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Recurrent construction of optimal entanglement witnesses for 2 N-qubit systems
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We provide a recurrent construction of entanglement witnesses for a bipartite systems living in a Hilbert space
corresponding to 2N qubits (N qubits in each subsystem). Our construction provides a method of generalization

of the Robertson map that naturally meshes with 2N-qubit systems, i.e., its structure respects the

22N growth of

the state space. We prove that for N > 1 these witnesses are indecomposable and optimal. As a byproduct we
provide a family of PPT (Positive Partial Transpose) entangled states.
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I. INTRODUCTION

Entanglement witnesses (EWs) provide universal tools for
analyzing and detecting quantum entanglement [1,2]. Let us
recall that a Hermitian operator VV defined on a tensor product
space H = H4 ® Hp iscalled an EW if and only if (iff) (V4 ®
oI WA ® ¢pp) = 0 for all product vectors 4 ® ¢p in H
and WV possesses at least one negative eigenvalue. It turns out
that a state p in ‘H is entangled iff it is detected by some EW
[3]; that is, iff there exists an EW W such that Tr \WWp) < 0.In
recent years there has been a considerable effort in constructing
and analyzing the structure of EWs (see, e.g., Refs. [4-20] and
arecent review [21]). However, the general construction of an
EW is not known. Let us recall that an entanglement witness
W is decomposable if

W=A+ B", (1)

where A,B > 0 and B' denotes the partial transposition of
B. EWs that cannot be represented as Eq. (1) are called
indecomposable. Indecomposable EWs are necessary to detect
positive partial transpose (PPT) entangled states (a state p is
PPT if p" > 0). If p is PPT, W is an EW and Tr Wp) < 0,
then p is entangled and W is necessarily indecomposable.
The optimal EW is defined as follows: if W, and W, are two
entanglement witnesses then, following Ref. [5], we call W,
finer than W, if Dyy, 2 Dyy,, where

Dy = {p[Tr(pW) <0}

denotes the set of all entangled states detected by V. Now,
an EW W is optimal if there is no other witness that is finer
than Y. One proves that W is optimal iff for any o« > 0 and a
positive operator P the operator YW — « P is no longer an EW
[5]. The authors of Ref. [5] provided the following sufficient
condition of optimality: for a given EW W one defines

Py ={lY ®¢) e Ha@ Hpl{y @ pIWIY @ ¢) =0}. (2)

If Pyy spans H4 ® Hp, then WV is optimal.

By using the well-known duality between bipartite oper-
ators in H4 ® Hp and linear maps A : B(H4) — B(Hp),
one associates with a given EW W a linear positive map
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by Ayy such that W = (Z ® Ay)P;", where PA+ denotes the
maximally entangled state in H4 ® H4, and Z denotes the
identity map. Due to the fact that WW # 0 the corresponding
map Ay is not completely positive (CP).

In the present paper we provide a recurrent construction
of a family of positive maps Wy : M$Y — MSY for N > 1.
Equivalently, we define a family of EWs W)y in (CHeN @
(C*)®N | Interestingly, W; reproduces the well-known re-
duction map and for N =2 our construction reproduces
the Robertson map [22]. However, for N > 3 it provides a
different class of positive maps (equivalently EWs). Moreover,
we show that for N > 1 these EWSs are indecomposable and
optimal and hence may be used to detect PPT entangled
states. Finally, we show that the so-called structural physical
approximation to Wy is a separable state [23]. As a byproduct
we provide PPT entangled states detected by our witnesses.

II. RECURRENT CONSTRUCTION

In what follows we provide a recurrent construction of
linear positive maps

Wy - M?N — M?N ,
where M?N denotes a tensor product of N copies of M, (a
space of 2 x 2 complex matrices). Let us start with a “vacuum”
map ¥y : C — C defined by Wy(z) = 0 which is evidently

positive but not very interesting. Out of W, we construct a
family of nontrivial positive maps via the following formula:

v (i) = (G ) @
with the diagonal blocks defined as
D;; = I¥N(Tr X — Tr X3,),
and the off-diagonal blocks given recursively by
Ay = X12+ Un(X21), By = Xo1 + YUn(X12).

In Eq. (3) one uses MSMNH) =M, ® M?N and hence we
can rewrite X = Z?,j:l ejj ® X;j, with X;; € M?N ande¢;; =
[i)(j]|. It is clear from the construction that each Wy is trace
preserving and unital, i.e., \IIN(II?N) = H?N.
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Interestingly, one finds ¥ : Ml, — M, to be
X1 X12 X22 —X12
X21  X22 —X21 X11
which reconstructs the reduction map in M, i.e.,

U (X)=R(X) = LTr X — X.

This map is known to be positive, decomposable, and optimal
(even extremal) [15]. Similarly one can reproduce the Robert-
son map:

o, (X | X _ 1 (LTrXy | —A
X | X2 2\ —-B1 | ILTrXy )’

Al = Xp 4+ R(X21),

with
By = X751 + R(X12),

which is known to be positive, indecomposable, and extremal
[13]. Recently, this map has been generalized to higher-
dimensional bipartite systems in several ways [13-16]. In all
cases these generalizations lead to families of indecomposable
and optimal maps. The main difference with Refs. [13-16] is
that the present construction is recurrent; that is, each step uses
the map constructed a step before. In Refs. [13—16] each family
of positive maps is constructed via different generalizations of
the same basic (reduction or Robertson) map.

III. PROPERTIES OF ¥y

In this section we analyze the basic properties of the family
of maps Wy . We already noted that Wy is positive for N = 0,
1, and 2 (actually, the vacuum map ¥ is even CP). The crucial
result of this paper consists in the following:

Theorem 1. The map Wy is positive for any N.

Proof. See the appendix.

Note that for N > 1 the map Wy is not CP. Indeed, the
corresponding EW Wy = (Ily ® Wy)P ™ possesses exactly
one negative eigenvalue,

1
WN¢+ = _2_N¢+’

where ¢ = lei, e; ® e; denotes the (unnormalized) maxi-
mally entangled state. The existence of a negative eigenvalue
of Wy proves that Wy is not CP and hence W)y is a legitimate
entanglement witness.

We already noticed that W, corresponding to the reduction
map, is decomposable while W;, corresponding to the Robert-
son map, is indecomposable. One has the following theorem:

Theorem 2. The map Wy is indecomposable for N > 1.

Proof. To prove indecomposability of Wy it is enough to
find a PPT state p such that Tr Wy p) < 0. Let us consider the
following construction of a family of (unnormalized) matrices
parametrized by ¢ € R:

2N
or = Z eij Q pij, 4
ij=1
with the 2V x 2V blocks p;; defined as follows:
() pii = sy lov — @Y1 = D)W, fori = 1,...,2Y,
(i) pij = O ifi # jandi,j <2V~lori,j > 2N"1,
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FIG. 1. (Color online) Smallest eigenvalues of the matrix p, de-
fined by Eq. (4) and p[ as a function of the parameter ¢ € [—1.5;1.5]
for four different NV. In the case of N = 2,4,5 eigenvalues are scaled
so that everything can be shown on one plot. It does not affect the
positivity of eigenvalues.

(iii) Pii42N-1 = _tWi’i+2N—| fori =1, ... ,2N_1,

(iv) pij = zvav—re;; in the remaining cases,
and W;; = ZLN\IJN(e[ ;). Figure 1 shows how the minimal
eigenvalue of the state p, and the minimal eigenvalue of the
partially transposed state p; depends on the parameter 7. The
smallest eigenvalue of p; becomes strictly negative for < —1
andt > 1. Thus p, is PPT iff || < 1. This statement is true for
all N > 1.

One shows that for any N the expectation value of Wy in
the state p, is given by

—41(2N + 4) 4 2N+2

Tr Wa o) = o ,
and hence p;, is entangled for t € (2,%—14, 1]. The analysis of the
few first cases is shown in Fig. 2.

Proposition 1. p, is PPT iff |t| < 1.
start with N =2. One finds the
representation of an

Proof. Let us

following matrix entanglement

FIG. 2. (Color online) Expectation value of Wy in state p, for
four different values of N.
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witness W,:
—1 .1
1 .. R
1 .1 ..
—1 A |
1 - - -1
1 111 .
8 : 1 ’
| 1
—1- -1
1.1 1
1 - 1
—-1.. . =1
and the (unnormalized) matrix p,
.1 -
1 .o t
2.
L2 1 t
R .. t
A T
1. . J
t . 1
t N .2
.. 2
t 1 - -
A
. .2
1 -t - 2

where 2V x 2V blocks are separated by horizontal and vertical
lines. Moreover, to make the picture more transparent we
denote zeros by dots. Note that positivity of p is controlled
by 2 x 2 and 4 x 4 matrices:

with the corresponding eigenvalues: 1 £ ¢ for A, and 1 £ ¢,
3 £t for A,. Clearly, p > 0iff |¢] < 1. Similarly, the positivity
of p' is controlled by A; and hence p” > 0. In this case one
finds

TrWapr) = (1 = 21)/16,

which shows that p, is entangled for r > 1/2.
For N =3 the positivity of p, is controlled again
by 2x2 matrix A; and the corresponding 8 x 8
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matrix A,

Ay

e [=R=R=TE\

e =E= =)
—_—~ —_—lo koo
S —_——lhooo
O R OO = ==
2O OO = ==

S OO K==~
SO O m ==

Its eigenvalues are given by

1—¢t, 5—t, 3—1t, T7+1t,

where 5 — ¢t and 7 + ¢ are three-fold degenerate. Hence p, > 0
iff |#| < 1. Now, positivity of p' is again controlled by the
2 x 2 matrix A; and hence p, is PPT iff |¢] < 1.

In the general case, the corresponding 2V x 2V matrix A,
has the following structure:

v- ),

and the 2Y~! x 2¥~! matrices X and Y read as follows:

2 0 ... 0 t 1
0o 2V 0 1 1
X= , Y:
0 0o ... 2V 1 1 ... t
One finds the corresponding eigenvalues
1—t, 2% ' 1—r, 2V =1 -1, 2V — 141,

where 2V"! +1 —¢ and 2V — 1 —¢ are 2V~ — 1)-fold
degenerate. Hence if ¢ < 1, then p, is positive. Again,
positivity of o is controlled by the 2 x 2 matrix A; and hence
p: is PPT iff || < 1, which ends the proof.

One can observe that the larger the number of “qubits”,
the smaller the range of ¢ for which the witness detects
entanglement of p,. The decreasing range of ¢ can intuitively
be ascribed to the fact that having more qubits in our system
leads to spreading out the same “amount” of entanglement
between more particles. As a consequence, our witness Wy
might not become strong enough to detect it. In order to fully
understand how the entanglement is being distributed in states
0, and ,otr further and more detailed analysis is necessary.

Following Ref. [5] to prove that Wy are optimal for N > 1
it is enough to find for each N a set of linearly independent
product vectors ¥; ® ¢; € C*®N ® C?®V satisfying Eq. (2).
Let us consider a set of vectors introduced in Ref. [13]:

Gw = {Ya ® Yy,

with ¥, € {e;, fiun,&mun}, Where {e;} stands for an orthonormal
basis and

a=1,...2",

fmn =em + en,

for 1 < m < n < N. Direct calculations show that elements
of Gyy are linearly independent and that

(Vo ® Yo Wila ® ) =0,

8mn = €m + iey,

Va=1,...,N,
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which is sufficient to prove the following theorem:

Theorem 3. For all N > 1, Wy defines a class of optimal
maps.

Positive, but not completely positive maps, unlike entan-
glement witnesses, cannot be directly implemented in the
laboratory. One way to tackle this problem is to approximate
the positive map by a completely positive one which may serve
as a quantum operation. Given a positive map A : B(H) —
B(H) one defines a family of maps

A(p) = pT + (1 - pA.

Let p, be the smallest p such that K(p*) is completely
positive. One calls A(p,) the structural physical approximation
(SPA) of A. It was conjectured [23,24] that the structural
physical approximation to an optimal positive map defines
an entanglement-breaking (EB) map [a completely positive
map £ is entanglement breaking if (Z ® &)p is separable for
an arbitrary state p, see Ref. [25]]. In the language of EWs
SPA conjecture states that if W is an optimal EW, then the
corresponding SPA

D+
dadp

W(ps) = Iy ® I+ (1 — pIW,

defines a separable state. Recently, SPA conjecture has been
disproved for indecomposable EWs in Ref. [26] and for
decomposable ones in Ref. [27] (see also recent papers
[28,29]). Interestingly, the SPA for Wy provides an EB map.
To show this let us recall the following result from Ref. [15]:

Corollary 1. If A : M, — M, is a unital map, and
the smallest eigenvalue of the corresponding entanglement
witness W satisfies &, < —%, then the SPA to W defines a
separable state.

Since for any N > 1 an entanglement witness Wy cor-
responding to Wy possesses only one negative eigenvalue
E=— zLN’ thus the SPA to Wy indeed defines an entanglement-
breaking channel.

IV. CONCLUSIONS

We provided a class of linear positive, but not completely
positive, maps in M?N . These maps are indecomposable and
optimal, and their structural physical approximation gives
rise to an entanglement-breaking channel. Equivalently, our
construction provides entanglement witnesses for bipartite
systems where each subsystem lives in the N-qubit Hilbert
space. It would be interesting to generalize the current recur-
sive construction from M, (C) & M y(C) to M, (C) & My (C)
with arbitrary d > 2.
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APPENDIX: PROOF OF THEOREM 1

Proof. We prove the theorem by induction. We already know
that it holds for N = 1 and N = 2. Now, assuming that it is
true for Wy we grove it for Wy, 1. We shall use the fact that
Wy is con{%actlv , Le.,

YN (Ol < X1, (A1)

where || X|| denotes an operator norm of X, i.e., the maximal
eigenvalue of |X| = v/ XX'. Recall that any unital map is
positive iff it is contractive in the operator norm [30]. To
show that Wy defines a positive map it is enough to show
that it maps any rank-1 projector into a positive element. Let
us consider P = |¢)(y| with ¢ being an arbitrary vector
in C2""'. Since C2""' =" ® C?" one can rewrite Y=
@1'2:1 Jeiyi, with ¥, € C?" and o) + ap = 1. Without
loosing generality one can assume (;|1{;) = 1 and hence

1 [ Ipay | —JaicAy
YUni(P)= 55 i ,
N \—yamAy | e
with Ay = |¥1) (V2| + Yn([¥2) (¥1]). Tt is clear that
Uy 1(P) = 0iff
AnAl < v, (A2)

Lemma 1. The map Wy satisfies
Wy (x)(yDlx) =0, (yWn(x){y) =0,  (A3)

for any vectors |x),|y) € C2".
We prove this by induction. For N = 1 one immediately
verifies Eq. (A3). Now, assuming that Eq. (A3) holds for Wy

we prove it for Wy ;. By using
|X) = lx1 @ x2),  1y) =11 @ y2),

one finds for 2¥ Wy, 1 (|x)(y])

( (y2]x2) Dyw | —1x0) (2] — W (lx2) (1 |)>
—lx2) (y1] — W (lx1) (2] | ’

(yilxg) Mpw
and hence
Wy 1) {yDlx) = Wy (Ix)(y) <M> =0,
|x2)

where we have used Wy(|x2)(yiD|x2) =0. Similarly,

yI¥n(x){y)) = 0.
Now, using Lemma A one arrives at

ANAL =190 (W] + Ow,

where Oy = Wy ([¥2) (Y1 DWN (Y1) (Y2]). Note that Qy is
supported on the subspace orthogonal to |y;) and hence the

set of eigenvalues of A y A;, consists of eigenvalues of Oy and
1. Now, using contractivity (A1), one obtains

N () (W2 DI < Y (Yl < 1,

which shows that the maximal eigenvalue of Q) is not greater
than 1. This finally proves Eq. (A2).
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