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Polarization exchange in colliding photon beams in an atomic gas medium

R. F. Sawyer
Department of Physics, University of California at Santa Barbara, Santa Barbara, California 93106, USA
(Received 21 February 2014; published 22 May 2014)

Photon-photon interactions mediated by an atomic gas can effect efficient polarization exchanges between two
beams, leaving the medium exactly in its initial state. In, e.g., hydrogen, the distance required for macroscopic
exchange is of the order of one-tenth the distance in which the ordinary nonlinear index of refraction would
induce a phase change of 7. Several examples are worked out that show the variety of behaviors that can result,
depending on the initial respective polarizations stated and the angle between the beams. Of particular interest
are initial conditions in which there is no exchange at a mean-field level, conventionally believed to apply when
the number of photons N is large. Then the full theory leads both to large exchange and to large entanglement
between the beams. Our most solid results indicate that one would have to wait a time proportional to log[/N] to
see this effect, but there are some indications that this behavior can be circumvented.
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I. INTRODUCTION

There is extensive literature on the theoretical and ex-
perimental aspects of creation of entanglement in systems
in which a number of spins interact with themselves and
with external fields or probes. The work reported here is
rather parallel in some ways, but it is concerned with photon
polarizations rather than particle spins. The ideal would be
the creation of two separated pulses of photons, A and B,
with the polarization state of the whole system being quantum
superposition | A}) | By) + | A2) | B1), Schrodinger cat states
in current parlance, where, for example, for collinear beams
the subscripts 1,2 indicate one direction of plane polarization
and the perpendicular one, respectively.

In our models the creation of coherent mixtures from two
initially completely polarized beams is accomplished by their
mutual interaction mediated by a gaseous medium, the state
of the medium remaining unchanged. No outside intervention
is required, except for the introduction of the beams into the
reaction region. The dynamics of the polarization evolution
is determined by an effective Hamiltonian H.g that operates
purely within the polarization space for the combined beams.

In our concrete modeling we chose atomic hydrogen as
the medium, impractical as it would be for implementation,
because it is in hydrogen that we can do a definitive calculation
of the effective photon-photon interaction. The intent of the
paper, in any case, is to give schematic arguments, with the
calculation in hydrogen serving to provide only rough orders
of magnitudes.

There are several features of our system and the results that
emerge that are particularly distinctive:

(1) The entanglement that is produced is between the
polarizations of two photon beams during interactions that
do not change the momentum or direction of any photon. The
beams enter an interaction region from different directions,
and then both leave the region. They can emerge as entan-
gled Schrodinger cat states and remain that way until they
encounter some polarization-dependent interaction with an
environment.

(2) There are many possible variations of initial polariza-
tions, final detector parameters, and angle between the beams.
Numerical experiments on some miscellaneous choices give
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a variety of interesting ways in which the beams can develop
macroscopic entanglement of one beam with the other.

(3) There is a general question that arises with respect to
our results, namely, is it a theorem that to have two systems,
each of N “spins,” to become macroscopically entangled
from their mutual interaction in a medium requires a time
proportional to [log N] for large N, (taking fixed number
densities N/vol.)? We might infer this from our simplest, and
probably most reliable, examples. Indeed, similar behavior is
found in other quantum systems, e.g., in models of a two-mode
boson condensates [1-3]. But we have some hints that the
[log N]~! slowing may be avoidable under certain conditions.

(4) In a related matter, when the initial state can be char-
acterized at a mean-field level as one of unstable polarization
equilibrium, then one can roughly define a “quantum break
time,” since for large N the system remains quiescent for a
period proportional to [log N] and then flips completely to
another state over a short transition time that is independent
of N. Without recourse to approximate calculations in specific
models, can one prove a linear dependence of this “quantum-
break time” on the logarithm of the number of degrees of
freedom?

We emphasize that the rates that we calculate have almost
nothing to do with photon-photon cross sections in media
(as discussed, e.g., in Ref. [4]). Photon-photon cross sections
are very, very small. Indeed, long ago Kotkin and Serbo [5]
(also see [6]) showed how, for the vacuum case governed
by the Heisenberg-Euler effective interaction [7], polarization
exchange occurs in a distance many orders of magnitude
smaller than [cross section X number density]’l.

II. EFFECTIVE COUPLING IN AN ATOMIC MEDIUM

We consider the reaction y(qi)+ y(q2) — ¥'(q1) +
y'(q2), where the momenta of the photons are unchanged,
where the primes on the right signify that the polarizations
have changed, and where all four photon interactions are with a
single atom. For concreteness we take q; to be in the Z direction
with corresponding polarization basis vectors £} = X, & = §;
and q in the x-z plane at an angle 7 — 6 to the z axis, with
polarization vectors 7j; = Xcosf + Zsin6, 7, = §.
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We calculate our effective Hamiltonian in this real basis of
plane polarization states. We define Hy as the Hamiltonian for
the atom plus the free electromagnetic field, and H, as the non-
relat1v1stlc electron- photon coupling H, = 2m,) '(—ep -
A— e A P+ A - A) We write out the textbook expression
for A in order to define notation and to clarify factors of volume
V in what follows, including only the terms that refer to the
four modes enumerated above:

= Qo V)@ + afpe
+ QR V)TV (b7 + bafp)e M HET L Hee, (1)

where the operators a;,a, annihilate photons 1n ﬁthe q1
direction, with the respective polarization vectors &;,&,; with
the operators b;,b, annihilating photons in the q; direction
with polarizations #1,7,. We define

—1
TV = (O’ﬁai| He [1 Hei| |O»I_5al>, (2)

" E,— H,

which is the conventional “T-matrix” operator, where we have
taken an expectation in a ground state |0, p) in the space of
the atom, and no momentum transfer to the atom as a whole.
Here T, is still an operator in the photon space, a function of
the four annihilation operators a and b and their associated
creation operators.

Next we extract the part of 7, that is fourth order in the
coupling. Designating this piece as HS™, we have

HE™ = (0, pu| ! H, : H, : H,
Eo—Ho Ey—Hy " Eo— Hy

x 10, a) + A - Aterms, 3)

where H, = 2m,) (—e p - A —¢A - p), the single photon
emission vertex. (The double-photon vertices from the A-
A terms have also been included in all calculations in this
paper.) The part that describes our reaction will hgve a sum
of terms with various factors like afalbfbl, aiazb;bl, etc. It
is convenient in what follows to replace these operators with

J

2,2 2

(OIF - & 'lm")(m"|F - 7j Im") (m|F -
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FIG. 1. An example of a graph contributing to H.g for polariza-
tion evolution. The heavy horizontal line stands for the atom. The
labels m,m’,m"” denote the excited levels of the atom. The photons
can be attached in 24 different orders.

ones constructed from
s_ = si, = bgbl, = ti,
ty = byby — blby @

to=biby +blb,.

i
Sy = ayay,

T T
§3 = a,a; —aai,

so = a{al + a;az,

The connection between the characterization of polariza-
tions as used in this paper and the Stokes parameters, Q, U,
V, [8] is provided by writing the polarization density matrix
for, e.g., our beam no. 1 as

p=N"D"[sh+ 550+ (s, +sHU +i(sh —sHV], (5)

where Si,*ﬁ are operators for the ith photon in the beam.

We work in the dipole approximation for the interaction
of the photons with the atomic electrons. Then the only place
that the angle between the two beams enters will be in the
polarization vectors themselves. There are a plethora of terms
that result from attaching the four photon lines of our process
to the atomic electron line in all possible ways. Figure 1 gives a
graphical representation of one of these ways. There is further
proliferation when we assign the photon polarization values
in all possible ways. In this diagram are shown polarization
vectors &,&’ for the initial and final states of the ¢1 photons and
drawn in any way from the basis set &;,&, introduced above,
and similarly with the vectors 7, i’ for the g, photons.

For example, in the dipole approximation the contribution
from the single graph of Fig. 1 is

i lm)(mlF - € 10)

o
Heff 2
4a)1a)2V2 Z

~—~ (€otwi — €nr)(€0 + @1 — Wy — € )(€0 + w1 — €m)

where now |0) denotes the atomic ground state, |m) an excited
state, and 7 is the position operator for the atomic electron.'

'In (6) we have used the universally accepted lore that replaces the
operator p - £/m, of the canomcal formulation by w7 - £ and at the
same time discards the A - A term in H,. Rather quixotically, not
completely sure that this was correct for the four-photons-attached
case, we also calculated the result in hydrogen directly from the

(6)

The atomic motion label p, has been dropped, since
in selecting the totally coherent part of the photon process
we leave the atom exactly its original state of motion, and
the thermal velocities of the atoms are small enough to
make Doppler shifts inconsequential as well. Equation (6) is
equivalent to general expressions that we find in nonlinear

canonical approach, obtaining the same answer as is calculated (much
more simply) in the conventional approach.
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optics books [9], although a certain amount of translation
is required to get from “generalized polarizabilities” to our
effective Hamiltonian. Furthermore, we have not found the
complete polarization-exchange terms exhibited explicitly in
the literature.

The results of the fourth-order perturbation calculation at
the dipole level are expressed in either case in terms of initial
and final polarization vectors &,&’ for the respective initial
and final polarizations of the g; beam, and 7,7’ for those of
the g, beam, and are of the form

R it = z - T - = -
(&'.0'|Heir|§ ,m) = 7[(&’ HE-D+HE-1)NE-M]

+AE-ENG DT, (7)

where R is an intensive quantity that is proportional to the
electron density 7., and where we have gone from the case of
a single atom to that of a gas, taking advantage of the fact that
zero momentum is transferred to the gas and trading one factor
of the box volume inverse V ~! for a factor of ny;, the hydrogen
density. This left one remaining factor V! from the two in (6).
As a measure of strength we have calculated R for atomic hy-
drogen (not the most practical gas for implementation, but the
one in which we can do an exact calculation in the dipole limit),

_ 252972e*w’n,

8
8m2[Ry]’ ®)

where [Ry] is the Rydberg. For the purposes of the present
paper we can drop the A term in (7), which leaves the
polarizations of the separate beams untouched. The angle 6
between the two beams enters only implicitly here through
the orthogonality of the polarization space of each beam to
its respective direction of propagation. The translation of the
matrix elements in (7) into those of operators constructed
from 5 and 7 of (4) is routine and gives

Rn, ., .5
Hegr = 7[— sin® @ s3ty — sin” 0 sot3

+2cosf sty + (1 + cos? 0) s3t3], )

where t| =t +1_,t, = (tx —t_)/i, and similarly for sy,s,.

It is a simple matter to transform to a circularly polarized
basis. This is effected through s3 < —s3, 13 <> —1, 5] <
S1,l1 <> 11

. R, L,
Her = V[sm 0 syty + sin” 6 spty

+2c0s0 511, + (1 4 cos? ) 2t ]. (10)

The eigenstate of o3 = 1 now is right-circularly polarized
and that of o3 = —1 is left-circularly polarized, with the
conventions that we have adopted.

The interaction (10) is still between just two photons and
is dependent on the volume of the box. Now we extend to the
case of two photon beams. The final equations of evolution for
the polarization density matrix will not depend on whether all
the photons in a single beam are in a single coherent state or are
distributed, with differing phases, over a narrow range of ener-
gies and directions. For our derivation we chose the latter case.

In the ensemble of N; photons in one beam and N, in the
other, we designate the constituent operators for the two beams
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by s, i =1,...N; and t&, j = 1,...N», and define collective

operators for the respective beams by o, = N[ ! Zi [sé], Ty =

Ny ! >".[.]. The Hamiltonian for everybody interacting with
everybody is then

N NiN>R

off =

+(14cos’0)orr ]. (11)

[sin?@ oy + sin’ 6 7, + 2cos6 o1

After rescaling time with the factor R, we use the Hamil-
tonian (11) to obtain the Heisenberg equations, i(d/dt)o, =
Ra’1 [0y, H ] etc. Then, applying the commutation rules,

[04,08] = 2N, i€ap, 0,70, T5] = 2N; li€ns, T,, (12)

and shifting to variables, oL = (07 £i07)/2, 7+ = (11 =
i1p)/2, we obtain

i64 = nyo3[sin® 6 + 7, (1 + cos0)* — 7_(1 — cos 0)’],

(13)

o3 = 2n[sin’O(oy — o) — (0474 — o_1_)(1 — cos 0)*
+(041- —o_ty)(1 +cos0)?], (14)

and

ity = nym3[sin® 0 4 o4 (1 + cos 0)* — o_(1 — cos6)*],

15)

i3 = 2n1[sin20(f+ —17_)— (0414 —o_t_)(1 —cos 0)?
—(047— —o_13)(1 +cosH)?]. (16)

Here photon densities, n; » = N2/ V, have replaced pho-
ton number. The equations for t; and 73 are obtained by

0 < T, ny — n;. The set is closed when we add o_ = UL

T_ = tL Self-interactions within one beam do not appear in
the above, since they produce no polarization-dependent terms
in the equations.

Equations (13)—(16) are operator equations in an NN,
dimensional space of states, but we begin by addressing
them in a “mean-field” approximation (MFT). In the present
context this means that the four variables in the nonlinear
equations (13), (15) are each replaced by an expectation value,
e.g., oy — (04) = (o_)*. The resulting equations are not
exact, since the expectation of a product is not the product
of the individual expectations.

Going back to Egs. (13) and (15), and their counterparts for
7, and 73, and treating them as equations for mean fields, we
consider the case in which initially one beam is right-circularly
polarized and the other left-circularly polarized, and in which
the beams are nearly in the same direction. This corresponds
to initial values (o3) = 1, (t3) = —1 and (o) = (t.) = 0. In
Fig. 2 we show evolution of (o3) at later times for a series of
small angles 6, where 6 is the angle between qq and ;. When
6 = 0, there is no polarization exchange at the mean-field
level.

For small angles 6 we see that there are complete helicity
turnovers at regular intervals. The nonlinear oscillation is
perfectly periodic, with the period as well as the time of the first
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FIG. 2. (Color online) The expectation of the circular polariza-
tion (03) of one beam versus time (in units [1#, R ]~") for a series of
small angles 6, which measure the deviation from head-on incidence,
1 —cos® =1071,1073,1075,1077, with the equal spacing of the
intercepts indicating the logarithmic dependence noted in text.

crossing of the (o3) = 0 axis proportional to — log(1 — cos 8).
For larger values of 6, the time scale for the reversals is of
the order [Rny]_l, as one might have expected, but the fact
that the period only expands as log#f, as 6 — 0, rather than
as a power is surprising. The key to this behavior is the fact
that if we go back to the equations for the case 6 = 0, where
nothing changes in time, and linearize around this solution, we
then find instabilities for exponential growth of perturbations
in time.

The characteristic interaction length L for polarization
exchanges is given by

L™ ~n,R=18x 10" [—V“”“)Z}

leV
x|: P ][ V1'12]cm—‘. 17)
lgem=3 | [ 1 W/cm?

III. BEYOND THE MEAN-FIELD APPROXIMATION

We address this issue by reverting to our earlier formulation
with N photons in a box. We note a simple example in
which the effective interaction is just A ) o;7; and the
initial conditionis o3 = 1,73 = —1 (eigenstates). Here nothing
whatsoever happens at the mean-field level. The complete
quantum problem for large N was solved by Friedland and
Lunardini [10], who indeed find significant transitions in a
time A~'N, but nothing faster. However, in the case of our
slightly more complex interaction, results are quite different.”

>The model came from the study of neutrino-neutrino interactions.
The analog to the photon polarization of our present problem is
neutrino flavor. Their negative result is applicable only in cases in
which there are no flavor correlations with the directions of neutrino
motion. When the latter is brought into play, the results, similar
to those shown in Fig. 3, may be important for neutrino flavor
transmutation in the supernova core. Consequently, the subject has
generated a large number of publications, e.g., Refs. [11] and [12].
The foundations for the formalism that has been used in this literature
is developed, e.g., in [13], following a rather different route than ours.
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FIG. 3. (Color online) For the case 6 = 0, the expectation of
the average circular polarization per photon (o3) in one beam,
plotted against time measured in units R~'. Initially both beams
are completely right-circularly polarized (i.e., with opposed spin).
When(os) = —1, both beams are left-circularly polarized. The
number of photons in each beam appears on the plot. The equal
spacings of the intercepts with the (o3) = 0 axis indicates a transition
time that increases as log N.

We look at the question numerically for the case in which
H.g is given by (11) in the Ny = N, = N case (in a box). We
proceed directly from the Hamiltonian, calculating exp[—i H¢]
directly from the Schrodinger equation, in effect, rather than
from the equations of motion (13)—(16). We rescale with a time
variable ¢’ = R~ N~!¢, the factor of N here entering because
we are reverting back to the N particles-in-a-box picture, but
at the same time we need to readjust the volume every time we
change N in order to keep the densities constant. Beginning
with the cos 6 = 1 case, we find that we are able to go up to
N = 1600 effective spins in each beam, all interacting with
each other. In Fig. 3 are shown computational results for (o3)
for different values of N for the case of initial conditions
(03) = —(13) = 1. In the mean-field, approximation (o3(?))
would be constant in time, so the pictured behavior is all from
the deviation from the mean-field value. From the equally
spaced intercepts, as we increase N by successive factors of
2, we see that the development time is quite logarithmic in
N over the range between 100 and 1600. Also, we see how,
as N becomes much larger, there will be a fairly well defined
“quantum break time” in the sense that the holding times at
values o3 = +1 are much greater than the transition times
between the two.

This logarithmic behavior stems from beginning with a
point of classical unstable equilibrium, just as in the case
of the log(1 — cos ) behavior within MFT noted in the last
section. Examples that have the generic behavior in which
the “quantum break time” is proportional to the logarithm
of the number of degrees of freedom are found elsewhere in
the literature, for example, in models of a two-mode boson
condensate in the vicinity of a dynamical instability [1]. But
we know of no proof that it cannot be faster, like log[log N1,
for example, in more complex models. Indeed, we have some
evidence that it can.

In Fig. 4, using the same solutions for the wave functions,
we plot the quantity { = (0313) — (03)(73). The plot directly
shows the defect in the mean-field assumption, which requires
that ¢ = 0 at all times.
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FIG. 4. (Color online) For the same cases used in Fig. 3, plots of
(0313) — (03)(13) as a function of time and for different values of N.

The nonvanishing of ¢ also indicates the development of
macroscopic, N-body entanglement between the two beams.
Shifting terminology from photon helicity to photon spin and
characterizing the initial state which has spin projection N in
the ky direction for the first beam and spin —N in this same
direction for the second beam, we write the initial state as
[N, — N). At the point of complete turnover, when o3 = —1
the state has become | — N, N). Now if we compare Fig. 3 with
Fig. 4, we see that the peaks in the parameter ¢ coincide almost
exactly with the points at which (o3) and(r3) vanish. If at this
point we had found ¢ = 1, then it would tell us that the state at
this time was exactly [ |[N, — N) + | — N,N) ]/ﬁ, the classic
(dead cat)—(live cat) superposition. The second peaks for the
various cases shown in Fig. 4 come close to the value { = 0.4.

We should note that using ¢{ as an indication of entan-
glement is correct only because we are dealing with pure
states. More definitively, we can calculate the “entropy of
entanglement,” a standard measure of entanglement [14-16].
This is defined by tracing over one subsystem’s coordinates,
say those of beam no. 2, in the density matrix for the system
to define a reduced density matrix p;; then calculating the von
Neumann entropy of the distribution p;, we obtain

Sent = —Tr[p1 Inp]. (13)

In Fig. 5 we plot the results for Sy (z)[log N1~! for the same
cases used in Fig. 4. An interesting feature is that while the

Sent/log N
1.0}

0.8F
0.6+
0.4+

0.2+

FIG. 5. (Color online) Sey[In N]7! as a function of time and for
different values of N.
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peaks, as expected, occur at the same values of time as do the
corresponding peaks of ¢, the peaks of Se, are of equal heights,
while those of ¢ are of progressively increasing heights.

As for the ¢ measure, our interpretation of its relation to
entanglement is correct only because we are in a pure state. In
amixed state, as is familiar in many-body calculations in finite
temperature systems, we can easily have (AB) # (A)(B) but
no quantum entanglement.

Having looked at both mean-field solutions and exact
solutions, but the latter only for N < 1600, we can ask if
there is a viable approximation scheme that can recapture the
quantum effects and that is not subject to the N limitation.
A possible approach, which was applied to the 8 = 0 case
of the model of this section,’ is through iteration of the
equations of motion to get a hierarchy of equations, still linear
in d/dt, in which the right-hand sides are now expectations
of higher-order polynomials in the o; and t; variables [6]. A
plausible and systematic procedure was applied for factorizing
these equations into the products of expectation values of
linear and quadratic forms in the density matrix, producing
a closed set of equations where one term, from an evaluated
commutator, bears an N~! factor. For the initial conditions
(6 = 0) corresponding to those used in Fig. 3, the solution
to these equations gave a good fit to the plots of Fig. 3 for
the quantity (o3), indicating some correct account of quantum
effects. But it gives zero for ¢, rather than the entanglement
shown in Fig. 4.

IV. MORE QUANTUM EXAMPLES

We have also calculated the evolution for the case of
small-angle 6 deviations from head-on and the same initial
conditions, in the hopes of comparing with, say, the mean-field
data shown in Fig. 2. Here we reach our computational limit at
N, = 128 in each beam (much reduced from the head-on case
because the operator o3 4 73 is no longer conserved, leading
to a much bigger set of N states that enter the calculation).

Because of the limitations on N we are less certain of the
meaning of the results in this case. They are at least consistent
with the following picture: At a fixed, very small angle the
deviations from mean field will dominate in some region of
smaller N. In a region of transitional N these deviations will
give great distortions in the shape and completeness of the
turnover, and for very large N they will not enter at all until
we get to times of order log N. By this time, even for very
small values of 6, the polarization oscillations will already
have gone through many cycles, according to the mean-field
calculations in Sec. III. To put the problem more dramatically,
suppose we actually tried to produce the nice behavior shown
in Fig. 4 in a laboratory and we used, say, 10?! photons at any
moment in a reaction cylinder of length 1 cm and radius 1 mm.

3This previous work addressed polarization exchange in photon-
photon interactions, but the interaction used was the Heisenberg-Euler
effective interaction in vacuum [7], rather than an atomic gas. See also
the work of Kotkin and Serbo [5]. When, and only when, 6 = 0, Heg
has the same polarization dependence as found for the vacuum case.
The last section of ref. [6] addressed the logarithmic time scale for
polarization exchange in this case.
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FIG. 6. (Color online) For cosé = 0.96, plots of the entangle-
ment measure ¢’ against scaled time. Dotted curve is for N = 15;
dashed for N = 30; solid for N = 60.

Then it appears that we might have to start with I — cos8 =0
to within one part in 10%!, roughly, to avoid being obscured by
dominant mean-field effects.

As an example of how to overcome this absurdity, and
more generally to demonstrate the variety of behaviors that
these models can produce, we show explicitly the results of
one more variant. We go back to the form of the interaction (9)
where now the o;’s and t;’s are constructed with respect to our
original plane-polarized basis, and we begin with eigenstates
o3 = 1 and 13 = —1. We are then in MFT equilibrium for any
value of 6 and the equilibrium is unstable in arange near 6 = 0
so that the quantum effects grow rapidly. But now we analyze
the system at a later time by computing the expectations of o
and t3’, as referred to polarization bases rotated, with respect to
the choice used in the preparation of the states, 45° around the
respective ¢ and ¢’ directions. In Fig. 6 we show some plots
of ¢/,

¢ = (0373) — (03)(13), 19)

for cos & = 0.96, showing a rapid rise in ¢’ in time for different
values of N. Figure 7 shows behavior over a longer time and
for cos@ = 1. We see a rapid rise at the beginning, followed
by a plateau with ¢’ at almost exactly 0.5. The initial rise

0.5F -
04f
0.3
02k
0.1}

—0.1t

FIG. 7. (Color online) Same as in Fig. 6, except for cosd =1,
and plotted over 3 times the time interval. The rise time to get to
¢’ =~ 0.5 goes approximately as log N, as expected. Unexpected is
the fact that as N increases, the “hang-time,” or the period in which
¢’ spends at this level before making a short round trip to zero and
back, grows linearly with N.
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time here is logarithmic in N, as expected. The length of the
plateau, however, unexpectedly increases linearly with N. In
the plateau region we have(c}) ~ (t}) ~ 0.

A value of ¢’ = 1, in a pure state, would have signaled the
simple Schrodinger cat state |y), referred to our original basis:

) =272, D+ 1L, D). (20)

We have been able to get a value as high as ¢’ = 0.7 for
very short periods of time by changing initial conditions in the
above by a little, but we are not able to explore the parameter
space systematically to see if ¢’ = 1 is achievable.

In further numerical experiments, by choosing some initial
conditions that are not quite ones of MFT equilibrium and that
also include some elliptical polarization, we get reasonably
large values of ¢ in times that appear to be either finite as
N — oo or growing more slowly than log N. Because now
the initial state is not in an MFT equilibrium state, this latter
turnover occurs in time that is nearly independent of N. But
these results are more irregular looking than those shown in the
figures of this section and the last, and obtaining them involved
the solution of N2 coupled nonlinear differential equations (as
did the calculations for Figs. 5 and 6), rather than the 2N
needed for the solutions in the last section.

V. PULSE BEHAVIOR

One of the drastic idealizations in all of the above was
in taking a system with plane waves in a box (with implied
periodic boundary conditions) and turning on the interaction
among all particles at time zero. In our desired experiment we
would have to get them in and out, and different photons come
and leave at different times.

Take the beams to be very nearly collinear, (1 — cos ) < 1
in (13)—(16), and (nearly) totally overlapping over the region
0 <z < L. We have no insight into how easy, hard, or
impossible the latter would be to achieve in a laboratory. But in
any case, we have assumed that the idealization is adequate to
predict the results of an achievable case in which the interaction
region is that of the intersection of two narrow cylinders of
width d at a relative angle 6 such that the intersection length
isof order L ~ d/6.

For clarification we pose a time-and-space-dependent
problem in which at z =0 we take superposed beams of
opposite helicity, both moving nearly in the +z direction,
and entering the reaction region just before the initial time
in the calculation. The governing equations for 5 (z,t), T(z,t)
are still (13)—(16) but with /9t replaced by 9/dt + 9/0z.
The boundary conditions are the values o03(0,#), which rises
rapidly to unity and then is maintained at that value, and
04(0,¢) = 0. The T values are the exact negatives of the o’s.
The initial condition has a short region in which a smoothed
leading edge of the beam has entered the very beginning of the
interaction space but everything beyond is zero. In Fig. 8 we
show the results. The polarization very rapidly evolves into a
standing-wave pattern.*

“We emphasize that the photons themselves are not standing waves.
They run in the z direction indefinitelys; it is just the polarizations that
have the standing pattern.
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FIG. 8. (Color online) For cos@ = 0.99, plots of (o3) as a func-
tion of the distance z from the injection point at z = 0 for a series
of times after the beams, both coming from the left, are turned on.
The heavy dashed curve at near distances is the (arbitrary) assumed
leading profile of the beam at its entry shortly before r = 0. It has
not at this point been in the medium long enough to have changed
polarizations appreciably. The profiles at later times show the effects
of interaction. Results for ¢ > 0.6 are indistinguishable from the
heavy ¢t = 0.6 profile. Note that the standing pattern, region by region,
develops at times only slightly greater than the light travel time z. The
profiles for 73 are the exact negatives of the values shown.

Thus in our MF case of Sec. III, if we choose the correct
length for the interaction region, and send in a pulse that is in
the product polarization state specified above, we can expect
to get out a pulse in which there has been total polarization
exchange between the two superimposed beams.

We expect similar standing-wave behavior in the quantum
cases, i.e., in a beyond-the-mean-field calculation, but we
do not have the power to do the quantum calculation with
combined space and time dependence in order to verify this
expectation.

As mentioned previously, beams meeting head on at very
small angles & = m — o where o < 1 show behavior identical
that of the 0 < 1 case in the purely time-dependent evolution
in a periodic box. But when we instead let them enter at time
zero from opposite ends into a finite interaction region, we
suddenly have a formidable computational problem even at
the mean-field level, due to the mixed boundary condition—
prescribed values at z = O for the right-moving beam and at
z = L for the left-moving beam. Suffice it to say that we
have made no progress toward a solution, possibly because the
instability of the 6 = m equations now manifests itself through
very sensitive dependence on boundary conditions.

However, we have shown how it is possible in some cases to
proceed from studying the time development of two interacting
waves confined to a box, with periodic boundary conditions,
to studying the space-time dependence of the beams after
their introduction on one side of a region containing the
transforming medium. The pure nonlinear oscillations in time
in the first instance were transformed into standing waves in
space in the second instance.

VI. DISCUSSION

In principle, photon-photon interactions in a medium can
produce polarization-entangled beams, leaving the medium
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untouched. There appears to be much flexibility in the
encoding and processing of information in the interac-
tions of such beams, by virtue of the considerable land-
scape of polarization phenomena that are available and of
the ease of manipulation of polarization parameters for a
single beam.

We have not found many close analogs to our system
in the very large literature on nonlinear photon effects and
systems of entangled photons. Of early works that deal with the
entanglement of photons with photons, we mention Ref. [17],
but the system discussed in this paper is quite different
from ours. It has subsidiary applied fields as part of the
mechanism, uses tuning very near resonances as an integral
part of the procedure, and is not specifically concerned with
polarizations.

We do mention an interesting realization in the labora-
tory [18] of a state that has some elements in common with
the ones that we produce theoretically. In brief, we describe a
result of this work: the beginning state is a big set of N upspins
that is subjected to radiation which (some of the time) turns
only one into a down-spin. The excitation is coherently spread
over the different spins. Then more fields are applied that mix
the up-states with a 50:50 superposition of up and down, with
the down-state going into the orthogonal combination. Next, in
repeated trials, the distribution of the differences of the up and
down numbers is measured, and its variance is proportional to
N'/2, as compared with unity for that produced by a simple
simple spin flip when the subsequent manipulation is omitted,
a clear quantum effect.

In this case, it is not useful to try to describe the quantum
state as “entangled,” a term that is defined only with respect to
adivision of the degrees of freedom into two sets (as in our two
beams). But it leads us to calculate one more measure of the
quantum nature of the outcome of the calculation described in
Sec. III; the variance of (N4 — N) for just one of the beams.
We find peaks at almost exactly the positions shown in Figs. 3
and 4, with the curves beginning at zero at t = 0, and the
maxima growing as N.

As interesting as we find the different behaviors sketched
in this paper, the issue of practicality has not been settled
here, to say the least. Because atomic hydrogen is the only
medium in which we can do a complete calculation, it is
what we have used in this paper in order to provide a
rough estimate of requirements. Other media should do better,
particularly for one or both of the beams tuned near a resonance
frequency.

Finally, it would be of great interest to know if there are
some regions in the landscape of initial conditions in which a
large entanglement develops in a time that approaches a finite
limit as N — oo (or perhaps goes, e.g., as log[log N] instead
of increasing as log N). We have some indications that there
are, but at the moment we have insufficient computing power
to investigate completely.
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