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High-fidelity gate operations with the coupled nuclear and electron spins
of a nitrogen-vacancy center in diamond
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In this article we investigate the dynamics of a single negatively charged nitrogen-vacancy center (NV−)
coupled to the spin of the nucleus of a 15-nitrogen atom and show that high-speed, high-fidelity gate operations
are possible without the need for complicated composite pulse sequences. These operations include both the
electron and nuclear spin rotations, as well as an entangling gate between them. These are the primitive gates
one will need within a quantum node of a distributed communication network.
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I. INTRODUCTION

The quest to build quantum repeaters and computers and
to do communication with quantum processes has been one
of the most ambitious and difficult technological challenges of
the 21st century so far. There have been many physical systems
identified as potential candidates [1]. One that has enjoyed sig-
nificant recent attention has been diamond. Diamond has many
exceptional properties [2–4]; it is the hardest known material,
is chemically inert, possesses a broad optical transparency
window, and can accommodate a large variety of optically
active color centers. Of these color centers, the negatively
charged nitrogen vacancy (NV−) center [5–7] has attracted
particular interest [8]. It exhibits properties that make it useful
for a wide range of interesting applications, including quantum
information devices as well as sensitive probes of magnetic
fields [9–12] and biomarking tracking [13–16]. It offers a
quantum-mechanical system that is remarkably isolated from
the environment, “trapped” in a carbon lattice giving it
excellent potential for quantum-information processing-based
applications [17–20].

The NV− center is composed of an electron spin (spin 1)
and at least one nuclear spin coupled by the hyperfine
interaction [5–7]. It is straightforward to manipulate both the
NV− electron and nuclear degrees of freedom [21–25], and the
long lived nuclear spin [26] makes it attractive as a quantum
memory [20]. Furthermore, previous studies have shown that
remote centers may be coupled by using light [27]. Indeed,
heralded entanglement between solid-state qubits separated
by three meters has been shown [28]. Together, these features
give us a tantalizing indication of a physical system with
which to build quantum information processors, provided
high-precision operations are possible [29–34].

In this article we investigate the potential of a single NV−
center to act with high fidelity as a node in a hybrid distributed
quantum computer [29–33]. Our considerations will focus
on the NV− center’s electron spin with a coupling via the
hyperfine interaction to a single 15N nuclear spin. The choice of
15N is motivated by the simpler nuclear energy level structure
(spin 1

2 ), which is a natural qubit, compared with that of 14N
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(spin 1) or 13C which has also been extensively studied [22,28]
but would involve controlling a tripartite system. We will
show that it should be possible to enact a high-fidelity
universal set of quantum logic gates, with error probabilities
below fault-tolerant thresholds for topological error correction
(∼0.6% [35]), between the electron and nuclear spins with a
static magnetic field [36]. These gates consist of a hyperfine
derived controlled-phase gate, driven polarized microwave
single-qubit rotations on the NV− center, and driven hyperfine
mediated single-qubit rotations on the nuclear spin. Such
operations are primitives for any distributed communications
network. Entanglement between nodes can be accomplished
by using optical photons that can be coupled to the electron
spins [28]. The necessity to design high-fidelity gates under
reasonable theoretical and experimental assumptions is driven
by the need to have available simple and fast control sequences
that, in principal, can deliver fidelities of 99.9% or higher
so that once experimental fabrication and control error are
taken into account and refined, the resulting system can still
satisfy threshold criterion for fault-tolerant computation and
communication.

The paper is structured as follows: We begin in Sec. II
by defining our basic Hamiltonian process and the adoption
of a rotating frame. We also discuss the critical physical
parameters such as the relaxation and dephasing times of the
electron and nuclear spins. Section III introduces the natural
entangling gate between the electron and nuclear spin, while
Secs. IV and V show how electron- and nuclear-spin rotations
can be achieved, respectively, with high fidelity. Section VII
shows how these basic operations can be used to build
larger quantum circuits while Sec. VIII presents a concluding
discussion.

II. THE SYSTEM HAMILTONIAN

Our system under consideration here consists of a single
15NV− center whose 3A ground-state energy levels we
illustrate in Fig. 1. The NV− is made up of an electron spin-1
system and a nitrogen-15 nuclear spin. As the electron spin
consists of three levels we must choose a pair of levels to embed
the electron qubit in (|0〉e,|+1〉e or |0〉e,|−1〉e). The nuclear
spin from the nitrogen is naturally a spin- 1

2 system. We describe
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FIG. 1. (Color online) Schematic energy-level diagram of the
ground-state energy manifold of an NV− center. By setting a magnetic
field such that Bγe < D, a transition for the electron of the same
circular polarization as that of the nucleus is chosen. The levels |0〉e

and |+1〉e of the electron are chosen for the electron qubit (with the
obvious mapping), and for the nucleus |↑〉n → |1〉 and |↓〉n → |0〉.

our system with the Hamiltonian H = H0 + HS + HHF + HD,
where

H0 = �DS2
z + �BγeSz − �BγnIz, (1)

HS = �
E

2
(S2

+ + S2
−), (2)

HHF = �A‖SzIz + 1

2
�A⊥(S+I− + S−I+), (3)

HD = ��0 cos(ωt + φ)

(
Sx − γn

γe
Ix

)
, (4)

with Sx , Sy , and Sz being the usual spin-1 operators [S+ =√
2(|0〉e〈−1|e+|+1〉e〈0|e), S− = S

†
+] and Ix , Iy , and Iz being

the nuclear spin- 1
2 operators (I+ = |↑〉n〈↓|n, I− = |↓〉n〈↑|n).

The uncoupled system is given by the Hamiltonian terms
H0 + HS, where the first term in H0 is a zero-field splitting
of magnitude D/(2π ) = 2.87 GHz [37]. The second term is
the splitting of the three electron levels determined by the
magnetic field B aligned with the NV axis and the electron gy-
romagnetic ratio γe = μBge where μB/h = 14.0 MHz mT−1

and ge = 2.00. The last term in H0 is the splitting of the two
level nuclear levels determined by the magnetic field B and
the nuclear gyromagnetic ratio γn = μNgn with the nuclear
magneton μN/h = 7.63 kHz mT−1 and the nuclear g factor
gn = −0.566. The second term in our uncoupled system HS

represents a strain-induced splitting between the |±1〉e, where
E ∼ 1 – 10 MHz is typical (7 MHz is assumed here). The
hyperfine coupling HHF between the electron and nuclear
spins is composed of a phase gate with A‖/(2π ) = 3.03 MHz
parallel to the NV− axis and an exchange part with A⊥/(2π ) =
3.65 MHz perpendicular to it. The exchange component of
hyperfine interaction moves an excitation between the electron
and nuclear spin systems and has its resonance at

Bex = A‖/2 ∓ D

γe ± γn
≈ ∓102 mT,

with Lorentzian width [38]

BFWHM = 2
√

2A⊥
γn + γe

≈ 0.368 mT.

Finally, HD is an electromagnetic driving term, with a
magnitude on the electron (nucleus) determined by the gyro-
magnetic ratio γe (γn), and �0 is the amplitude of the applied
electromagnetic drive field of frequency ω and phase φ.

Before moving forward to examine various gate operations
we need to examine the physical and coherence properties
of our system. Beginning with the electron spin, the type of
synthesis used to create the diamond crystal and temperature
have a significant effect on the relaxation time T1 time of the
electron spin. At temperatures T > 200 K, Jarmola et al. [39]
reported that high-pressure, high-temperature (HPHT) and
chemical-vapor-deposition (CVD) samples showed the same
T1 time within a factor of 2. However, for lower temperatures
the relaxation time can dramatically increase. For instance,
with CVD samples the T1 time could increase by almost
five orders of magnitude (to 100 s) when the temperature is
decreased below 80 K. This seems to strongly indicate that we
want to work with a CVD diamond at moderate temperatures
(4–80 K). Furthermore, the relaxation time is also increased
when a small but nonzero (20 mT) external magnetic field is
applied. As we describe in detail in the next section, this regime
of magnetic field is preferable to control the hyperfine coupling
with respect to the error-correction protocols. Applying a
magnetic field allows us to split the |±1〉e levels. Next, the
dephasing time T2 is also highly dependent on the type of
diamond sample used and especially on the concentration of
P1 centers (and other impurities). Electronic spin coherence
times T ∗

2 of 90 μs and T2 ∼ 2 ms have been observed in
isotopically purified diamond [10,40,41]. By using dynamic
decoupling techniques, T2 times as long as 0.6 s have been
demonstrated in an ensemble [42]. The coherences properties
of the nuclear spins can exceed 0.25 s [43].

III. THE ENTANGLING GATE

Before we begin examining gate operations we need to
specify how we encode a qubit within the electron spin. In this
case we choose the electron spin computational basis 0 and 1
to be |0〉e and |+1〉e, respectively. The |−1〉e state should never
be occupied and, if it is, it will be considered a leakage event.
Now the hyperfine interaction between the electron and nuclear
spins provides a route to entangling the spins without resorting
to driving fields or varying the magnetic fields dynamically. In
the case of no driving field, the interaction-picture Hamiltonian
reduces to

H̄ = �A‖SzIz + �

(
E|+1〉e〈−1|e ei2Bγet

+ A⊥√
2
I−[ei�+t |+1〉e〈0|e + e−i�−t |0〉e〈−1|e] + H.c.

)
,

(5)

where �A‖SzIz is a natural entangling gate (a controlled-
phase gate), and �± = D ± Bγe ± Bγn. However, the strain-
induced splitting is obviously problematic, since it provides
a transition out of the computational basis of the system.
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The resonances for this strain interaction occur when B =
± A‖

2γe
(positive for the nucleus is in the |↓〉n state, and

negative for the |↑〉n state) with full width at half maximum
BFWHM = 2E/γe. For a strain-induced splitting E < 10 MHz,
the width is BFWHM < 1 mT approximately centered at 0
T. Eliminating this leakage effect is possible by choosing
B � E/γe, which occurs when B ∼ 20 mT. In such a case
the strain term gives a small dispersive interaction of the form
H̄S,dis = �E2

2Bγe
[|+1〉e〈+1|e−|−1〉e〈−1|e]. When nuclear spins

are facilitated as quantum memory, the exchange component
is generally used for the state transfer between the electron
and the nuclear spins. However, with the exchange coupling,
the errors induced with this component are more problematic
than ones with the control phase coupling. At the choice of
B ∼ 20 mT we are also far off resonance with the exchange
component of hyperfine interaction, and so its contribution is
in terms of a small dispersive shift.

In these regimes we will have negligible exchange pop-
ulation between the electron spins states, and so long as we
start our electron spin in its qubit subspace {|0〉e,|+1〉e}, we can
neglect the |−1〉e state. This means we can write the entangling
operation in the {|0〉e,|+1〉e} subspace as

H̄ =
(

�A‖ + �A2
⊥

2�+

)
|+1〉e〈+1|eIz

−
(

�A2
⊥

2�+
+ �A2

⊥
2�−

)
|0〉e〈0|eIz

+
(

�E2

2Bγe
− �A2

⊥
4�+

)
|+1〉e〈+1|e

−
(

�A2
⊥

4�+
− �A2

⊥
4�−

)
|0〉e〈0|e, (6)

which includes level shifts [44] due to the strain-induced
splitting and the perpendicular hyperfine interaction. To lowest
order, this gives an interaction of the form

H̄ ≈ �A‖
2

|1〉e〈1|eσ n
z . (7)

The interaction is equivalent to a controlled-phase gate within
a single qubit z rotation on the electron, as shown in Fig. 2.
For instance, an ideal input state to create a maximally entan-
gled pair is |+〉e|+〉n ≡ 1

2 [|0〉e|0〉n + |0〉e|1〉n + |+1〉e|0〉n +
|+1〉e|1〉n], which can be created from the ground state |0〉e|0〉n

by electron and nuclear spin rotations [45]. The gate time
is determined by A‖, which gives a time of tCZ = π/A‖ ≈
165 ns. However, considering Eq. (6), we notice that there

|ψ n eiπσz/2

|φ e eiπσz/4

=
|ψ n

|φ e

FIG. 2. Quantum circuit showing the equivalence between the
hyperfine interaction and a controlled-phase gate. The interaction
provided by the hyperfine Hamiltonian (the controlled gate on the left)
is locally equivalent to a controlled Z (CZ) gate. As the single-qubit
operation on the electron commutes with the controlled gate, it may
appear on either side of it.
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FIG. 3. Simulation illustrating the probability of error (1-
Fidelity) of the CZ gate when applied to an initial electron nuclear
spin state |+〉e|+〉n to generate a maximally entangled Bell state.

are second-order terms which could be important effecting the
fidelity of this gate operation. Hence we perform a simulation
using the full Hamiltonian (1) but with the driving turned off.
This is depicted in Fig. 3 and shows that a high-fidelity gate in
principle can be achieved (with error rate perror < 0.0001). The
fidelity is limited not in this case by the decoherence properties
of the NV− centers (more explicitly T ∗

2 of the electron spin as
it can be as long as 90 μs) but by the strain and A⊥ components
of the hyperfine interaction. These effects could in principle
be corrected by appropriate single-qubit operations on the
electron and nuclear spins. Even without such corrections,
a high-fidelity gate is possible when one has a long T ∗

2 for
the electron spin. Finally, our simulations indicate for this gate
that the leakage rate to the |−1〉e state is exceedingly small.

IV. ELECTRON ROTATIONS

For quantum-information applications we need to be able
to perform well-defined single-qubit gates, including the Pauli
operations X,Y,Z, the Hadamard gate H , the phase gate S,
and the π/8 gate T . These can be achieved by using either free
system evolution or driven electron-spin rotations.

Rotations on the electron spin can be implemented by
using a microwave driving field perpendicular to the NV−
axis without the same drive also affecting the nuclear spin.
This assumption is safe, since the gyromagnetic ratio of
the electron is ∼6500 times larger than that of the nucleus,
and the microwave driving field is far off resonance with it.
However, we need to be careful that the field used to drive the
|0〉e ↔ |+1〉e transition does not also drive the |0〉e ↔ |−1〉e

transition. This is true when

�0

2
√

2
� min[2Bγe,2D], (8)

which is equivalent to the statement that the coupling factor
of the drive field to the electron is much less than the
detuning between the transition that we want to drive and
the transition that we do not want to drive. The limit has
been demonstrated experimentally [46] and becomes apparent
at attempted cycle times of a few tens of nanoseconds. In
Figs. 4(a)–4(d) we show the error probability (1-Fidelity) for a
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FIG. 4. (Color online) Simulation illustrating the probability of error (1-Fidelity) of the driven system compared to the ideal electron-spin-
qubit rotations versus rotation time. An unpolarized microwave field is used in panels (a)–(d) while a polarized field is used in panels (e)–(h).
Four different drive amplitudes were considered: 62.5 MHz for panels (a) and (e), 125 MHz for panels (b) and (f), 250 MHz for panels (c)
and (g), and 375 MHz for panels (d) and (h). The black curves show the probability of error of the gate operation while the red curves show
the degree of rotation. The rotation angle corresponds to the definition of the gate Ry(θ ) = cos(θ/2)1 + i sin(θ/2)σy. The π/4 and π/2 points
are explicitly indicated. For these simulations, a full master equation was used with appropriate relaxation and dephasing rates for both the
electron and nuclear spins (detailed in the Appendix). The counter-rotating terms cause the rapid small oscillations.

single qubit rotation achieved in less than 10 ns by using four
different pump strengths (62.5 MHz, 125 MHz, 250 MHz,
and 375 MHz). At 62.5 MHz the hyperfine interaction is the
primary cause of the error probability, as we have assumed that
the nuclear spin is in an equal superposition state. Still for a
π/4 rotation, the probability of error is approximately 0.0035.
As we increase the driving-field strength, the error probability
becomes dominated by the breakdown of the rotating wave
approximation (the counter-rotating terms) and weak driving
of the |0〉e ↔ |−1〉e transition. The optimal working point
(that minimizes both error sources) is a driving field around
125 MHz where an error probability of ∼0.002 is possible. For
many quantum-information-processing tasks (computation or
communication) this may not be low enough.

There are a number of ways to decrease this error proba-
bility. Remember that for the fastest gates we were beginning
to populate the |−1〉e state. We can use a polarized drive field
such that only the |0〉e ↔ |+1〉e transitions is selected. This
occurs for magnetic fields Bγe < D. We plot the results of our
simulations in Figs. 4(e)–4(h). In these cases we are looking
at a two-level driven system which, however, is still subject
to the rotating wave approximation and can break down if the
driving amplitude is larger than the transition frequency. With
a rotating wave approximation, ν = D + Bγe and φ = −π the
dynamics is governed by an effective Hamiltonian of the form

H ≈ �A‖|+1〉e〈+1|eIz − ��0

2
√

2
(|0〉e〈+1|e + |+1〉e〈0|e), (9)

from which we can immediately confirm the intuition that the
electron gates must operate much faster than the entangling
gate time to avoid the hyperfine shift. That is,

A‖ � �0√
2
. (10)

The conditions imposed by Eqs. (8) and (10) imply an optimal
drive frequency, which for a magnetic field of 50 mT is
approximately �0

2π
∼ 250 MHz as found by our numerical

study. In such a case the x-rotation gate

Rx
e = exp

(
i

�0

2
√

2
t[|0〉e〈+1|e + |+1〉e〈0|e]

)
(11)

follows trivially. Similarly, the y-rotation gate is produced
when φ = −π/2 is chosen. A comparison of the model with
a numerical simulation of the system with appropriate decay
probabilities is shown in Figs. 4(e)–4(h). With �0

2π
∼ 250 MHz

we can achieve a π/4 (π/2) rotation in approximately 1.5 ns
(3 ns) with an error probability less than 0.0005 (0.001). These
error probabilities are within what is typically required for
large-scale quantum computation. The main cause of the loss in
fidelity is associated with the A‖ hyperfine interaction and the
breakdown of the rotating wave approximation. If one requires
even-higher-fidelity gates, one can use composite pulses to
decouple the nuclear spin, but at the cost of slower gates.

The polarized microwave driving field (with φ variable)
allows us to perform arbitrary x and y axis rotations, thus
providing a mechanism to achieve the Pauli X and Y gates with
high fidelity. Natural free evolution from �D|+1〉e〈+1|e gives
a z rotation but the time scale for the z rotation is fast and so
good timing is necessary. Alternatively, it is likely to be better
to perform z rotations as a combination of x and y. Combining
these rotations allow the Pauli Z, S, and T gates to be achieved
as well as the Hadamard H gate on the nanosecond timescale.
Finally, combining such operations with the controlled-Z (CZ)
entangling allows an arbitrary controlled unitary to be achieved
with the nuclear spin as the control. In such cases, the overall
gate time (with the nuclear spin as the control) is limited by
the time to perform the CZ gate.
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V. NUCLEAR ROTATIONS

The use of the nuclear spins either as a memory or as
computational qubits has both advantages and disadvantages.
First, the 15N nuclear spin is spin half and so we do not need to
worry about populating other energy levels when we drive it.
Also, the comparative weakness of the nuclear gyromagnetic
ratio provides isolation of the nucleus from electron rotations
regardless of polarization. However, this comes at the cost
of difficulty in affecting rotations on the nuclear-spin qubit
without also affecting the electron spin. To avoid driving the
electron spin, the time needed for nuclear gates will be much
longer than for the entangling operation. However, this longer
time means that the hyperfine interaction cannot be neglected
during nuclear-spin rotations. The consequence of this is that
the hyperfine shift leads to a driving frequency for the nucleus
conditioned on the state of the electron, and that nuclear gates
will need to be clocked on the entangling gate. This could also
be an issue in other model systems for quantum computation.
We can largely avoid this problem because nuclear rotations
are only necessary upon initialization and measurement, which
are both steps for which the electron is in a separable state and
therefore can be manipulated with impunity.

The obvious choice of the electron state is the polarized
ground state |0〉e where the electron and nuclear spins
are effectively decoupled. The parallel hyperfine interaction
imparts no additional phase between the two subsystems. In
other words, while the frequency of the nuclear driving field is
conditioned on the state of the electron (A‖ � �0γn/γe), we
never need to consider this effect as the electron state remains
the same. This argument, however, neglects thermalization
effects on the electron spin which occurs at time scales
around 0.25 s (for room temperature) or longer (for lower
temperatures). With operation times around 50 μs it could be
difficult to achieve high-fidelity operations.

In the Bγe < D regime, the Zeeman splitting of the nucleus
is an order of magnitude smaller than the hyperfine splitting,
which contributes to the |+1〉e|↓〉n ↔ |+1〉e|↑〉n transition, but
not the |0〉e|↓〉n ↔ |0〉e|↑〉n transition. Hence, by initializing
the electron spin in |+1〉e, a larger driving field can be used
before the rotating wave approximation on the nuclear rotation
breaks down, implying a faster nuclear-rotation operation. For
the nuclear spin, two processes are involved in the drive
between the |↑〉n and |↓〉n states. There is obviously the
direct driving shown in HD, and the other is a second-order
process involving the off-resonant drive on the electron and
the perpendicular hyperfine term. Because the gyromagnetic
ratio of the electron is large compared with that of the nucleus,
this second-order term actually dominates at the magnetic field
we have selected, which is necessary for useful nuclear-gate
times. Operating in a regime where the state of the electron is
unchanged by the drive field of frequency

ν = A‖ − Bγn + A2
⊥

2D + 2Bγe
, (12)

and where the perpendicular hyperfine term is off resonance,
it is straightforward to show in our rotating frame that we
perform a single-qubit nuclear rotation of the form

Rφ
n = exp

(
−i

�0

4

∣∣∣∣ A⊥
D + Bγe

− γn

γe

∣∣∣∣σ n
φ t

)
, (13)
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FIG. 5. (Color online) Simulation showing the fidelity for
nuclear-spin rotations under both varying driving field and electron
and nuclear-spin decoherence. The nuclear gate takes the longest to
perform, and is thus most prone to error. We show three different
driving field strengths: (a) 91 MHz, (b) 140 MHz, and (c) 189 MHz.
The black curves show the probability of error of the gate operation
while the red curves show the degree of rotation. The rotation
angle corresponds to the definition of the gate of the form Ry(θ ) =
cos(θ/2)1 + i sin(θ/2)σy. The π/4 points are explicitly indicated. For
these simulations, a full master equation was used with appropriate
relaxation and dephasing rates for both the electron and nuclear spins
(detailed in the Appendix).

where σ n
0 = σ n

x and σ n
−π/2 = σ n

y . The two terms in R
φ
n can

be opposing such that, for a magnetic field B = −0.9477 T,
no driving of the nuclear spin is possible due to destructive
interference. Because we are working in the regimes 0 �
Bγe � D, our gate is fastest for Bγe as small as possible. Now,
as the nuclear gate takes a relatively long time to perform, it
is the most sensitive to error. Figure 5 shows the results of
a simulation of the nuclear-spin rotation for various driving
fields when the electron spin is prepared in the |+1〉e state.
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FIG. 6. Simulation showing the error probability (1 −
〈+|nρ(t)|+〉n) for nuclear-spin rotations under a 189 MHz driving
field for a π/4 y rotation versus time.

For a driving field �0
2π

= 140 MHz, the gate time required to
rotate the nuclear spin from |0〉n to |+〉n is 3.54 μs with a
error probability less than 0.001, as is shown in Fig. 5(b). This
can be compared with a gate time of 57.8 μs for a similar
rotation (but a slightly worse error probability of 0.003) if
the electron spin was polarized in the |0〉e state. Our error
estimate of 0.001 is also on the high side because we take
a conservative estimate based on the maximum value of the
oscillating curve at a given time rather than its minimum.
The error probability can be reduced to below 0.0003 (see
Fig. 6) just by accurately choosing the gate time to work at the
minimum. In such a case our timing accuracy needs to be below
10 ns. By increasing the strength of the driving field, we can in
principle achieve a π/4 rotation of 1 μs with error probability
below 0.001. Such operations can be used to build the single-
qubit-gate set required for quantum-information processing.
However, for the generation of a cluster state, which is the
core resource for most recent scalable quantum computational
models, only the Hadamard H or

√
X operation is required in

general.
While we have been considering only the nuclear spin

operations in this section, the electron spin could also be in
a superposition state, thus allowing a CNOT between electron
and nucleus, for instance, to be performed. However, there is
a significant issue to be addressed before doing this; that is,
when the electron spin is in a superposition state it dephases,
and so it is difficult to achieve a gate operation with infidelity
less than 0.001. This also highlights the necessity to carefully
choose gates dependent on the properties of the physical
system.

The results for both the electron- and nuclear-spin-gate
operations as well as the hyperfine-mediated CZ gate show that
such operations can be achieved under conditions with error
probabilities of 0.001 or less [47]. Such error probabilities are
generally required for quantum-information-processing tasks.
To achieve the faster nuclear-spin rotations we need to polarize
the electron spin in the |+1〉e state.

VI. GRAPH STATES

The creation of a two-qubit cluster state within a single
NV center is straightforward given the set of operations we
have. We begin with both the electron and nuclear spins
prepared in their respective ground states. Then the nuclear
spin is rotated to the |+〉n with the electron spin in the
|+1〉e state. Once this has been completed the electron
spin is then rotated to |+〉e and the natural CZ through
the hyperfine interaction applied to create the cluster state
1
2 (|0〉e|0〉n + |0〉e|1〉n + |+1〉e|0〉n − |+1〉e|1〉n). To extend it
to a larger cluster state, we may consider doping with 13C to
add more qubits to couple to the electron spin. Alternatively,
we could introduce a mechanism to entangle separated electron
spins. The first would be experimentally easier; however,
such an extension limits the size of the system. Furthermore,
as the system becomes larger, the interaction will be more
complicated and hence it is expected to be difficult to achieve
high fidelity. To see this, a further detailed study is necessary
for the dynamics of the multiqubit systems. The latter can
be achieved using optical photons [28] and exhibits a good
scaling nature, although it might look initially experimentally
harder. In such a case the nuclear spins are again prepared
in |+〉n state before the electron spins are entangled into a
Bell state. Once this has been achieved the CZ gate is used to
entangle the electron and nuclear spins—effectively creating
a four-qubit cluster state. If required, a π/4 rotation of the
electron spin followed by its measurement collapses the cluster
state to a cluster between only the nuclear spins. In principle,
this allows an arbitrary graph state to be generated between
arbitrary nuclear spins [48]. Such states could be used for
quantum-computation or -communication tasks.

VII. CIRCUITS AND IMPLEMENTATION

Before implementing quantum circuits, the NV− center
must be properly characterized. This can be done in a
three-tiered way, starting with characterizing the electron spin,
followed by the controlled-phase interaction, and finally the
nuclear spin. For the electron spin, this is straightforward:
Rabi oscillations can be measured optically [46] provided
that the nucleus can be polarized to avoid interference from
the hyperfine shift. Ultimately, once the characterization of a
center is complete, the polarization of the nucleus should be
done using a circuit to effectively swap its state with that of
a polarized electron. However, for characterization purposes
the exchange component of the hyperfine interaction can be
used by preparing the electron in a polarized state and then
sweeping the field over the exchange resonance. Circuits for
characterizing the controlled-phase interaction and nuclear
rotations are given in Fig. 7.

In the scenario of measurement-based quantum compu-
tation, only a few nontrivial quantum circuits are needed
repetitively with a fully characterized system. Specifically,
these are initialization of the nucleus, entangling of the electron
and nucleus, and measuring of the nucleus via the electron. For
initialization of the nucleus, it is clear that we must know the
state of the nucleus or be able to project the nuclear spin
into a known state, which relates itself to the measurement
of the nuclear spin. In fact, the gates needed are applications
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|0 n eiθσz (a)

|0 e eiπσx/4 eiπσy/4 z

(b)

|0 n eiθσx eiπσz/2

|1 e eiπσx/4 eiπσy/4 z

FIG. 7. Characterization of the hyperfine interaction. (a) By
varying the time for which the hyperfine interaction is allowed to
operate (the waiting time between x and y rotations on the electron)
the probability of measuring the electron in |0〉e is P|0〉 = sin2(θ/2).
(b) Characterization of the nuclear spin. By varying the input state
of the nuclear spin and with a set waiting time between electron
rotations, the probability of finding the electron in the |0〉e state is
P|0〉 = sin2(θ ). The dashed line is placed to emphasize that the nuclear
rotation is performed only when the electron is in the |1〉e state, so
that the splitting between the |↑〉n and |↓〉n states is enhanced by
the hyperfine interaction (which is much larger than the magnetic
splitting alone). This circuit can be employed to measure the state of
the nucleus in the z basis.

of the two characterization circuits in Fig. 7 (characterization
and use of electron rotations is considered trivial). By fixing
the nuclear rotation angle and axis in the circuit in Fig. 7,
the nuclear state can be measured in a particular basis.
Application of this circuit, followed by a subsequent reset
of the electron state into |+1〉e and a nuclear rotation qualifies
as a preparation circuit for the nucleus. Application of the
entangling gate consists of no more than a waiting time
between single-qubit operations. With these operations and
a probabilistic mechanism to entangle remote electron spins,
we can then undertake various quantum communication and
distributed quantum-computation tasks.

VIII. CONCLUDING DISCUSSION

In this paper, we have shown a universal set of operations
which can be implemented in a NV− center with a nitrogen-15
nucleus. The fastest operation is the electron-spin rotation,
while the medium-term operation is the entangling gate which
uses the hyperfine interaction. The electron-spin rotations can
be done on timescale such that the nuclear spin is not affected.
For the entangling gate, we utilize the controlled-phase
interaction component rather than the exchange component
of the hyperfine coupling. By sweeping the magnetic field,
the exchange interaction can be turned on and off, making
it useful for quantum-information processing. However, the
controlled-phase interaction is always on and hence during the
iSWAP operation there will be a contribution from the phase part
which will need to be corrected. In addition, any imperfection
in the iSWAP operation will lead to depopulation of the nuclear
spin, opening up an error channel which will shorten the
effective coherence time. Instead, a static field can be used
that is far detuned from the exchange-interaction resonance
to implement a highly efficient controlled-phase gate. This is
preferable in terms of errors and stability coming from the
static magnetic field. Finally, the longest-time operation is the
nuclear-spin gate. This can be done by driving the nuclear

spin weakly enough that we avoid disturbing the electron. In
the case of cluster-state-based computation, the nuclear-spin
rotation is typically required only twice, first at initialization
and then just before prior to measurement. Hence the time
necessary for this gate is not crucial as for the other gates.
However, considering the potentially probabilistic nature of
coupling two remote electron spins, it would be better to have
as quick an operation as possible. Our numerical simulations
show that we can achieve an error probability lower than the
required fault-tolerant thresholds for a distributed quantum
computer. These operations are done without the need for
complicated composite sequences, which should significantly
contribute to make the complexity in building larger scale
NV−-center-based devices more manageable. It is now critical
to re-emphasize that our results are based on operating
temperatures between 4 and 80 K (and not room temperature).
This is because we want our electron-spin relaxation time
T1 approximately 104 times greater than our longest gate
operation (i.e., the nuclear-spin rotation), which takes a few
microseconds to perform. It may be possible to engineer
samples that operate at room temperature with this coherence
properties. Finally, while the focus of this paper has been on
NV− centers with a nitrogen-15 nucleus, our results can be
applied to many other solid-state systems.
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APPENDIX A: THE INTERACTION PICTURE

For completeness it is necessary to define the interaction
picture we are transforming into. The Hamiltonian for the
electron-spin–nuclear-spin NV−-center hybrid system can be
written as

H = H0 + HS + HHF + HD, (A1)

where

H0 = �DS2
z + �BγeSz − �BγnIz, (A2)

HS = �
E

2
(S2

+ + S2
−), (A3)

HHF = �A‖SzIz + 1

2
�A⊥(S+I− + S−I+), (A4)

HD = ��0 cos(ωt + φ)

(
Sx − γn

γe
Ix

)
. (A5)

For our purposes, it is convenient to move to an interac-
tion picture defined by H̄ = eiH0t/�He−iH0t/� − H0. In such
a situation Eq. (A1) simplifies to H̄eff = H̄S + H̄HF + H̄D,
where

H̄S = � E|+1〉e〈−1|eei2Bγet + H.c.,

H̄HF = � A‖SzIz + �
A⊥√

2
[I−| + 1〉e〈0|eei�+t

+ I−|0〉e〈−1|ee−i�−t + H.c.],
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H̄D = ��0√
2

cos(νt + φ)

[
|+1〉e〈0|eei(D+Bγe)t

+ |0〉e〈−1|ee−i(D−Bγe)t + γn√
2γe

I+e−iBγnt

]
+ H.c.,

with �± = D ± Bγe ± Bγn. The parallel term in H̄HF remains
unchanged in this interaction picture since it commutes
with H0.

APPENDIX B: RESONANCES AND THE
STRAIN-INDUCED SPLITTING

The strain-induced splitting from our Hamiltonian causes
the population to oscillate between the |+1〉e and |−1〉e

electron-spin states. If the energy difference between these
states is quite small, then the population may move completely
from one state to the other. In our system the |−1〉e state is
outside of the computational basis, and so we want to avoid
the action of strain-induced splitting. We can derive the width
and position of this resonances with respect to the applied
magnetic field along the NV− axis. Starting with Eq. (A1),
we will neglect the driving term and the perpendicular
hyperfine term (the perpendicular hyperfine term is far from
resonance with the low magnetic fields considered here). In
addition, the strain-induced splitting does not involve the |0〉e

state, so we may disregard this state for the moment. We are
this left with the reduced Hamiltonian

H = �BγeSz − �BγnIz + �A‖SzIz + �
E

2
(S+S+ + S−S−).

There are two resonances which are dependent on the state of
the nucleus through the parallel hyperfine term and the nuclear
magnetic term:

H|↑〉n = �BγeSz + �
A‖
2

Sz + �
E

2
(S+S+ + S−S−),

H|↓〉n = �BγeSz − �
A‖
2

Sz + �
E

2
(S+S+ + S−S−).

Selecting the nucleus in the |↑〉n state, the resultant 2 × 2
Hamiltonian has equal diagonal terms when B = −A‖/2γe

and B = +A‖/2γe when the nucleus is in the |↓〉n state, giving
us the resonances at ∓0.054 mT. Taking the hyperfine terms
into account leads to a shift of these resonances by ≈4.6 μT.
Again assuming that the perpendicular hyperfine interaction
may safely be neglected, the resonances have Lorentzian
profiles of BFWHM = 2E/γe. For a strain-induced splitting of
the order E ∼ 1 MHz our chosen magnetic field of B = 50 mT
is safely distant from these resonances.

APPENDIX C: RESONANCES AND
THE HYPERFINE COUPLING

When a electron transition is close in frequency to the
nuclear transition, an excitation may oscillate between them.

In isolation, the perpendicular hyperfine interaction provides
an iSWAP gate, which is entangling. However, the exchange
interaction is not in isolation due to the parallel hyperfine term
in the Hamiltonian, which may not be tuned to be negligible.
In addition, tuning the exchange interaction increases the
complexity of the gate, as it would require the fine control
of a strong magnetic field. An added incentive to avoid an
exchange interaction is the impact that errors in the interaction
would have on the large-scale system. This interaction was
recently demonstrated as a quantum memory [20], for which
the nucleus is initially polarized and iSWAP and SWAP are the
same up to a global phase. It is conceivable that the inverse
operation could be used to initialize the nuclear state by tuning
the exchange interaction into resonance and polarizing the
electron [21]. This offers a potential alternative to the initial-
ization and readout operations that we describe in Sec. VII.

APPENDIX D: MASTER EQUATION AND
NUMERICAL SIMULATIONS

We need to be able to model the various electron-spin and
nuclear-spin rotations as well the controlled Z gate, including
the effects of decoherence (thermalization) and dephasing on
both the electron and nuclear spins. This can be achieved using
the master equation

∂ρ̄

∂t
= − i

�
[H̄eff,ρ̄] + 
(2)

n (σzρ̄σz − ρ̄)

+ 
(1)
e (n̄e + 1)

2
(2S−ρ̄S+ − S+S−ρ̄ − ρ̄S+S−)

+ 
(1)
e n̄e

2
(2S+ρ̄S− − S−S+ρ̄ − ρ̄S−S+)

+ 
(1)
n (n̄n + 1)

2
(2σ−ρ̄σ+ − σ+σ−ρ̄ − ρ̄σ+σ−)

+ 
(1)
n n̄n

2
(2σ+ρ̄σ− − σ−σ+ρ̄ − ρ̄σ−σ+), (D1)

where 
(1)
e is the decoherence rate of the electron spin (T1

related), 
(1)
n is the decoherence rate of the nuclear spin

(T1 related), and 
(2)
n is the dephasing of the nuclear spin

(T ∗
2 related). S± are the usual raising and lower operators of

the electron while σ± are the raising and lower operators of
the nuclear spin. n̄e (n̄n) is the mean photon number of the
electron-spin (nuclear-spin) bath at a temperature T .

The electron spin also has a dephasing effect, but this cannot
be modelled by a master equation term of the form Szρ̄Sz − ρ̄

because the spin bath comes from low-frequency noise. Low-
frequency noise can be modelled in a slightly different way
by considering adding an extra Hamiltonian of the field H =
λf (t)Sz to H̄eff where λ is the coupling strength and f (t) is a
symmetric classical normalized Gaussian noise function.

The overall master equation can be numerically solved by
using standard techniques and the required fidelities of the
operations calculated.
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[17] A. Beveratos, S. Kühn, R. Brouri, T. Gacoin, J. P. Poizat, and
P. Grangier, Eur. Phys. J. D 18, 191 (2002).

[18] A. Beveratos, R. Brouri, T. Gacoin, A. Villing, J. P. Poizat, and
P. Grangier, Phys. Rev. Lett. 89, 187901 (2002).

[19] F. Jelezko, T. Gaebel, I. Popa, A. Gruber, and J. Wrachtrup,
Phys. Rev. Lett. 92, 076401 (2004).

[20] G. D. Fuchs, G. Burkard, P. V. Klimov, and D. D. Awschalom,
Nat. Phys. 7, 789 (2011).

[21] B. Smeltzer, J. McIntyre, and L. Childress, Phys. Rev. A 80,
050302(R) (2009).

[22] M. V. G. Durr, L. Childress, L. Jiang, E. Togan, J. Maze,
F. Jelezho, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, Science
316, 1312 (2007).

[23] L. Jiang, J. S. Hodges, J. R. Maze, P. Maurer, J. M. Taylor, D. G.
Cory, P. R. Hemmer, R. L. Walsworth, A. Yacoby, A. S. Zibrov,
and M. D. Lukin, Science 326, 267 (2009).

[24] P. Neumann, J. Beck, M. Steiner, F. Rempp, H. Fedder, P. R.
Hemmer, J. Wrachtrup, and F. Jelezho, Science 329, 542 (2010).

[25] L. Robledo, L. Childress, H. Bernien, B. Hensen, F. A.
Alkemade, and R. Hanson, Nature (London) 477, 574
(2011).

[26] L. Childress, M. V. Gurudev Dutt, J. M. Taylor, A. Zibrov,
F. Jelezko, J. Wrachtrup, P. R. Hemmer, and M. D. Lukin,
Science 314, 281 (2006).

[27] H. Bernien, L. Childress, L. Robledo, M. Markham,
D. Twitchen, and R. Hanson, Phys. Rev. Lett. 108, 043604
(2012).

[28] H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. S. Blok,
L. Robledo, T. H. Taminiau, M. Markham, D. J. Twitchen,
L. Childress, and R. Hanson, Nature (London) 497, 86 (2013).

[29] L. I. Childress, J. M. Taylor, A. S. Sørensen, and M. D. Lukin,
Phys. Rev. A 72, 052330 (2005).

[30] L. Childress, J. M. Taylor, A. S. Sørensen, and M. D. Lukin,
Phys. Rev. Lett. 96, 070504 (2006).

[31] S. C. Benjamin, D. E. Browne, J. Fitzsimons, and J. J. L. Morton,
New J. Phys. 8, 141 (2006).

[32] L. Jiang, J. M. Taylor, A. S. Sørensen, and M. D. Lukin, Phys.
Rev. A 76, 062323 (2007).

[33] S. D. Barrett and P. Kok, Phys. Rev. A 71, 060310 (2005).
[34] T. van der Sar, Z. H. Wang, M. S. Blok, H. Bernien, T. H.

Taminiau, D. M. Toyli, D. A. Lidar, D. D. Awschalom,
R. Hanson, and V. V. Dobrovitski, Nature (London) 484, 82
(2012).

[35] R. Raussendorf, J. Harrington, and K. Goyal, Ann. Phys. (NY)
321, 2242 (2006).

[36] While magnetic field manipulation is possible, it is difficult to
achieve with really high fidelity.

[37] S. Felton, A. M. Edmonds, M. E. Newton, P. M. Martineau,
D. Fisher, D. J. Twitchen, and J. M. Baker, Phys. Rev. B 79,
075203 (2009).

[38] Because we are operating with a magnetic field at B = 50 mT we
are far detuned from these resonances and so will be operating
again in the dispersive regime.

[39] A. Jarmola, V. M. Acosta, K. Jensen, S. Chemerisov, and
D. Budker, Phys. Rev. Lett. 108, 197601 (2012).

[40] T. Ishikawa, K.-M. C. Fu, C. Santori, V. M. Acosta, R. G.
Beausoleil, H. Watanabe, S. Shikata, and K. M. Itoh, Nano Lett.
12, 2083 (2012).

[41] K. Fang, V. M. Acosta, C. Santori, Z. Huang, K. M. Itoh,
H. Watanabe, S. Shikata, and R. G. Beausoleil, Phys. Rev. Lett.
110, 130802 (2013).

[42] N. Bar-Gill, L. M. Pham, A. Jarmola, D. Budker, and R. L.
Walsworth, Nat. Commun. 4, 1743 (2013).

[43] P. C. Maurer, G. Kucsko, C. Latta, L. Jiang, N. Y. Yao, S. D.
Bennett, F. Pastawsk, D. Hunger, N. Chisholm, M. Markham,
D. J. Twitchen, J. I. Cirac, and M. D. Lukin, Science 336, 1283
(2012).

[44] B. W. Shore, Phys. Rev. A 24, 1413 (1981).
[45] Assuming both our electron and nuclear spin has been initialized

in their grounds states |0〉e|0〉n, the separable state |+〉e|+〉n can
be created as follows: We begin by first rotating the electron spin
from |0〉e → |+1〉e. A nuclear-spin rotation is then performed
(detailed in the main text), rotating |0〉n → |+〉n. Because the
electron spin is in the |+1〉e state, it does not experience
dephasing. Once the nuclear-spin operation is complete, an
electron-spin rotation takes |+1〉e → |+〉e.

[46] G. D. Fuchs, V. V. Dobrovitski, D. M. Toyli, F. J. Heremans, and
D. D. Awschalom, Science 326, 1520 (2009).

[47] The technique used to perform the nuclear-spin rotations can
also be used to perform controlled nuclear-spin rotations. For

052317-9

http://dx.doi.org/10.1098/rspa.1976.0039
http://dx.doi.org/10.1098/rspa.1976.0039
http://dx.doi.org/10.1098/rspa.1976.0039
http://dx.doi.org/10.1098/rspa.1976.0039
http://dx.doi.org/10.1088/0022-3719/17/8/002
http://dx.doi.org/10.1088/0022-3719/17/8/002
http://dx.doi.org/10.1088/0022-3719/17/8/002
http://dx.doi.org/10.1088/0022-3719/17/8/002
http://dx.doi.org/10.1016/0022-2313(87)90057-3
http://dx.doi.org/10.1016/0022-2313(87)90057-3
http://dx.doi.org/10.1016/0022-2313(87)90057-3
http://dx.doi.org/10.1016/0022-2313(87)90057-3
http://dx.doi.org/10.1088/0953-8984/18/21/S09
http://dx.doi.org/10.1088/0953-8984/18/21/S09
http://dx.doi.org/10.1088/0953-8984/18/21/S09
http://dx.doi.org/10.1088/0953-8984/18/21/S09
http://dx.doi.org/10.1038/nature07278
http://dx.doi.org/10.1038/nature07278
http://dx.doi.org/10.1038/nature07278
http://dx.doi.org/10.1038/nature07278
http://dx.doi.org/10.1038/nature07279
http://dx.doi.org/10.1038/nature07279
http://dx.doi.org/10.1038/nature07279
http://dx.doi.org/10.1038/nature07279
http://dx.doi.org/10.1038/nmat2420
http://dx.doi.org/10.1038/nmat2420
http://dx.doi.org/10.1038/nmat2420
http://dx.doi.org/10.1038/nmat2420
http://dx.doi.org/10.1103/PhysRevB.80.115202
http://dx.doi.org/10.1103/PhysRevB.80.115202
http://dx.doi.org/10.1103/PhysRevB.80.115202
http://dx.doi.org/10.1103/PhysRevB.80.115202
http://dx.doi.org/10.1016/j.diamond.2005.11.019
http://dx.doi.org/10.1016/j.diamond.2005.11.019
http://dx.doi.org/10.1016/j.diamond.2005.11.019
http://dx.doi.org/10.1016/j.diamond.2005.11.019
http://dx.doi.org/10.1073/pnas.0605409104
http://dx.doi.org/10.1073/pnas.0605409104
http://dx.doi.org/10.1073/pnas.0605409104
http://dx.doi.org/10.1073/pnas.0605409104
http://dx.doi.org/10.1529/biophysj.107.108134
http://dx.doi.org/10.1529/biophysj.107.108134
http://dx.doi.org/10.1529/biophysj.107.108134
http://dx.doi.org/10.1529/biophysj.107.108134
http://dx.doi.org/10.1021/nl0716303
http://dx.doi.org/10.1021/nl0716303
http://dx.doi.org/10.1021/nl0716303
http://dx.doi.org/10.1021/nl0716303
http://dx.doi.org/10.1140/epjd/e20020023
http://dx.doi.org/10.1140/epjd/e20020023
http://dx.doi.org/10.1140/epjd/e20020023
http://dx.doi.org/10.1140/epjd/e20020023
http://dx.doi.org/10.1103/PhysRevLett.89.187901
http://dx.doi.org/10.1103/PhysRevLett.89.187901
http://dx.doi.org/10.1103/PhysRevLett.89.187901
http://dx.doi.org/10.1103/PhysRevLett.89.187901
http://dx.doi.org/10.1103/PhysRevLett.92.076401
http://dx.doi.org/10.1103/PhysRevLett.92.076401
http://dx.doi.org/10.1103/PhysRevLett.92.076401
http://dx.doi.org/10.1103/PhysRevLett.92.076401
http://dx.doi.org/10.1038/nphys2026
http://dx.doi.org/10.1038/nphys2026
http://dx.doi.org/10.1038/nphys2026
http://dx.doi.org/10.1038/nphys2026
http://dx.doi.org/10.1103/PhysRevA.80.050302
http://dx.doi.org/10.1103/PhysRevA.80.050302
http://dx.doi.org/10.1103/PhysRevA.80.050302
http://dx.doi.org/10.1103/PhysRevA.80.050302
http://dx.doi.org/10.1126/science.1139831
http://dx.doi.org/10.1126/science.1139831
http://dx.doi.org/10.1126/science.1139831
http://dx.doi.org/10.1126/science.1139831
http://dx.doi.org/10.1126/science.1176496
http://dx.doi.org/10.1126/science.1176496
http://dx.doi.org/10.1126/science.1176496
http://dx.doi.org/10.1126/science.1176496
http://dx.doi.org/10.1126/science.1189075
http://dx.doi.org/10.1126/science.1189075
http://dx.doi.org/10.1126/science.1189075
http://dx.doi.org/10.1126/science.1189075
http://dx.doi.org/10.1038/nature10401
http://dx.doi.org/10.1038/nature10401
http://dx.doi.org/10.1038/nature10401
http://dx.doi.org/10.1038/nature10401
http://dx.doi.org/10.1126/science.1131871
http://dx.doi.org/10.1126/science.1131871
http://dx.doi.org/10.1126/science.1131871
http://dx.doi.org/10.1126/science.1131871
http://dx.doi.org/10.1103/PhysRevLett.108.043604
http://dx.doi.org/10.1103/PhysRevLett.108.043604
http://dx.doi.org/10.1103/PhysRevLett.108.043604
http://dx.doi.org/10.1103/PhysRevLett.108.043604
http://dx.doi.org/10.1038/nature12016
http://dx.doi.org/10.1038/nature12016
http://dx.doi.org/10.1038/nature12016
http://dx.doi.org/10.1038/nature12016
http://dx.doi.org/10.1103/PhysRevA.72.052330
http://dx.doi.org/10.1103/PhysRevA.72.052330
http://dx.doi.org/10.1103/PhysRevA.72.052330
http://dx.doi.org/10.1103/PhysRevA.72.052330
http://dx.doi.org/10.1103/PhysRevLett.96.070504
http://dx.doi.org/10.1103/PhysRevLett.96.070504
http://dx.doi.org/10.1103/PhysRevLett.96.070504
http://dx.doi.org/10.1103/PhysRevLett.96.070504
http://dx.doi.org/10.1088/1367-2630/8/8/141
http://dx.doi.org/10.1088/1367-2630/8/8/141
http://dx.doi.org/10.1088/1367-2630/8/8/141
http://dx.doi.org/10.1088/1367-2630/8/8/141
http://dx.doi.org/10.1103/PhysRevA.76.062323
http://dx.doi.org/10.1103/PhysRevA.76.062323
http://dx.doi.org/10.1103/PhysRevA.76.062323
http://dx.doi.org/10.1103/PhysRevA.76.062323
http://dx.doi.org/10.1103/PhysRevA.71.060310
http://dx.doi.org/10.1103/PhysRevA.71.060310
http://dx.doi.org/10.1103/PhysRevA.71.060310
http://dx.doi.org/10.1103/PhysRevA.71.060310
http://dx.doi.org/10.1038/nature10900
http://dx.doi.org/10.1038/nature10900
http://dx.doi.org/10.1038/nature10900
http://dx.doi.org/10.1038/nature10900
http://dx.doi.org/10.1016/j.aop.2006.01.012
http://dx.doi.org/10.1016/j.aop.2006.01.012
http://dx.doi.org/10.1016/j.aop.2006.01.012
http://dx.doi.org/10.1016/j.aop.2006.01.012
http://dx.doi.org/10.1103/PhysRevB.79.075203
http://dx.doi.org/10.1103/PhysRevB.79.075203
http://dx.doi.org/10.1103/PhysRevB.79.075203
http://dx.doi.org/10.1103/PhysRevB.79.075203
http://dx.doi.org/10.1103/PhysRevLett.108.197601
http://dx.doi.org/10.1103/PhysRevLett.108.197601
http://dx.doi.org/10.1103/PhysRevLett.108.197601
http://dx.doi.org/10.1103/PhysRevLett.108.197601
http://dx.doi.org/10.1021/nl300350r
http://dx.doi.org/10.1021/nl300350r
http://dx.doi.org/10.1021/nl300350r
http://dx.doi.org/10.1021/nl300350r
http://dx.doi.org/10.1103/PhysRevLett.110.130802
http://dx.doi.org/10.1103/PhysRevLett.110.130802
http://dx.doi.org/10.1103/PhysRevLett.110.130802
http://dx.doi.org/10.1103/PhysRevLett.110.130802
http://dx.doi.org/10.1038/ncomms2771
http://dx.doi.org/10.1038/ncomms2771
http://dx.doi.org/10.1038/ncomms2771
http://dx.doi.org/10.1038/ncomms2771
http://dx.doi.org/10.1126/science.1220513
http://dx.doi.org/10.1126/science.1220513
http://dx.doi.org/10.1126/science.1220513
http://dx.doi.org/10.1126/science.1220513
http://dx.doi.org/10.1103/PhysRevA.24.1413
http://dx.doi.org/10.1103/PhysRevA.24.1413
http://dx.doi.org/10.1103/PhysRevA.24.1413
http://dx.doi.org/10.1103/PhysRevA.24.1413
http://dx.doi.org/10.1126/science.1181193
http://dx.doi.org/10.1126/science.1181193
http://dx.doi.org/10.1126/science.1181193
http://dx.doi.org/10.1126/science.1181193


EVERITT, DEVITT, MUNRO, AND NEMOTO PHYSICAL REVIEW A 89, 052317 (2014)

instance, if we prepare the electron spin in the 1√
2
[|0〉e + | +

1〉e] with the nuclear spin in the |0〉n state. Applying a drive

field of frequency ν = A‖ − Bγn + A2
⊥

2D+2Bγe
for a time t such

that �0
4 | A⊥

D+Bγe
− γn

γe
|t = π/2 will result in an entangled state

of the form 1√
2
[|0〉e|0〉n + eiA‖t |+1〉e|1〉n]. The phase factor can

in principle be easily removed; however, we do have an issue
associated with T ∗

2 of the electron spin and the time to perform

the gate. The time to perform the gate is on the order of 7μs while
T ∗

2 ∼ 90μs. Without composite pulses sequences to enhance this
coherence time, we would have an extra intrinsic loss in fidelity
of approximately 0.003.
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