the convex hull,
so one can see a contribution from each irrep. Then, we take one
particular case, namely, 1 → N UQCM and d = 3, and present
the convex hull for it that reproduces the allowed region for
fidelities (Fig. 3). All plots are obtained using Mathematica

software.
Remark 2. Because of the properties of the cloning map �̃

(see Sec. II) all possible convex mixtures of the partitions
produce a correct quantum cloner, i.e., a trace-preserving
completely positive map.

E. Comparison with other methods

First of all, let us notice that our method gives the correct
results (according to Werner’s formula [6]) in the case of
symmetric cloning (see [19] for a possible technique for
checking that). What is more, the regions of fidelities obtained
for d = 2 (qubits) match those obtained using Schur-Weyl
duality [19]. Last but not least, our method seems to correctly
reproduce results obtained in [15], where the solution to the
1 → N universal asymmetric qudit cloning problem for which
the exact trade-off in the fidelities of the clones for every N

3By Tr1k we denote the partial trace over all subsystems except the
first and kth.

FIG. 1. Allowed regions of fidelities for 1 → 2 UQCM. Views
for various dimensions d of the Hilbert space are presented: thin
gray line and black point, d = 2; thin dashed grey line and square,
d = 3; thick line and diamond, d = 4; thick dashed line and triangle,
d = 5. One can see that for d → ∞ the ellipse is squeezed to the line
F13 = −F12 + 1 and coordinates of the point obtained from part N
go to zero.

and d has been derived. The authors obtained their result using
various tools, such as the Choi-Jamiołkowski isomorphism
[27,28] and some variance of the Lieb-Mattis theorem [29,30].
The crucial part of their proof is the observation that the cloning
problem can be mapped to some Heisenberg Hamiltonian on
a star. Comparing their technique with ours, one can observe
that they solve the problem from the side of the cloning map
�̃, whereas we attack it from the side of the n-party quantum
state [see Eqs. (2) and (6)].

III. CONCLUSIONS

We have shown that using a more general version of Schur-
Weyl duality, the action of the universal 1 → N quantum
cloning machine can be described, allowing us to obtain
the admissible general region for fidelities. Contrary to other
known methods, in our method, quantum states are figures
of merit. The method exploits decomposition of (usually big)
Hilbert space into blocks of smaller dimensions which, of
course, are easier to deal with. Fidelity expressions are then
quite easy to obtain; one only needs to know representations
of all possible irreps for a given case. Another advantage is
that one can consider real pure states in each of the blocks only
when generating convex hulls to obtain an allowed region for
fidelities.

Let us now briefly discuss the results. First of all, suppose
that we choose some point that lays outside of the allowed
convex hull. Then a quantum state that would correspond to
that point does not exist. On the other hand, whenever we
choose points from the convex hull (from inside or from the
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FIG. 2. (Color online) Allowed regions of fidelities for 1 → 3 UQCM. Views for various dimensions d of the Hilbert space and all allowed
irreps are presented. From the top: d = 2, d = 3, and d = 10. One can see that for d = 2 we match results from [19], and this is the only case
where irreps from M are two-dimensional (in this case we have an ellipse). For higher dimensions d → ∞ all regions obtained from part M
are squeezed, and coordinates of points from part N go to zero.
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FIG. 3. (Color online) Convex hull for 1 → 3 of UQCM and d = 3.

edge), we are able to derive a family of quantum states for
which fidelities are fixed and have values determined by the
chosen point. Apart from the above-mentioned reconstruction
of states from the convex hull, we can try to find, for example,
all allowed quantum states which satisfy some required
condition for relations between fidelities F1k . For example,
for 1 → 3 universal cloning machines we can demand the
following constraint:

F12 + F13 = 2F14, (19)

where we take maximization over F12. Such a reconstruction
was presented in our previous paper regarding the admissible
region of fidelities for the qubit case [19]. Finally, having these
states, we can reconstruct a cloning machine which returns
clones with fidelities fi , corresponding to fidelities F1i given
by the chosen point.

We also have an interesting interpretation of the bottommost
part of our plots as optimal anticlones. First of all, one can
notice that our convex hulls are invariant with respect to
rotations around the straight line F12 = F13 = F14 by the
angle β = 2π/3 in the case 1 → 3 UQCM, and they are
symmetric with respect to the straight line F12 = F13 in the
case 1 → 2 UQCM. The bottommost point is determined by
the intersection between the symmetry line and convex hull,
and it corresponds to a minimum value of fidelities which are
equal in these cases.

In the future, it would be interesting to obtain optimal clones
starting from our method. Numerically, it is not that hard; one
just needs to add a cut to the general region to end with the
optimal region of fidelities. Analytically, the answer does not
seem to be so trivial, but we still hope that the employed group-
theoretic techniques are interesting and may provide some
new insight into the inner structure of the optimal universal
asymmetric quantum cloners.

Finally, let us note that to solve a M → N (M < N , M +
N = n) cloning problem, one needs to possess a knowledge of

the commutant structure of a U⊗N ⊗ (U ∗)⊗M transformation,
where one has M conjugate elements U ∗ and N elements U

[20,21].
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APPENDIX

1. Algebra of partially transposed permutation operators

Here we present a short summary of Ref. [21] which is
crucial for the construction of our results. For the reader’s
convenience we keep here the original notation. It appears
that the structure irreducible representations of the algebra
A′

n(d) are closely related to the structure of the representation
indS(n−1)

S(n−2)(ϕ
α) of the group S(n − 1) induced by irreducible

representations ϕα of the group S(n − 2) and the properties of
irreducible representations of A′

n(d) depend strongly on the
relation between d and n. Before presenting the main ideas
of this appendix we have to describe briefly some objects
appearing in the structure of the algebra A′

n(d), in particular
the properties of the induced representation indS(n−1)

S(n−2)(ϕ
α).

The irreducible representations of the group S(n − 2) are
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characterized by the partitions α = (α1, . . . ,αk) of n − 2,

which describe also the corresponding Young diagram Y (α).
The representation indS(n−1)

S(n−2)(ϕ
α) is completely and simply

reducible, i.e., we have the following proposition [31].
Proposition 1.

indS(n−1)
S(n−2)(ϕ

α) =
⊕

ν

ψν, (A1)

where the sum is over all partitions ν = (ν1, . . . ,νk) of n − 1,

such that their Young diagrams Y (ν) are obtained from Y (α)
by adding, in a proper way, one box.

Definition 1 [32]. Let ϕ : H → M(n,C) be a matrix
representation of a subgroup H of the group G. Then the
matrix form of the induced representation π = indG

H (ϕ) of a
group G induced by an irrep ϕ of the subgroup H ⊂ G has
the following block matrix form:

∀ g ∈ G π
bj

ai (g) = ϕ̂ij

(
g−1

a ggb

)
,

where ga, a = 1, . . . ,[G : H ] are representatives of the left
cosets G/H and

ϕ̂ij

(
g−1

a ggb

) =
{
ϕij

(
g−1

a ggb

)
if g−1

a ggb ∈ H ,
0 if g−1

a ggb /∈ H.

Before we discuss the main considerations for the appendix
let us introduce some notation.

Notation 1. Any permutation σ ∈ S(n) defines, in a natural
and unique way, two natural numbers a,b ∈ {1,2, . . . ,n},

n = σ (a), b = σ (n).

Thus we may characterize any permutation by these two
numbers in the following way:

σ ≡ σ(a,b) ≡ σab.

Note that, in general, a,b may be different except in the case
when one of them is equal to n because in this case we have

a = n ⇔ b = n.

When a = n = b, then σ (n) = n, and we will use the
abbreviation σ = σ(n,n) ≡ σn ∈ S(n − 1) ⊂ S(n).

From Proposition 1 and Definition 1 it follows that the
induced representation indS(n−1)

S(n−2)(ϕ
α) may be described in two

bases. The first one is the basis of the matrix form of the
induced representation of the form{

ea
i (α) : a = 1, . . . ,n − 1, i = 1, . . . , dim ϕα

}
, (A2)

where the index a = 1, . . . ,n − 1 describes the cosets S(n −
1)/S(n − 2) and the index i = 1, . . . , dim ϕα is the index of a
matrix form of ϕα. The second one is the basis of the reduced
form of indS(n−1)

S(n−2)(ϕ
α), which is of the form{

f ν
jν

: ψν ∈ indS(n−1)
S(n−2)(ϕ

α), jν = 1, . . . , dim ψν
}
. (A3)

The next important objects are the following matrices.
Definition 2. For any irreducible representation ϕα of the

group S(n − 2) we define the block matrix

Qd
n−1(α) ≡ Q(α) = (

dδabϕα
ij [(an − 1)(ab)(bn − 1)]

)
= (

Qab
ij (α)

)
, (A4)

where a,b = 1, . . . ,n − 1, i,j = 1, . . . , dim ϕα , and the
blocks of the matrix Q(α) are labeled by indices (a,b), whereas
the elements of the blocks are labeled by the indices of the
irreducible representation ϕα = (ϕα

ij ) of the group S(n − 2)
and Q(α) ∈ M((n − 1)wα,C).

The matrices Q(α) are Hermitian, and their structure and
properties are described in the [21], where it has been shown
that the eigenvalues λν of the matrix Q(α) are labeled by
the irreducible representations ψν ∈ indS(n−1)

S(n−2)(ϕ
α) and the

multiplicity of λν is equal to dim ψν . The essential for
properties (see, for e.g., Proposition 4) of the irreducible
representations of the algebra A′

n(d) is the fact that at most
one (up to the multiplicity) eigenvalue λν of the matrix Q(α)
may be equal to zero [20,21].

The structure of the algebra A′
n(d) is given in the following

theorem.
Theorem 2. The algebra A′

n(d) is a direct sum of two ideals,

A′
n(d) = M ⊕ N , (A5)

and the ideals M and N have different structures.
(a) The ideal M is of the form

M =
⊕

α

U (α), (A6)

where U (α) are ideals of the algebra A′
n(d) characterized by

the irreducible representations ϕα of the group S(n − 2), such
that ϕα ∈ Vd [S(n − 2)] and

U (α) = spanC
{
uab

ij (α) : a,b = 1, . . . ,n − 1,

i,j = 1, . . . ,wα
}
, (A7)

with

uab
ij (α)upq

kl (β) = δαβQ
bp

ik (α)uaq

il (α). (A8)

The ideals U (α) are matrix ideals such that

U (α) � M( rank Q(α),C); (A9)

in particular, when det Q(α) �= 0, we have

U (α) � M((n − 1) dim ϕα,C). (A10)

(b) The ideal N has the following structure:

N �
⊕

ν

M(dim ψν,C), (A11)

where the matrix ideals M(dim ψν,C) are generated by
irreducible representations ψν of the group S(n − 1) that are
included in the representation Vd [S(n − 1)], i.e., ψν are such
that d � h(ν).

The matrix ideals contained in the ideals M and N contain
all minimal left ideals, i.e., all irreducible representations
of the algebra A′

n(d). The next theorems describe all these
representations.

The structure of the irreducible representations of the
algebra A′

n(d), included in the ideal M, is completely
determined by irreducible representations ϕα of the group
S(n − 2); therefore we will denote them as �α

A.

Theorem 3. The irreducible representations �α
A of the

algebra A′
n(d) contained in the ideal U (α) ⊂ M (see Theorem

2) are indexed by the irreducible representations ϕα of the
group S(n − 2), such that ϕα ∈ Vd [S(n − 2)], and if {f ν

jν
:
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ψν ∈ indS(n−1)
S(n−2)(ϕ

α), jν = 1, . . . , dim ψν} is the reduced ba-

sis of the induced representation indS(n−1)
S(n−2)(ϕ

α), then the vectors
{f ν

jν
: λν �= 0} from the basis of the irreducible representation

of the algebra A′
n(d) and the natural generators of A′

n(d) act
on it in the following way:

V′(an)f ν
jν

(α) =
∑
ρ,jρ

∑
k

√
λρz

†(α)ρa

jρkz(α)aν
kjν

√
λνf

ρ

jρ
(α),

(A12)

where the summation is over ρ such that λρ �= 0. Due to
the condition ϕα ∈ Vd [S(n − 2)] the eigenvalues λν of Q(α)
are non-negative. The unitary matrix Z(α) = (z(α)aν

kjν
) has the

form (
z(α)aν

kjν

) = dim ψν√
Nν

jν
(n − 1)!

∑
σ∈S(n−1)

ψν
jνjν

(σ−1)δaσ (q)

×ϕα
kr [(an − 1)σ (qn − 1)], (A13)

with

Nν
jν

= dim ψν

(n − 1)!

∑
σ∈S(n−1)

ψν
jνjν

(σ−1)δqσ (q)

×ϕα
rr [(qn − 1)σ (qn − 1)], (A14)

where the indices q = 1, . . . ,n − 1,r = 1, . . . , dim ϕα are
fixed such that Nν

jν
> 0. For more details, see [21]. Whenever

σn ∈ S(n − 1), we have

V (σn)f ν
jν

(α) =
∑
ρ,jρ

ψν
iνjν

(σn)f ν
iν

(α). (A15)

In particular, when det Q(α) �= 0 (i.e., when all λν �= 0),
then the representation �α

A is the induced representation
indS(n−1)

S(n−2)(ϕ
α) (in the reduced form) for the subalgebra

Vd [S(n − 1)] ⊂ A′
n(d). In this case the dimension of the

irreducible representation is equal to

dim �α
A = (n − 1) dim ϕα = dim

[
indS(n−1)

S(n−2)(ϕ
α)

]
. (A16)

When det Q(α) = 0 (i.e., when one eigenvalue λθ of Q(α),
up to the multiplicity, is equal to zero), then the irreducible
representation of A′

n(d) is defined on a subspace {yν
jν

:

λν �= λθ } of the representation space indS(n−1)
S(n−2)(ϕ

α), and the
representation has a dimension equal to

dim �α
A = dimS(n−1)

S(n−2)(ϕ
α)] − dim ψθ = rank Q(α). (A17)

This case takes place when

d = i − αi − 1 (A18)

for some αi in the partition α = (α1, . . . ,αi, . . . ,αk) character-
izing the irreducible representation ϕα under the condition that
ν = (α1, . . . ,αi + 1, . . . ,αk) characterizes the representation
ψν of S(n − 1).

The ideal U (α) is a direct sum of dim �α
A of irreducible

representations �α
A.

In particular, matrices z(α)aν
kjν

diagonalize matrix Q(α)ab
kl ,

i.e., we have the following proposition.
Proposition 2.∑

ak

∑
bl

z†(α)ρa

jρkQ(α)ab
kl z(α)bμ

ljμ
= δρμδjρjμ

λμ, (A19)

and the columns of the matrix Z(α) = (z(α)aν
kjν

) are eigenvec-
tors of the matrix Q(α).

The formula for the eigenvalues λν of matrices Q(α) is
derived in [21].

Remark 3. Note that even if dim ϕα = 1, we have dim �α =
n − 1.

The matrix forms of these representations are the following.
Proposition 3. In the reduced matrix basis {f ν

jν : ν �= θ} of
the ideal U (α) the natural generators V(σab)tn and V(σn) of
A′

n(d) are represented by the following matrices:

[V ′
α(an)]ρν

jρjν
=

∑
k=1,..., dim ϕα

√
λρz

†(α)ρa

jρkz(α)aν
kjν

√
λν : ρ,ν �= θ,

(A20)

[Vα(σn)]ν
′ν

jν′ jν
= δν ′νψν

jν′ jν
(σn). (A21)

From the properties of the matrix Q(α) ([21]) one gets the
following proposition.

Proposition 4. If d > n − 2, then det Q(α) �= 0, and the
irreducible representations �α

A described in Theorem 3 are
the induced representation indS(n−1)

S(n−2)(ϕ
α) for the subalge-

bra Vd [S(n − 1)] ⊂ A′
n(d), so their dimension is equal to

(n − 1) dim ϕα. When d � n − 2, then for some ϕα it may
appear that det Q(α) = 0, and consequently, the irreducible
representation �α of A′

n(d) is defined on a subspace of the
irreducible representation indS(n−1)

S(n−2)(ϕ
α).

The representations of the algebra A′
n(d) included in the

ideal N are much simpler.
Theorem 4. Each irreducible representation ψν of the group

S(n − 1), which appears in the decomposition of the ideal N
given in Theorem 2 [i.e., ψν ∈ Vd [S(n − 1)] ⇔ d � h(ν)],
defines irreducible representations �ν of the algebra A′

n(d) in
the following way:

�ν(a) =
{

0 if a ∈ M,
ψν(σn) if a = σn ∈ S(n − 1). (A22)

So in this representation the noninvertible element of the ideal
M is represented trivially by zero, and therefore we call this
representation of the algebra A′

n(d) semitrivial. The matrix
forms of these representations are simply matrix forms of the
irreducible representations of the group algebraC[S(n − 1)] ⊂
A′

n(d) and zero matrices for the elements of the ideal M.
Corollary 1. All irreducible representations of the algebra

A′
n(d) of dimension 1 are included in the idealN . In particular,

because the irreducible identity representation ψ Id of S(n − 1)
is always contained in Vd [S(n − 1)], the algebra A′

n(d) has a
trivial representation in which the elements of the ideal M are
represented by zero and the elements Vd (σ ) : σ ∈ S(n − 1)
are represented by 1.

2. Auxiliary lemmas

After the short summary of [21] given in the previous
section we prove here the crucial lemma which says that
matrices z(α)aν

kjν
are unitary (real orthogonal), and then we

conclude that representation matrices in the reduced matrix
basis are Hermitian (symmetric). We start from the following
proposition.
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Proposition 5. Suppose that all representations ψν of S(n −
1) and ϕα of S(n − 2) are unitary (real orthogonal); then the
matrix

z(α)aν
kjν

= dim ψν√
Nν

jν
(n − 1)!

∑
σ∈S(n−1)

ψν
jνjν

(σ−1)δaσ (q)

×ϕα
kr [(an − 1)σ (qn − 1)], (A23)

where

Nν
jν

= dim ψν

(n − 1)!

∑
σ∈S(n−1)

ψν
jνjν

(σ−1)δqσ (q)

×ϕα
rr [(qn − 1)σ (qn − 1)] (A24)

is unitary (real orthogonal).
Proof. We will prove the orthogonal case, proving that∑

c,k

z(α)cμkjμ
z(α)cνkjν

= δμνδjμjν
. (A25)

Using the definition of the matrix z(α), we get that the left-hand
side of the above equation is equal to

dim ψν dim ψμ√
Nν

jν

√
N

μ

jμ
[(n − 1)!]2

∑
σ,ρ∈S(n−1)

∑
c,k

ψ
μ

jμjμ
(ρ−1)ψν

jνjν
(σ−1)δcρ(q)

× δcσ (q)ϕ
α
kr [(cn − 1)ρ(qn − 1)]ϕα

kr [(cn − 1)σ (qn − 1)]

= dim ψν dim ψμ√
Nν

jν

√
N

μ

jμ
[(n − 1)!]2

∑
σ,ρ∈S(n−1)

ψ
μ

jμjμ
(ρ−1)ψν

jνjν
(σ−1)

× δρ−1σ (q)qϕ
α
rr [ρ−1σ ]. (A26)

Substituting γ = ρ−1σ ∈ S(n − 2) ⊂ S(n − 1) (which fol-
lows from δρ−1σ (q)q), we get∑

c,k

z(α)cμkjμ
z(α)cνkjν

= dim ψν dim ψμ√
Nν

jν

√
N

μ

jμ
[(n − 1)!]2

∑
ρ∈S(n−1)γ∈S(n−2)

∑
kν

ψ
μ

jμjμ
(ρ−1)

×ψν
jνkν

(ρ)ψν
kνjν

(γ −1)δγ (q)qϕ
α
rr [γ ]. (A27)

Now using the orthogonality relations for the irreducible
representations ψν of S(n − 1), we obtain∑

c,k

z(α)cμkjμ
z(α)cνkjν

= dim ψν√
Nν

jν
(n − 1)!

∑
γ∈S(n−2)

δμνδjμjν
ψν

jνjν
(γ −1)δγ (q)qϕ

α
rr [γ ]

= δμνδjμjν
. (A28)

The proof for the unitary case is similar. �
Corollary 2. Suppose that all representations ψν of S(n − 1)

and ϕα of S(n − 2) are unitary (real orthogonal); then the
representation matrices [in the reduced matrix basis {f ν

jν : ν �=
θ} of the ideal U (α)]

[V ′
α(an)]ρν

jρjν
=

∑
k=1,..., dim ϕα

√
λρz

+(α)ρa

jρkz(α)aν
kjν

√
λν : ρ,ν �= θ

(A29)

are Hermitian (real symmetric). In the orthogonal case we
have replace Hermitian conjugation † in Eq. (A29) by normal
transposition T.

Indeed, unitarity (orthogonality) of matrices z(α)aν
kjν

from
Proposition 5 allows us to write z+(α)aν

kjν
= z(α)νa

jνk
. Now

writing explicitly matrix elements for [V ′
α(an)]ρν

jρjν
and

[V ′
α(an)]νρjνjρ

together with unitarity (orthogonality) properties
from Proposition 5, we obtain the statement of Corollary 2.

3. Proofs of the theorems from the main text

Proof of Lemma 1. From the definition of fidelity we can
write

F1k = 〈ψ1k|ρ1k|ψ1k〉 = Tr(ρ1k|ψ1k〉〈ψ1k|)
= 1

d
Tr[ρ1k V′(1k)], (A30)

where 1
d

V′(1k) = |ψ1k〉〈ψ1k|, ρ1k = Tr1k ρ1...n and Tr1k denote
the partial trace over all systems except 1 and k.

Now we can use the decomposition we mentioned in
Eq. (14) to represent V(1k) and ρ1...n:

V′(1k) =
⊕

α

1r(α) ⊗V ′
α(1k), ρ1...n =

⊕
α

1r(α) ⊗ρ̃α,

(A31)

where α runs over all partitions of n − 2. Inserting (A31) into
(A30), we have

F1k = 1

d

[(⊕
μ

1r(μ) ⊗ρ̃μ

)(⊕
α

1r(α) ⊗V ′
α(1k)

)]

= 1

d
Tr

(⊕
α

1r(α) ⊗ρ̃αV ′
α(1k)

)

= 1

d

∑
α

Tr[ραV ′
α(1k)] = 1

d

∑
λ

Tr[ραV ′
α(k − 1n)],

(A32)

where the last equality follows from Eq. (7). Now, one can see
that Eq. (A32) can be written as

F1k =
∑

α

F α
1k, (A33)

where Fα
1k = 1

d

∑
α Tr[ραV ′

α(k − 1n)], ρα = dαρ̃α , and dα

stands for the dimension of the irrep labeled by
partition α. �

Proof of Fact 1. The reader can prove this fact by direct
calculation. Namely, one has to compute the fidelity between
the state which is a product in the 1|2 . . . n cut and the
maximally entangled state |ψ1k〉:

FN
1k = 1

d
〈ψ1k| Tr1k(11 ⊗ ρ2...n)|ψ1k〉

= 1

d
〈ψ1k|11 ⊗ ρk|ψ1k〉 = 1

d
Tr ρk = 1

d
. (A34)

�
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Proof of Theorem 1. The proof is similar to that in [19].
The only difference is the fact that now the fidelities look like
that in Eq. (16). �

Proof of Lemma 2. The proof goes as in [19]. The only
new thing in the proof is that the matrices of irreps for
transpositions (in), where 1 � i � n − 1, are symmetric (see
Sec. A 2, Corollary 2). �

4. Fidelity region for each irreducible space and some
applications

In this section we provide some technical details regarding
the construction of the admissible region of fidelities for 1 →
N UQCM. We focus here for clarity on the case when N = 3;
then we have two nontrivial irreps, α1 = (2) and α2 = (1,1).

We also restrict ourselves here to dimensions d � 3 to omit
a discussion about the dimension of irrep α2, but, of course,
the construction in this situation is the same. For any d � 3
nontrivial irreps have the same dimension, which is equal to 3;
thanks to this fact and Lemma 2 we can write an arbitrary pure
state as |ψαi 〉 = (a1,a2,a3)T and the corresponding density
matrix as

ραi =
⎛⎝ a2

1 a1a2 a1a3

a1a2 a2
2 a2a3

a1a3 a2a3 a2
3

⎞⎠,

where a2
1 + a2

2 + a2
3 = 1 and i = 1,2. Now putting, for exam-

ple, density matrix ρ(2) into Eq. (16) from Lemma 1, together
with irreps V ′

(2)(k n − 1) from formula (9), we obtain the
following set of equations:

F
(2)
12 = 1

18d

[
a2

1(d − 1) − 2
√

3a1a2(d − 1) + 2
√

2a1a3

√
d − 1

√
d + 2 + 3a2

2(d − 1) − 2
√

6a2a3

√
d − 1

√
d + 2 + 2a2

3(d + 2)
]
,

F
(2)
13 = 1

18d

{
a2

1(d − 1) + 2a1[
√

3a2(d − 1) +
√

2a3

√
d − 1

√
d + 2] + 3a2

2(d − 1) + 2
√

6a2a3

√
d − 1

√
d + 2 + 2a2

3(d + 2)
}
,

F
(2)
14 = 1

9d

[
2a2

1(d − 1) − 2
√

2a1a3

√
d − 1

√
d + 2 + a2

3(d + 2)
]
. (A35)

We can also obtain a similar set of equations for partition (1,1).
Moreover we know that the fidelity from ideal N is always
equal to 1/d (see Fact 1). In the next step we use Mathematica
to generate parametric plots of regions given by formulas
of the form (A35) together with the normalization condition
a2

1 + a2
2 + a2

3 = 1. Thanks to this we get an admissible range
of fidelities in every irreducible space labeled by partition αi .
Due to Theorem 1, to obtain an admissible region of fidelities,
we have to generate the convex hull of the allowed regions

obtained for every irreducible representation α. To do this we
have used the Mathematica package CONVEXHULL3D. One can
see that to generate admissible regions for a number of clones
larger than 3 we need higher-dimensional space to embed the
convex hull, so we cannot represent our results in graphical
form. There is still some way to omit this problem at least par-
tially. Namely, we can construct some projection which maps
convex hulls from d-dimensional space to three-dimensional
space, but then of course we lose some information.
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