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The nonclassicality of single-mode quantum states is studied in relation to the entanglement created by a beam
splitter. It is shown that properly defined quantifications—based on the quantum superposition principle—of
the amounts of nonclassicality and entanglement are strictly related to each other. This can be generalized
to the amount of genuine multipartite entanglement, created from a nonclassical state by an N splitter. As
a consequence, a single-mode state of a given amount of nonclassicality is fully equivalent, as a resource,
to exactly the same amount of entanglement. This relation is also considered in the context of multipartite
entanglement and multimode nonclassicality.
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I. INTRODUCTION

Nonclassical properties of light became a subject of increas-
ing interest, stimulated by the availability of the coherent light
sources since the 1960s. This also led to new developments of
the quantum coherence theory of light [1–4]. The properties
of coherent states appear to be most close to the classical
behavior of a light field [5–9]. For notational simplicity, we
denote them as classical states, with respect to the property
nonclassicality. Any quantum state ρ̂ can be represented in
terms of the Glauber-Sudarshan P representation [2,10],

ρ̂ =
∫

dP (α)|α〉〈α|, (1)

which resembles a mixture of classical (i.e., coherent) states
|α〉. Whenever the P function, P (α), can be interpreted as a
classical probability density, the quantum state is a true mixture
of classical states and, hence, it is called classical. If such a
representation does not exist, i.e., P (α) �� 0, the quantum state
is called nonclassical; see, e.g., Refs. [5–9]. Any nonclassical
state includes quantum superpositions of coherent states.

It is interesting that the notion of entanglement developed
almost independently from that of nonclassicality. The first
studies of entanglement date back to 1935, focusing on
surprising consequences of the quantum description of nature
[11,12]. Nowadays, entanglement is considered to be a funda-
mental resource for quantum information, quantum computa-
tion, quantum metrology, and other applications—altogether
denoted as quantum technology [13–15]. To characterize the
property entanglement, let us consider a bipartite quantum
state,

ρ̂ =
∫

dP (a,b)|a,b〉〈a,b|, (2)

with the notation |a,b〉 = |a〉 ⊗ |b〉 for product states in the
Hilbert spaces of the parties A and B, |a〉 ∈ HA,|b〉 ∈ HB. If
P (a,b) is a classical probability, the state is called separable
[16]. If such a representation cannot be found, i.e., P (a,b) �� 0,
the state is entangled [17,18]. In this case the considered state
requires the global quantum superposition of product states of
both parties. Similar to the property nonclassicality, a product
state |a,b〉 may be considered to be classical, now with respect
to the property entanglement.

The structures of nonclassical and entangled quantum
states, Eqs. (1) and (2), are very similar in a formal sense.
The origin of the quantum effects we are interested in is the
quantum superposition principle. In the words of Ref. [19]:
“The superposition principle is at the heart of the most in-
triguing features of the microscopic world.” Correspondingly,
these authors stated: “When the superposition principle is
applied to composite systems, it leads to the essential concept
of entanglement.” On this basis the question arises: To which
extent can the property nonclassicality of a single-mode system
be related to bipartite entanglement? Most importantly, does
such a formal equivalence imply that nonclassical single-
mode states can be considered as the resource for practical
applications, which usually require bipartite entanglement?

In the present paper we prove the close relation between the
quantification of nonclassicality and entanglement. A unitary
transformation, as it is realized by an optical beam splitter, was
known to convert nonclassicality of a single-mode radiation
field into bipartite entanglement [20–24]. Beyond this fact,
we show that the amount of nonclassicality of a single-mode
radiation field is strictly transformed into the same amount of
bipartite entanglement. More generally, the available amount
of nonclassicality can even be converted into the same amount
of genuine multipartite entanglement. Altogether, this implies
that any amount of entanglement desired as a resource for
applications in quantum technology is equivalent to the same
amount of nonclassicality of a single-mode state.

The paper is structured as follows. In Sec. II we introduce
the unified quantification of nonclassicality and entanglement
on the basis of the quantum superposition principle. Some
elementary examples of the mapping of nonclassicality onto
entanglement are considered in Sec. III. Section IV is devoted
to the derivation of the general quantitative relation between
nonclassicality and entanglement even in the multimode case.
A summary and some conclusions are given in Sec. V.

II. UNIFIED QUANTIFICATION

To quantify the properties nonclassicality and entangle-
ment, a number of different approaches exists. We restrict
attention here to those approaches which are relevant in our
context. Of some interest is a proposal to quantify nonclas-
sicality through the so-called entanglement potential [25].
The problem of this idea is that a manifold of entanglement
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measures was considered in the literature; cf., e.g.,
Refs. [14,15]. Of course, different entanglement measures may
lead to different quantifications of the nonclassicality.

Our approach is fundamentally different in this respect.
We first fix the quantifications of nonclassicality and en-
tanglement, in a manner that relies on the basic algebraic
structures of these kind of quantum states, in close relation
to the fundamental quantum superposition principle. In the
next step, we study the consequences for the quantitative
relation of nonclassicality and entanglement. For quantifying
entanglement, the Schmidt number of, in general, mixed
quantum states was known to obey the requirements of a
measure; cf., e.g., Ref. [14]. Let a given pure, bipartite state
|�Ent〉 have a Schmidt decomposition [13],

|�Ent〉 =
r∑

i=1

λi |ai,bi〉, (3)

with the positive Schmidt coefficients λi and the pairwise
orthonormal states |ai〉 ∈ HA,|bi〉 ∈ HB. This state is more
entangled as its Schmidt rank r is larger, which counts to which
extent the state includes quantum superpositions of product
states. Note that the number r of superpositions is not only
relevant as a fundamental concept of quantum physics but also
for practical applications. For example, the accessible alphabet
for quantum communication and computation is increased
with increasing r values. This is relevant for the teleportation
of high-dimensional quantum states [26] or security against
eavesdropping [27]. Additionally, the complexity of possible
processes to be handled by a local unitary operation is also
growing.

For quantifying nonclassicality, one may proceed in a
formally similar way. Let a pure single-mode state |�Ncl〉 be
expressed in terms of superpositions of r coherent states |αi〉,

|�Ncl〉 =
r∑

i=1

κi |αi〉, (4)

with αi �= αj for i �= j , and complex values of κi �= 0. This
minimal number r of superpositions defines the nonclassicality
measure of the state [28]; it counts the desired number of
superpositions of classical states |αi〉.

The quantification of entanglement and nonclassicality by
a number r has common features from the fundamental point
of view. First, in both cases the number r quantifies the
extent to which we make use of the quantum superposition
principle to represent the given state. Second, the extension
of this quantification to mixed states is based on a convex
roof construction [29], leading to the Schmidt number as an
entanglement quantifier. The same can be done for mixed
single-mode nonclassicality. Third, the Schmidt number and
its monotones have been proven to be the only universal
entanglement measures; i.e., they do not increase under all
separable operations [30]. This implies the impossibility of
increasing this entanglement measure by any local operation.
Correspondingly, both the number of superpositions of coher-
ent states and its monotones do not increase under all classical
operations [28].

Beside these similarities, however, there exists a mathemat-
ical difference between the representations of |�Ent〉 and |�Ncl〉

FIG. 1. A classical or nonclassical field is prepared. The signal
field (SI) is combined on a 50 : 50 beam splitter (BS) with vacuum.
Depending on the input state, the output can be highly or weakly
entangled, or even separable.

and the respective quantifications. Whereas the former state is
expressed in terms of orthonormal states, the latter is not,
since the coherent states are nonorthogonal. Hence, we have
to study the consequences of this difference in more detail.
Before doing this, we consider some elementary examples.

III. ELEMENTARY EXAMPLES

Let us consider the action of a symmetric 50 : 50 beam
splitter, producing typical entangled quantum states out of a
nonclassical state and a vacuum input state; see Fig. 1.

We start with fields in the input ports to be the coherent
state |α〉 and the vacuum state |0〉. In the output ports we get a
product of coherent states,

|α,0〉 BS�−→
∣∣∣∣ α√

2
,

α√
2

〉
, (5)

by selecting, without loss of generality, a phase difference in
the two output ports. It is well known that any classical input
yields a separable output for the scenario in Fig. 1; cf. [20–24].

Now we consider an example of a weakly nonclassical input
state, i.e., r = 2, the so-called odd coherent state [31], in one
of the input channels. The action of the beam splitter yields

Nα(|α〉 − | − α〉) ⊗ |0〉
BS�−→ Nα

(∣∣∣∣ α√
2
,

α√
2

〉
−

∣∣∣∣ − α√
2
, − α√

2

〉)
, (6)

with Nα = {2(1 − exp[−2|α|2)]}−1/2. The resulting quantum
state in the output ports is clearly entangled. In the represen-
tation with coherent states it is a superposition of two product
states, resulting from the properties of the nonclassical input
state.

It is interesting to consider this result in the limit of
vanishing coherent amplitude, |α| → 0. In this case, Eq. (6)
reduces—up to a global phase—to

|1,0〉 BS�−→ 1√
2

(|1,0〉 + |0,1〉), (7)

so that a single photon transforms into a Bell state. The
expression on the right-hand side is given in the Schmidt de-
composition, indicating a weak entanglement with a Schmidt
rank of only r = 2. This holds also true for the expression (6)
for general values of α, as we clearly demonstrate below.
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Let us consider another example with the inputs being a
vacuum state and a squeezed vacuum state |sv〉. The latter can
be expressed as

|sv〉 = 1√
μ

exp

[
− ν

2μ
â† 2

]
|0〉, (8)

with the real and complex parameters μ and ν, respectively;
cf., e.g., Ref. [8]. The parameter |ν| =

√
μ2 − 1 controls the

quantum noise suppression of the squeezed state. The latter
may be expanded in terms of coherent states as

|sv〉 =
∫

d2α

π
√

μ
exp

[
− ν

2μ
α∗ 2 − |α|2

2

]
|α〉. (9)

Making use of Eq. (5), we get in the output channels of the
beam splitter the entangled state

|sv,0〉 BS�−→
∫

d2α

π
√

μ
exp

[
− ν

2μ
α∗ 2 − |α|2

2

]∣∣∣∣ α√
2
,

α√
2

〉
.

(10)

The input state |sv〉 is necessarily expressed by an infinite
number of superpositions of coherent states [28]. The rep-
resentation of the entangled output state requires an infinite
number of superpositions of products of coherent states.
Hence, a strongly nonclassical input state, with r = ∞, yields
a correspondingly strong entanglement in the output channels.

At this point it is worth commenting on the quantification of
nonclassical states, as considered recently in Ref. [28]. In this
paper we had introduced an algebraic approach of quantifying
the state under study by the number of superpositions of
coherent states required for its representation. The conclusion
was that the representation of the Fock state requires an
infinite number of coherent states. This holds true, as long
as we consider representations excluding the degenerate case,
in which some of the coherent states may become equal. In
the example of splitting a single photon by a beam splitter,
we have exactly such a degenerate situation. It can be seen
from Eqs. (6) and (7) that two coherent states are enough to
represent the single photon state, if we include the degenerate
representation—contrary to the approach in Ref. [28].

In a similar way, cf. Eqs. (6) and (7), we can represent any
Fock state |n〉 as the limit of a difference quotient:

|n〉 = â†n
√

n!
|0〉 = ∂n

α

[
1√
n!

exp

( |α|2
2

)
|α〉

]
|α=0

= lim
α→0

∑n
j=0

n!(−1)n−j

j !(n−j )! exp
( |jα|2

2

)|jα〉
√

n!|α|n , (11)

which requires the superposition of r = n + 1 coherent states.
This result is fully consistent with the splitting of an n-photon
Fock state by the beam splitter in Fig. 1,

|n,0〉 BS�−→ 1

2n/2

n∑
j=0

(
k

j

)1/2

|j,n − j 〉, (12)

which yields an entangled state with a Schmidt rank of r =
n + 1.

In this context it is worth remembering the Hahn-Banach
separation theorem [32], which can be applied to separate the
convex set of up to r superpositions from the remaining states.

Its proof requires closed sets, e.g., the closure of all convex
combinations of pure states with a number of superpositions
less than or equal to r . On this basis, the quantification of both
entanglement and nonclassicality as considered in the context
of Eqs. (3) and (4), respectively, has to include this closure.
As a consequence, the nonclassicality quantification yields the
result that a squeezed vacuum is strongly nonclassical, when
compared with an n-photon Fock state. As found above, by
splitting the corresponding states with a beam splitter, we get
stronger entanglement for the squeezed vacuum as for the
n-photon state. Let us note that the Wigner function of any
photon-number state (with n > 0) has negative contributions,
whereas the Wigner function of a squeezed state is even a
classical (Gaussian) one. This implies that negativities of
the Wigner function are no indication of the strength of
nonclassicality of a quantum state, in the sense of the quantum
superposition principle.

IV. GENERAL QUANTITATIVE RELATION

It can be shown in two steps that the setup in Fig. 1 maps
the nonclassicality measure of the input to the entanglement
measure of the output. First, we show that a superposition of r

coherent states yields a superposition of an output state with a
Schmidt rank r . Second, the first step together with the fact that
the beam splitter preserves the purity of any input state, i.e., its
mixing properties, implies that the amount of nonclassicality
of an arbitrary mixed input state transforms to exactly the same
amount of entanglement in the output ports.

A. Bipartite entanglement

Let us consider the mapping of the input state |�Ncl〉 defined
in Eq. (4). We get

r∑
i=1

κi |αi,0〉 BS�−→
r∑

i=1

κi

∣∣∣∣ αi√
2
,

αi√
2

〉
. (13)

Since the right-hand side is not the Schmidt decomposition,
we still have to show that the Schmidt rank agrees with the
number r of superimposed coherent states of the input state.
Note that the Schmidt rank r is independent of the basis
expansion. If we can prove the linear independence of the
coherent states, the Schmidt decomposition is readily obtained
by an orthonormalization procedure.

In order to prove that Eq. (13) is given in terms of
linearly independent vectors, we have to prove that any set
{|α1〉, . . . ,|αr〉}, with αi �= αj for i �= j , is linearly indepen-
dent. For simplicity, we ignored the scaling 2−1/2 of the
coherent amplitudes. Let us consider the Fock basis expansion,
|α〉 = ∑∞

n=0 exp(−|α|2/2)αn|n〉/√n!, which we truncate to
photon numbers below r . The resulting quadratic matrix M is
defined by its elements

Mj,n = exp

(
− |αj |2

2

)
αj

n

√
n!

, (14)

for n = 0, . . . ,r − 1 and j = 1, . . . ,r . If det M �= 0,
we get that its rows j have to be linearly inde-
pendent, and, hence, the set {|α1〉, . . . ,|αr〉} is lin-
early independent. Let us additionally define the invert-
ible diagonal matrices D1 = diag(

√
0!, . . . ,

√
(r − 1)!) and
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D2 = diag( exp(−|α1|2/2), . . . , exp(−|αr |2/2)). This yields
the so-called Vandermonde matrix V = D−1

2 M D1 [33],

Vj,n = αj
n. (15)

Its determinant is given by

det V =
∏

1�i<j�r

(αi − αj ) �= 0, (16)

since αi �= αj . Due to the fact that D1 and D2 are invertible,
det V �= 0 is equivalent to det M �= 0. Hence, the coherent
states {|α1〉, . . . ,|αr〉} are linearly independent, and the output
state in Eq. (13) has the Schmidt rank of r .

We may further generalize the mapping in Eq. (13) to
the case of mixed states. For this purpose we assume that
the amplitudes of the input state obey the classical statistics
Pcl({αi},{κi}), which is a joint probability for the coherent
amplitudes αi and arbitrary complex coefficients κi with i =
1, . . . ,r . The corresponding mixed input state is transformed
via∫

dPcl({αi},{κi})
r∑

i,j=1

κiκ
∗
j |αi〉〈αj | ⊗ |0〉〈0|

BS�−→
∫

dPcl({αi},{κi})
r∑

i,j=1

κiκ
∗
j

∣∣∣∣ αi√
2
,

αi√
2

〉〈
αj√

2
,
αj√

2

∣∣∣∣
(17)

into a mixed output state. This is a classical mixture of pure
states with a Schmidt rank less or equal to r , since, here, we
allow some κi to become zero in order to ensure the closure of
the set of mixed states.

B. Multipartite entanglement

Let us further extend the approach to multipartite entangle-
ment. We may consider an N splitter (NS) as given in Fig. 2,
being the generalization of a beam splitter to N modes. It acts
on a multimode coherent state as

|α〉 NS�−→ |Tα〉, (18)

for the unitary matrix T = (tj,j ′)Nj,j ′=1 and the coherent
amplitudes α ∈ CN . Let us note that this scheme is not
restricted to an equal splitting of the input intensities into
the output modes. Especially in the bipartite case, N = 2, this
generalizes our previous results beyond the particular choice
of a 50 : 50 beam splitter.

FIG. 2. A nonclassical input state (SI) is combined with a
classical N − 1-mode vacuum state (dotted lines). In general, the
output state shows multipartite entanglement.

In this setup, the input state |�Ncl〉 in Eq. (4) together with
N − 1 times vacuum transform as

|�Ncl,0, . . . ,0〉 NS�−→
r∑

i=1

κi |t1,1αi, . . . ,tN,1αi〉. (19)

For each output mode j the states {|tj,1α1〉, . . . ,|tj,1αr〉}
are linearly independent for tj,1 �= 0; see Eq. (16). This
follows from the fact that αi �= αi ′ is equivalent to tj,1αi �=
tj,1αi ′ . Hence, the output state is a GHZ-type state; cf.
Refs. [34–36]. Such a state exhibits the same amount of
genuine multipartite entanglement as the amount of nonclas-
sicality of the input state, which follows from the generalized
version of the Schmidt rank in Ref. [37].

Our general finding shows that the resources, which arise
from the amount of nonclassicality of a given input state, can be
directly mapped onto the entanglement resource in the output
ports of a beam splitter. In this sense, the setup in Fig. 1 can
be used in the following form. A single-mode nonclassical
state, having a nonclassicality quantified by r superpositions
of coherent states, can be prepared, e.g., by a nonlinear optical
device. A simple beam splitter maps the output ports to
an entangled quantum resource with an amount of bipartite
entanglement which is necessarily equal to r . Replacing
the beam splitter by an N splitter, cf. Fig. 2, one even gets gen-
uine multipartite entanglement of strength r from the single-
mode nonclassical input state. It is also worth mentioning that
the replacement of the vacuum inputs by coherent states does
not affect the amount of entanglement in the output states.

C. Bipartite nonclassicality and entanglement correlations

We started our consideration with the relation of single-
mode nonclassicality to bipartite entanglement. Now we
generalize this approach to the notion to bipartite nonclas-
sicality. This property can be quantified by the number R of
superpositions of a bipartite coherent states,

|�2−Ncl〉 =
R∑

i=1

κi |αi,βi〉, (20)

with (αi,βi) �= (αi ′,βi ′ ) for i �= i ′. At a sketchy look this
property may appear to be closely related to entanglement;
hence we need to consider it in more detail.

Let us consider the example of two copies of the state
in Eq. (4), which yields a bipartite product state |�Ncl〉⊗2

with a nonclassicality of R = r2. Hence the logarithm of
R is additive, log R = 2 log r , as it has been shown for the
corresponding entanglement measure in Ref. [37]. A 50 : 50
beam splitter transforms |α,β〉 to |(α + β)/

√
2,(α − β)/

√
2〉.

These considerations can be used to get a brighter output state,
as a first step towards so-called macroscopic entanglement
[38,39]. Using the two copies of the single-mode nonclassical
state as the two input modes of the beam splitter, the output
state is

(|α〉 − | − α〉)⊗2

BS�→ |
√

2α,0〉 − |0,
√

2α〉 − |0, −
√

2α〉 + | −
√

2α,0〉
= (|

√
2α〉 + | −

√
2α〉)|0〉 − |0〉(|

√
2α〉 + | −

√
2α〉),

(21)
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where the initial coherent amplitudes are scaled with√
2 > 1. The output state has the amount R = 4 of bipartite

nonclassicality. The entanglement is, however, quantified by
the Schmidt rank of r = 2.

The state in Eq. (20) can be entangled with a certain Schmidt
rank or separable. Moreover, a Schmidt number R state needs
an expansion of at least R different coherent (product) states.
Hence, in this generalized scenario the bipartite nonclassicality
is bounded from below by the Schmidt number. Similarly, this
bounding property is valid for multimode nonclassicality and
entanglement.

We finally note that nonclassicality has been also considered
in the context of general time-dependent quantum correlations
of light [40]. Using the fact that the amount of single-mode
input nonclassicality is perfectly mapped to the amount of
output entanglement, it is possible to define time-dependent
entanglement correlations. For example, the scenario in Eq. (7)
together with a time delay in one output mode could be
interpreted as quantum entanglement between different times.
The most elementary scenario of this type is the well-known
photon antibunching effect [41]. In this case the single-
mode input state is replaced by a field showing nonclassical
time-delayed intensity correlations, which violate a Schwarz
inequality. In the output ports of the beam splitter this yields a
kind of time-delayed entanglement.

V. SUMMARY AND CONCLUSIONS

We have considered the relation of nonclassicality of a
single-mode radiation field and the entanglement, which is

obtained by splitting the nonclassical state by a beam splitter.
The quantification of both properties, nonclassicality and
entanglement, is strictly based on the number of quantum
superpositions of classical states with respect to the corre-
sponding quantum property. We have shown that the amount
of single-mode nonclassicality of the input state directly maps
to the same amount of entanglement available in the two output
ports of the beam splitter. Using a multiport splitter, one can
even map the amount of single-mode nonclassicality onto the
same amount of multipartite entanglement. We additionally
showed that the amount of multipartite nonclassicality is
an upper bound for the entanglement. We also outlined the
possibility to relate time-dependent quantum correlations to
entanglement between different times.

Altogether, this opens a variety of possibilities to properly
prepare the nonclassical single-mode state, in order to obtain
a desired class of entangled quantum states. Often it is much
simpler to prepare a single-mode state than an entangled one.
On this basis it is obvious that the nonclassicality of the single
mode under control may be considered as the resource for
such applications in quantum technology, which are usually
based on the property entanglement. It is worth noting that our
approach not only applies to radiation fields but also to other
harmonic degrees of freedom, such as the quantized motion of
trapped atoms and others.
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