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Optical lattices with exceptional points in the continuum
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The spectral, dynamical, and topological properties of physical systems described by non-Hermitian (including
PT -symmetric) Hamiltonians are deeply modified by the appearance of exceptional points and spectral
singularities. Here we show that exceptional points in the continuum can arise in non-Hermitian (yet admitting
an entirely real-valued energy spectrum) optical lattices with engineered defects. At an exceptional point,
the lattice sustains a bound state with an energy embedded in the spectrum of scattered states, similar to
the von Neumann–Wigner bound states in the continuum of Hermitian lattices. However, the dynamical and
scattering properties of the bound state at an exceptional point are deeply different from those of ordinary
von Neumann–Wigner bound states in a Hermitian system. In particular, the bound state in the continuum
at an exceptional point is an unstable state that can secularly grow by an infinitesimal perturbation. Such
properties are discussed in details for transport of discretized light in a PT -symmetric array of coupled optical
waveguides, which could provide an experimentally accessible system to observe exceptional points in the
continuum.
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I. INTRODUCTION

Non-Hermitian Hamiltonians (NHHs) are widely used to
describe open quantum systems in many areas of science [1,2].
Interestingly, in certain cases a NHH H can show an entire
real-valued energy spectrum, in spite of non-self-adjointness.
Such a remarkable property has been especially investi-
gated for PT -symmetric Hamiltonians [3], although several
examples of non-PT -invariant Hamiltonians, yet admitting
an entire real-valued energy spectrum, have been provided.
However, the reality of the spectrum does not correspond
to orthogonality of eigenstates and, most importantly, does
not ensure diagonalizability, which may be prevented by the
presence of exceptional points (EPs) in the point spectrum
of H [4–6], or of spectral singularities in the continuous
part of the spectrum [7]. The physical implications of both
EPs and spectral singularities have attracted great attention
in recent years, and have been investigated in several physical
systems [5–17]. Exceptional points correspond to degeneracies
of a NHH where both eigenvalues and eigenvectors of
a finite-dimensional Hamiltonian H coalesce as a system
parameter is varied [4,5]. EPs cause PT symmetry breaking
in PT -symmetric systems of finite dimension. EPs of a
NHH exhibit highly nontrivial characteristics compared with
those of most common Hermitian degeneracies, especially
concerning adiabatic features and geometric phases, which
have been demonstrated in a series of experiments using
microwave [8] and optical [9] cavities. In the quantum realm,
the existence of EPs has been predicted theoretically in a wide
range of systems, such as in atomic or molecular spectra [10],
in atom waves [11], and in non-Hermitian Bose-Hubbard
models [12]. Photonic structures in the presence of gain or
loss are a natural arena in which EPs can play a role, since
they are described by a non-Hermitian operator arising from
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a complex dielectric function [18]. Optics has provided in the
past few years a formidable testbed where the main features of
NHH systems, including those with PT symmetry, have been
experimentally observed and exploited to mold the flow of light
in new ways [19]. Examples of optical NHH admitting EPs
include lasers [13], coupled waveguides [14,15], and optical
resonators [16].

Most of the previous theoretical and experimental works on
EPs have been limited to considering finite-dimensional NHH
systems, or EPs of resonance states. In infinite-dimensional
systems, the appearance of EPs in the continuum of the energy
spectrum (not to be confused with spectral singularities [7,17])
has been theoretically studied in few recent works [20–22],
mainly from a mathematical perspective. EPs in the continuum
are energies E0 embedded in the continuous spectrum of
scattered states of H that sustain bound (normalizable) states
with a number of associated functions [21]. Hence at an
EP in the continuum the NHH H supports bound states
similar to so-called bound states in the continuum (BIC)
of von Neumann–Wigner type [23] found in the Hermitian
case. BIC states have been predicted to occur in a wide
range of quantum and classical systems, including atomic
and molecular systems [24], semiconductor and mesoscopic
structures [25], quantum Hall insulators [26], and Hubbard
models [27]. Experimental observations of BIC states in the
Hermitian case have been reported in a few recent works
using waveguide arrays [28,29] and photonic crystals [30].
However, EPs in the continuum are not just BIC states, since
they are defective states [21]. The main physical implication
is that, as opposed to a BIC state in an Hermitian system,
the BIC state of an EP in the continuum is an unstable state,
even though the spectrum of H is entirely real-valued. So far,
EPs in the continuum have been predicted to occur for the
Schrödinger equation with certain specially tailored complex
potentials [20,21], synthesized by application of a double
supersymmetric (Darboux) transformation to the free-particle
Hamiltonian [31]. Such special potentials, besides showing
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an EP, are also transparent potentials. Unfortunately, they are
very difficult to implement in any physical system. On the
other hand, light transport in discretized optical structures [32]
provides a feasible laboratory tool where the physical features
of NHH can be observed [15,19,33].

In this work we introduce EPs in the continuum in discrete
(tight-binding) lattices, which can describe light propagation in
arrays of evanescently coupled optical waveguides, and discuss
their dynamical and scattering properties. In particular, the
different behavior of EPs in the continuum as compared to
ordinary BIC modes of Hermitian lattices is highlighted. The
class of discrete optical lattices, with an entirely real-valued
energy spectrum and admitting an EP in the continuum, is
synthesized by application in a nontrivial way of a double
discrete Darboux transformation [34,35] to a homogenous
Hermitian optical lattice.

The paper is organized as follows. In Sec. II NHH tight-
binding lattices with one EP in the continuum are synthesized,
using a double Darboux transformation technique. The basic
difference between EPs in the continuum and ordinary BIC
states of von Neumann–Wigner type is also elucidated. In
Sec. III an example of a simple lattice model with modulated
hopping rates, which shows an EP at the lattice band center,
is presented, and a possible physical realization using an
array of evanescently coupled optical waveguides is suggested.
Section IV outlines the main conclusions. Finally, a few
technical issues are discussed in three Appendices.

II. TIGHT-BINDING LATTICES WITH EXCEPTIONAL
POINTS IN THE CONTINUUM

A powerful technique to generate EPs in the continuum
for the continuous Schrödinger equation is the application of a
multiple Darboux (supersymmetric) transformation to the free-
particle equation. Multiple supersymmetric transformations
have been used to synthesize either Hermitian [22,31] or
non-Hermitian [20,21] potentials supporting BIC states. In
particular, in Ref. [21] it was shown that the Schrödinger
equation i∂tψ = Hψ = −∂2

xψ + V (x)ψ with the specially
tailored complex potential V (x) = 16α2[α(x − λ) sin(2αx) +
2 cos2(αx)]/[sin(2αx) + 2α(x − λ)]2 [with Im(λ) �= 0, α real]
sustains the BIC state ψ0(x) = cos(2αx)/[sin(2αx + 2α(x −
λ)] at the energy E = α2, which is an EP in the continuum.
Moreover, such a defective potential is invisible—i.e. plane
waves with any wave number k �= ±α are fully transmitted
across the defect with unitary transmittance and no phase delay
or advancement—as if the defect were absent. Unfortunately,
such specially-tailored complex optical potentials are difficult
to implement in physical systems, such as matter waves or
optical systems. On the other hand, discrete optical potentials
that describe light transport in waveguide array structures
or optical mesh lattices could provide an experimentally
accessible platform to observe suchinvisible defects with
EPs in the continuum. In this section we aim to synthesize
a tight-binding lattice with EPs in the continuum using a
discrete analog of the double Darboux (supersymmetric)
transformation. For the sake of clarity, the technique of double
Darboux transformation for the discrete Schrödinger equation
is presented in Appendix A.

A. Lattice synthesis

In the nearest-neighbor approximation, a tight binding
lattice is described by the Hamiltonian

H =
∑

n

κn(|n − 1〉〈n| + |n〉〈n − 1|) +
∑

n

Vn|n〉〈n|, (1)

where |n〉 is a Wannier state localized at site n of the lattice,
κn is the hopping rate between sites |n − 1〉 and |n〉, and
Vn is the energy of Wannier state |n〉. The main idea of
the the double discrete Darboux technique is to consider
an initial homogeneous Hermitian lattice with Hamiltonian
H = H1, corresponding to κn = κ and Vn = 0 in Eq. (1),
and to synthesize, using the intertwining operator technique
and via an intermediate Hamiltonian H2, a final partner
NH lattice Hamiltonian H = H3, which is isospectral to H1

but showing an EP at an energy E = μ1 embedded in the
continuous spectrum. The hopping rates and site energies of the
intermediate (H2) and final (H3) Hamiltonians are constructed
from the eigensolution φ(1)

n of the equation H1φ
(1)
n = μ1φ

(1)
n ,

which is given by

φ(1)
n = cos(q0n + σ ) (2)

with μ1 = 2κ cos q0. In Eq. (2), q0 and σ are real-valued
parameters, which are chosen such that φ(1)

n is nonvanishing.
Typically, we will assume q0 to be a rational number, so that
there exists a finite number ε > 0 such that |φ(1)

n | > ε for any
integer n. Such a condition ensures that the hopping rates and
potential of the intermediate Hamiltonian H2 are nonsingular
and bounded. Note that μ1 belongs to the continuous spectrum
ofH1, i.e., it is embedded into the lattice band −2κ � E � 2κ .
For the given choice of H1, μ1, and φ(1)

n , a double Darboux
transformation can be applied following the procedure outlined
in Appendix A. After some lengthy calculations, the following
expression for the hopping rates and site potentials of the
partner Hamiltonian H3 can be derived:

κ (3)
n = κ

√
ρnρn−2

ρ2
n−1

, (3)

V (3)
n = −κ

sin2 q0

cos(q0n + σ ) cos[q0(n − 1) + σ ]

+ κ
cos[q0(n − 1) + σ ]

cos(q0n + σ )

ρn+1

ρn

− κ
cos[q0(n − 2) + σ ]

cos[q0(n − 1) + σ ]

ρn

ρn−1
, (4)

where we have set

ρn ≡ λ + n + sin(q0n) cos[q0(n − 1) + 2σ ]

sin q0
(5)

and where λ is an arbitrary complex parameter. At the energy
E = μ1, H3 admits a bound state |ω〉, given by

ωn = cos[q0(n − 1) + σ ]√
ρnρn−1

. (6)
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FIG. 1. (Color online) An example of a non-Hermitian lattice
H3 synthesized by a double Darboux transformation for parameter
values λ = i, q0 = π/4, and σ = π/3. (a) Behavior of the normalized
hopping rates κn/κ . (b) Behavior of the normalized optical potential
Vn/κ . (c) BIC mode amplitudes ωn and (d) the corresponding
associated function fn. Bold dots and stars refer to the real and
imaginary parts, respectively.

B. Lattice properties

The properties of the lattice described by the partner
Hamiltonian H3 can be readily obtained from an analysis of
Eqs. (3)–(6):

(i) Since ρn → ∞ as n → ±∞, one has κ (3)
n → κ and

V (3)
n → 0 as n → ±∞, i.e., the lattice described by the

Hamiltonian H3 is asymptotically a homogenous lattice.
Physically, this means that we are dealing with a homogenous
lattice with some defects. Moreover, since κ (3)

n and V (3)
n

are generally complex-valued, the lattice is non-Hermitian
(though rather generally H3 is not PT symmetric). An
example of distributions of lattice hopping rates and site
energy potentials, synthesized by the double discrete Darboux
transformation, is shown in Figs. 1(a) and 1(b).

(ii) ωn is vanishing like ∼1/n as n → ∞, i.e.,
∑

n |ωn|2 <

∞, and thus the energy E = μ1 = 2κ cos q0 belongs to the
point spectrum of H3. Hence |ω〉, defined by Eq. (6), is a BIC
state for the lattice Hamiltonian H3. An example of the BIC
mode distribution is shown in Fig. 1(c).

(iii) The continuous spectrum of H3 is the energy interval
−2κ � E � 2κ , with E �= μ1. For any energy E = μ in such
an interval, with μ �= μ1, there are two non-normalizable (but
limited) linearly independent eigenfunctions ξ±

n of H3, which
can be readily obtained from the plane-wave (Bloch) eigen-
states ψn(q) ∼ exp(±iqn) of H1 via the linear transformation
(A22) given in Appendix A. They read explicitly

ξ±
n (q) = κ exp(±iqn)

μ − μ1
[An + Bn exp(∓iq) + Cn exp(∓2iq)]

(7)
where μ = 2κ cos q,

An =
√

ρn−1

ρn

, (8)

Bn = − cos(q0n + σ )

cos[q0(n − 1) + σ ]

√
ρn−1

ρn

− cos[q0(n − 2) + σ ]

cos[q0(n − 1) + σ ]

√
ρn

ρn−1
, (9)

Cn =
√

ρn

ρn−1
, (10)

and ρn are given by Eq. (5). The asymptotic behavior of the
solutions ξ±

n (q) as n → ±∞ reads

ξ±
n � exp[±iq(n − 1)], (11)

from which it follows that the defect of the asymptotically
homogenous lattice defined by the HamiltonianH3 is invisible;
i.e., the transmission coefficient t(q) for any incident Bloch
wave, with wave number q �= ±q0, is equal to 1 [t(q) = 1 for
q �= ±q0].

(iv) The energy E = μ1 = 2κ cos q0 is an EP in the
continuum of H3 with N = 2 algebraic multiplicity. This
means [21] that there exists an associated function fn to the
BIC eigenstate ωn, which is a non-normalizable but limited
function as n → ∞ [36], such that

(H3 − μ1)|ω〉 = 0, (12)

(H3 − μ1)|f 〉 = |ω〉. (13)

The explicit expression of the associated function |f 〉 is
derived in the Appendix B and reads

fn = − i

8κ sin2 q0
lim

q→q0

∂Gn

∂q
, (14)

where we have set

Gn(q) = exp(iqn + iσ )[An + Bn exp(−iq) + Cn exp(−2iq)]

− exp(−iqn − iσ )[An + Bn exp(iq)

+Cn exp(2iq)]. (15)

fn turns out to have the following asymptotic behavior as
n → ±∞ (see the Appendix B):

fn � − 1

2κ sin q0
sin[q0(n − 1) + σ ]. (16)

An example of the associated function fn to the BIC mode is
shown in Fig. 1(d).
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C. Exceptional points and bound states in the
continuum of von Neumann–Wigner type

As shown in the previous subsection, the energy E = μ1

embedded in the continuous lattice spectrum belongs to the
point spectrum of H3, and the normalizable state |ω〉 is
effectively a BIC mode of von Neumann–Wigner type [23].
However, there is a deep physical difference between the
properties of an ordinary BIC mode of von Neumann–Wigner
type in Hermitian systems and an EP in the continuum. To
clarify this point, let us notice that an ordinary BIC state
|ω〉 in a Hermitian system is a marginally stable state; i.e., a
perturbation added to |ω〉 does not secularly grow. Conversely,
the BIC mode |ω〉 in a NHH which is an exceptional point in
the continuum turns out to be an unstable state, even though the
spectrum of the NHH is entirely real-valued. This means that
a perturbation can induce a secular growth of the amplitude of
the BIC mode |ω〉, a feature which is a clear signature of the
“defective” nature of the EP. To show the unstable behavior of
the BIC at an EP, let us note that the Schrödinger equation

i
∂|ψ(t)〉

∂t
= H3|ψ(t)〉 (17)

is satisfied by the function

|ψ(t)〉 = [(1 − iεt)|ω〉 + ε|f 〉] exp(−iμ1t) (18)

for any arbitrary value of the constant ε, where |f 〉 is the
associated function to the BIC mode |ω〉. This means that
any arbitrarily small perturbation shaped like the associated
function fn will lead to a secular growth of the amplitude
of the BIC mode. Correspondingly, the norm

√|〈ψ(t)|ψ(t)〉|
of the wave function will grow linearly with time t , in spite
of the fact that the Hamiltonian has an entirely real energy
spectrum. An example will be discussed in more details in the
next section.

It should be finally noticed that, like for the continuous
Schrödinger equation [21], the presence of an exceptional
point in the continuum makes the mathematical problem of
the resolution of the identity for the Hamiltonian H3 rather
sophisticated. This nontrivial problem, however, will not be
considered in the present work.

III. A SIMPLE PT -SYMMETRIC OPTICAL LATTICE
WITH AN EXCEPTIONAL POINT IN THE CONTINUUM

In this section we present a rather simple example of
a NHH lattice that can describe light transport in arrays
of evanescently-coupled optical waveguides, and discuss the
physical properties of the EP in the continuum. The lattice is
obtained using the double discrete Darboux transformation,
outlined in the previous section, in the limiting case λ = 1,
σ = π/2 and q0 → π/2. For such parameter values, from
Eqs.(3-5) one obtains the isospectral lattice described by the
Hamiltonian H3 with

κ (3)
n = κ

{√
(n + 1)/(n − 1) n even,√
(n − 2)/n n odd,

(19)

V (3)
n = 0. (20)

FIG. 2. (Color online) (a) Distribution of the normalized hopping
rates κn/κ for the lattice defined by Eq. (47). Bold dots and stars refer
to the real and imaginary parts, respectively. (b) Schematic of an
array of coupled optical waveguides that realizes the inhomogeneous
hopping rates in (a) with effective complex couplings at sites n = −1,
0, and 1.

Note that the lattice has a inhomogeneous distribution of
the hopping rates κ (3)

n in the neighborhood of the defective
region (near n = 0), whereas the site energies are homogeneus
like for the initial lattice H1 (i.e., V (3)

n = V (1)
n = 0). The

distribution of the inhomogenous hopping rates is shown in
Fig. 2(a). The non-Hemitian nature of the lattice comes from
the fact that the hopping rates κ0 and κ1 are imaginary, namely
κ0 = κ1 = √−1κ = ±iκ; for n �= 0,1, the hopping rates κ (3)

n

are instead real-valued. Note that there is some arbitrariness at
this stage in the choice of the sign of κ0 and κ1, i.e., one can take
κ0 = −κ1 = iκ or κ0 = κ1 = iκ . The two choices, however,
are essentially equivalent, since one can switch from one to
the other by application of a π phase slip to the amplitudes
cn above (or below) the n = 0 site. We will consider here
the case κ0 = −κ1 = iκ , for which the lattice turns out to
be PT symmetric. In coupled optical waveguides, an effective
imaginary coupling constant can be realized by suitable
longitudinal modulation of the complex refractive index in the
central waveguide n = 0 of the lattice, as discussed in details
at the end of this section (see also [35]). The inhomogeneous
coupling constants κn for n �= 0,1 can be readily obtained
by judicious waveguide spacing, as demonstrated for instance
in the experiment of Ref. [29]. A schematic of the optical
waveguide array is shown in Fig. 2(b). The EP in the continuum
occurs at the energy μ1 = 2κ cos q0 = 0. The BIC mode ωn

and corresponding associated function fn, as obtained from
Eqs. (6) and (16), read explicitly

ωn =
{

n
|n|

in√
n2−1

n even,

0 n odd,
(21)

fn = − 1

2κ
sin(πn/2). (22)

Note that the BIC mode ωn has an algebraic decay and
is similar to the von Neumann–Wigner BIC mode recently
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predicted and observed in Ref. [29] for a Hermitian lattice with
inhomogeneous hopping rates. However, as briefly mentioned
in the previous section and discussed now in more detail, the
scattering and dynamical properties of a BIC at an EP deeply
deviate from those of an ordinary BIC state in a Hermitian
lattice. To clarify such a point, let us consider an associated
Hermitian optical lattice defined by the Hamiltonian H4 with

κ (4)
n = κ

⎧⎪⎪⎨
⎪⎪⎩

√
(n + 1)/(n − 1) n even, n �= 0,√
(n − 2)/n n odd, n �= 1,

1 n = 0,

−1 n = 1,

(23)

V (4)
n = 0. (24)

Basically, the Hermitian optical lattice H4 is obtained from the
PT -symmetric lattice H3 by replacing the imaginary hopping
rates κ

(3)
0 = −κ

(3)
1 = iκ with the real ones κ

(4)
0 = −κ

(4)
1 = κ .

It can be readily shown that the Hermitian lattice H4 sustains
a von Neumann–Wigner BIC mode at energy E = 0, given by

ω(H )
n =

⎧⎨
⎩

n
|n|

in√
n2−1

n even, n �= 0

1 n = 0,

0 n odd,

(25)

Note that such a BIC mode simply deviates from the BIC mode
ωn ofH3 because of the different amplitude at lattice site n = 0
[compare Eqs. (21) and (25)]. Obviously, E = 0 is not an EP
for H4, because H4 is Hermitian. In addition to the BIC mode,
the Hermtian lattice H4 sustains two other bound states with
energy E � ±2.31κ outside the lattice band, i.e., ordinary
bound states in the gap (like those discussed in Ref. [29]).
To highlight the different physical properties between the BIC
mode at the EP point for the non-Hermitian lattice H3 and the
ordinary BIC mode for the Hermitian lattice H4, we compare
the propagation and scattering features of the two lattices.

Propagation: single-site excitation. In Fig. 3 we show the
numerically computed evolution of the optical light intensity
|cn(t)|2 for excitation of the n = 0 lattice waveguide, i.e.,
for the initial condition cn(0) = δn,0, where in the optical
context t is an effective propagation distance. In the figure,
the evolution of the square root of the normalized total optical
power

√
P (t)/P (0), with P (t) = ∑

n |cn(t)|2, is also shown.
Note that, owing to the existence of the BIC mode, localization
is observed in both the Hermitian and PT -symmetric optical
lattices. In the Hermitian case, a clear mode beating is
observed, which arises from the excitation of the BIC mode
and the other bound states in the gap; this scenario is similar to
the one observed in the experiment of Ref. [29]. Obviously the
total optical power is conserved in this case. Conversely, for
the PT -symmetric lattice [Fig. 3(a)] the optical power shows
a secular growth with time, in spite of the entire real-valued
energy spectrum. As discussed in Sec. III C, such an algebraic
growth [P (t) ∼ t2] is the clear signature of the instability of
the BIC state because E = 0 is an EP in the continuum.

Scattering of plane waves. To compare the scattering
properties of the two optical lattices, we assume that the lattices
are effectively homogeneous far from the defective region, i.e.,
we take kn = κ for n � −N and n � N + 1, where N is a
large enough integer [37]. In this case, the scattering states
of the lattice in the homogenous regions n � −N and n � N

FIG. 3. (Color online) Beam propagation along (a) the PT -
symmetric lattice H3, and (b) the Hermitian lattice H4 for single
waveguide excitation cn(0) = δn,0. The left panels show the evolution
of the beam intensity |cn(t)|2 in a pseudocolor map, whereas the right
panels show the evolution of the square root of normalized optical
power, i.e.,

√
P (t)/P (0) with P (t) = ∑

n |cn(t)|2.

are Bloch states with wave number q, corresponding to the
energy E = 2κ cos q. For a wave incident from the left side,
the scattered state has the form

cn(E) =
{

exp(−iqn) + r(q) exp(iqn) n � −N,

t(q) exp(−iqn) n � N,
(26)

where t(q) and r(q) are the spectral transmission and reflection
(for left-side incidence) coefficients. An accurate computation
of t(q) and r(q) can be accomplished by a standard transfer
matrix method, as discussed in Appendix C. In Fig. 4 we
compare the spectral transmission and reflection coefficients
for the two lattices H3 and H4, assuming N = 200. Note
that, according to the theoretical analysis of Sec. III B,
the defect in the non-Hermitian lattice H3 is effectively
invisible for q �= π/2, i.e., r(q) = 0 and t(q) = 1 like in
an effective homogeneous lattice. Near q = π/2, a narrow
structured resonance deep (peak) in the spectral transmittance
(reflectance) is observed, whose width shrinks as the number
N is increased. Conversely, the defect in the Hermitian lattice
H4 is not manifestly an invisible defect.

Finally, let us discuss a possible method to realize effective
complex hopping rates κ

(3)
0 = κ

(3)
1 = iκ in the optical

lattice. To this aim, let us consider an array of evanescently
coupled optical waveguides with engineered hopping rates
κn = κ (3)

n as given by Eq. (19), except for n �= 0,1 where
we take κ0 = κ1 = �, � being a real-valued (Hermitian)
coupling to be determined. In practice, inhomogeneous
values of the couplings are realized by controlling the
waveguide spacing [29]. At the central waveguide n = 0,
we superimpose a longitudinal modulation of both effective
propagation constant and optical gain/loss, described by a
complex periodic function γ (t) of the propagation distance
t with spatial period �; see Fig. 2(b) for a schematic of
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FIG. 4. (Color online) (a) Behavior of the numerically computed
spectral transmittance |t |2 (upper panel), spectral reflectance |r|2
(middle panel), and phase of the spectral transmission coefficient
t (lower panel) as a function of the Bloch wave number q of
incident wave for the PT -symmetric optical lattice described by
the Hamiltonian H3 [Eqs. (47) and (48)]. The insets in the upper and
middle panels show an enlargement of the spectral behavior near the
wave number q = π/2. (b) Same as (a), but for the Hermitian optical
lattice defined by the Hamiltonian H4 [Eqs. (51) and (52)].

the optical structure. Light propagation in such an array of
waveguides is described by the set of coupled-mode equations

i
dan

dt
= κnan−1 + κn+1an+1 + γ (t)δn,0an (27)

for the modal amplitudes an(t) of light trapped in the various
guides. After setting an(t) = cn(t) for n �= 0 and a0(t) =
c0(t) exp[−i

∫ t

0 dξγ (ξ )], for a rapidly oscillating function
γ (t), i.e., for � smaller than ∼2π/κ , the rotating-wave approx-
imation can be applied, leading to the following set of effective
coupled-mode equations for the amplitudes cn(z) [35]:

i
dcn

dt
= κncn−1 + κn+1cn−1, n �= 0,±1, (28)

i
dc0

dt
= �R+(c−1 + c1), (29)

i
dc1

dt
= �R−c0 + κ2c2, (30)

i
dc−1

dt
= �R−c0 + κ−1c−2, (31)

where we have set

R± ≡ 1

�

∫ �

0
dt exp

[
± i

∫ t

0
dξγ (ξ )

]
. (32)

The lattice with effective hopping rates (19) is thus obtained,
provided that the longitudinal modulation γ (t) of the complex
refractive index in waveguide n = 0 is chosen to satisfy the
constraint

R+ = R− = iκ/�. (33)

This condition can be realized for a wide range of modulation
profiles. Let us discuss two possible cases.

(i) Sinusoidal modulation. Let us assume a modulation of
the effective refractive index of the form

γ (t) = (α + iβ) cos(2πt/�), (34)

where α and β are the modulation depths of the real (propa-
gation constant detuning) and imaginary (gain/loss term) parts
of the modulation. In this case one has R± = J0(�), where
� = �(α + iβ)/(2π ) and J0 is the Bessel function of first kind
and zero order. If, for instance, we assume α = 2 × 2π/� and
β = −2.096 × 2π/�, one has R± = J0(�) � 1.9414i and the
condition (33) is thus satisfied for � � κ/1.9414.

(ii) Square-wave modulation. Let us assume a square-wave
modulation of the effective refractive index of the form

γ (t) = (α + iβ)H (2πt/�) (35)

where H (x) is a 2π -periodic square wave with zero mean, i.e.,
H (x + 2π ) = H (x), H (x) = 1 for 0 < x < π/2 and 3π/2 <

x < 2π , and H (x) = −1 for π/2 < x < 3π/2. This means
that the central waveguide n = 0 is segmented, with segments
of lengths �/2 that alternate optical amplification/loss and
high/low effective index. In this case one has R± = sin(�)/�,
where now � = �(α + iβ)/4. If, for instance, we assume
α = 2.7255 × 4/� and β = −1.3707 × 4/�, one has R± =
sin(�)/� � 0.6182i and the condition (33) is thus satisfied
for � � κ/0.6182.

IV. CONCLUSIONS

The spectral and dynamical properties of non-Hermitian
(including PT -symmetric) systems are strongly influenced by
the appearance of exceptional points and spectral singularities.
In Hamiltonians with an entire real energy spectrum, such
singular energies usually appear at the onset of PT symmetry
breaking and are responsible for a secular (unstable) growth
of the wave function in spite of the reality of the energy
spectrum. Exceptional points are generally found in finite-
dimensional Hamiltonians with a discrete energy spectrum,
whereas spectral singularities are defective states belonging
to the continuous energy spectrum, and thus cannot be found
in finite-dimensional systems. In this work we have shown
that a class of exceptional points, namely exceptional points in
the continuum, can arise in non-Hermitian optical lattices with
engineered defects. At an exceptional point, the lattice sustains
a bound state with an energy embedded in the spectrum
of scattered states, similar to the von Neumann–Wigner
bound states in the continuum of Hermitian lattices. Such
states can be sustained in defective lattices synthesized by
application of a double discrete Darboux (supersymmetric)
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transformation to the homogeneous Hermitian lattice. The
dynamical and scattering properties of bound states in the
continuum at an exceptional point are deeply modified by
the defective nature of an exceptional point. In particular,
contrary to the usual von Neumann–Wigner bound states
of Hermitian systems, the bound states in the continuum at
an exceptional point are unstable states that can secularly
grow by an infinitesimal perturbation. Such properties have
been discussed in detail for transport of discretized light in
a PT -symmetric array of coupled optical waveguides, which
could provide an experimentally accessible system to observe
exceptional points in the continuum.

ACKNOWLEDGMENT

This work was supported by the Fondazione Cariplo
(project New Frontiers in Plasmonic Nanosensing, Rif.
2011-0338).

APPENDIX A: DOUBLE DARBOUX TRANSFORMATION
FOR THE DISCRETE SCHRÖDINGER EQUATION

In this Appendix we provide, for the sake of completeness
and clarity of the analysis, a brief review of the single and
double Darboux transformation techniques for the discrete
Schrödinger equation. For a more comprehensive and extended
study of the discrete Darboux technique we refer the reader to
previous references [34,35].

1. Simple Darboux transformation

Let us consider a one-dimensional tight-binding lattice
described by the Hamiltonian

H =
∑

n

κn(|n − 1〉〈n| + |n〉〈n − 1|) +
∑

n

Vn|n〉〈n|, (A1)

where |n〉 is a Wannier state localized at site n of the lattice,
κn is the hopping rate between sites |n − 1〉, and |n〉, and Vn

is the energy of Wannier state |n〉. The energy spectrum E

of H is obtained from the eigenvalue problem of the discrete
Schrödinger equation,

κnψn−1 + κn+1ψn+1 + Vnψn = Eψn (A2)

with eigenstate |ψ〉 = ∑
n ψn|n〉. The point spectrum of H

corresponds to energies E with normalizable eigenstates
(
∑

n |ψn|2 < ∞), whereas the continuous spectrum of H
corresponds to to energies E at which the eigenstate is
not normalizable but |ψn| is limited as n → ±∞ (improper
eigenfunctions). For instance, for the homogeneous Hermitian
lattice, corresponding to κn = κ and Vn = 0, the energy
spectrum is purely continuous and given by the usual tight-
binding band −2κ � E � 2κ with (improper) eigenstates
ψn = exp(iqn), where −π � q < π is the Bloch wave num-
ber and E = 2κ cos q. Note that H turns out to be Hermitian
provided that the hopping amplitudes κn and site energies Vn

are real-valued parameters.
Let us indicate byH1 the tight-binding Hamiltonian defined

by Eq. (A1) with hopping amplitudes and site energies
given by κ (1)

n and V (1)
n , respectively, and let us assume that

κ (1)
n → κ > 0 and V (1)

n → 0 as n → ±∞, i.e., that the lattice
is asymptotically homogeneous. Let us then indicate by

|φ(1)〉 = ∑
n φ(1)

n |n〉 one of the two linearly independent solu-
tions to the discrete Schrödinger equationH1|φ(1)〉 = μ1|φ(1)〉,
i.e.,

κ (1)
n φ

(1)
n−1 + κ

(1)
n+1φ

(1)
n+1 + V (1)

n φ(1)
n = μ1φ

(1)
n , (A3)

where μ1 can or cannot belong to the spectrum of H1. It can be
then shown that the following factorization for H1 holds [35]:

H1 = Q1R1 + μ1, (A4)

where

Q1 =
∑

n

(
q(1)

n |n〉〈n| + q̄
(1)
n−1|n − 1〉〈n|), (A5)

R1 =
∑

n

(
r (1)
n |n〉〈n| + r̄

(1)
n+1|n + 1〉〈n|), (A6)

and

r (1)
n = −

√
κ

(1)
n φ

(1)
n−1

φ
(1)
n

, (A7)

r̄ (1)
n = −κ (1)

n

r
(1)
n

, (A8)

q(1)
n = −r (1)

n , (A9)

q̄(1)
n = −r̄

(1)
n+1. (A10)

Let us then introduce the new Hamiltonian H2 obtained from
H1 by interchanging the operators R1 and Q1, i.e., let us set

H2 = R1Q1 + μ1. (A11)

H2 will be referred to as the partner Hamiltonian of H1. H2

describes the Hamiltonian of a tight-binding lattice [i.e., it is
of the form (A1)] with hopping amplitudes and site energies
{κ (2)

n ,V (2)
n } given by

κ (2)
n = κ (1)

n

r
(1)
n−1

r
(1)
n

, (A12)

V (2)
n = V (1)

n + κ
(1)
n+1

φ
(1)
n+1

φ
(1)
n

− κ (1)
n

φ(1)
n

φ
(1)
n−1

. (A13)

Note that, to avoid the occurrence of divergences in κ (2)
n and

V (2)
n , the sequence φ(1)

n is generally required not to vanish at
any n. The following properties then hold:

(i) If |ψ〉 satisfies the discrete Schrödinger equation
H1|ψ〉 = μ|ψ〉 with μ �= μ1, then the state |ξ 〉 = R1|ψ〉, i.e.,

ξn = r (1)
n ψn + r̄ (1)

n ψn−1 (A14)

satisfies the equation H2|ξ 〉 = μ|ξ 〉.
(ii) The equation H2|ψ〉 = μ1|ψ〉 is satisfied for |ψ〉 = |θ〉

with Wannier amplitudes

θn = 1√
κ

(1)
n φ

(1)
n φ

(1)
n−1

. (A15)

We remark that in the previous relations μ and μ1 can or cannot
belong to the spectrum of H1. An important consequence of
the two above properties is that the two Hamiltonians H1 and
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H2 are isospectral, i.e., they have the same energy spectrum,
apart from E = μ1, which might or might not belong to the
spectrum of either one of H1 or H2.

2. Double Darboux transformation

According to the analysis of the previous subsection, the
function |θ〉 = ∑

n θn|n〉 defined by Eq. (A15) is a solution
to the discrete Schrödinger equation H2|θ〉 = μ1|θ〉. The
most general solution |φ(2)〉 to the same equation can be
readily calculated and, apart from an unessential multiplication
constant, reads

φ(2)
n = θn

(
λ +

n−1∑
k=0

1

κ
(2)
k θkθk+1

)
, (A16)

where λ is an arbitrary complex-valued number. Besides the
decomposition (A11), we can also formally write

H2 = Q2R2 + μ1, (A17)

where we have set

Q2 =
∑

n

(
q(2)

n |n〉〈n| + q̄
(2)
n−1|n − 1〉〈n|), (A18)

R2 =
∑

n

(
r (2)
n |n〉〈n| + r̄

(2)
n+1|n + 1〉〈n|). (A19)

The expressions of r (2)
n , r̄ (2)

n , q(2)
n , and q̄(2)

n entering in
Eqs. (A18) and (A19) have the same form as Eqs. (A7)–(A10),
with (1) replaced by (2). We then introduce the new Hamiltonian
H3 obtained from H2 by interchanging the operators R2

and Q2, i.e.,

H3 = R2Q2 + μ1. (A20)

The Hamiltonian H3 describes a tight-binding lattice with
hopping amplitudes and site energies {κ (3)

n ,V (3)
n }, which have

the same expressions as Eqs. (A12) and (A13) provided that
the replacement (1)→(2) is made on the right-hand sides of the
equations. The Hamiltonian H3 is isospectral to H1, apart
from the energy value E = μ1 which needs to be separately
investigated. The state |ω〉 defined by

ωn = 1√
κ

(2)
n φ

(2)
n φ

(2)
n−1

(A21)

satisfies the equation H3|ω〉 = μ1|ω〉. For μ �= μ1, the
solution |ξ 〉 to the equation H3|ξ 〉 = μ|ξ 〉 can be readily
obtained from the solution |ψ〉 of the discrete Schrödinger
equation H1|ψ〉 = μ|ψ〉 via the linear transformation
|ξ 〉 = R2R1|ψ〉, i.e.,

ξn = r (2)
n r (1)

n ψn + [
r (2)
n r̄ (1)

n + r
(1)
n−1r̄

(2)
n

]
ψn−1 + r̄

(1)
n−1r̄

(2)
n ψn−2.

(A22)

APPENDIX B: ASSOCIATED FUNCTION
TO THE BIC MODE

In this Appendix we show that the energy E = μ1 is
an exceptional point of the Hamiltonian H3 with algebraic
multiplicity N = 2; i.e., that there exists a non-normalizable
but limited associated function |f 〉 satisfying Eq. (13) given

in the text. To this aim, let us consider the following linear
combination of improper eigenfuctions of H3:

Fn(q) = i
μ − μ1

4κ sin q0
[ξ+

n (q) exp(iσ ) − ξ−
n exp(−iσ )], (B1)

where μ = μ(q) = 2κ cos q, μ1 = μ(q0), and ξ±
n (q) are de-

fined by Eqs. (7)–(10) given in the text. In contrast to ξ±
n (q)

which are singular at q = q0, Fn(q) is a limited and nonsingular
function for any value of q, including q = q0. In fact, after
some tedious but straightforward algebra one can show that the
BIC mode ωn is obtained from Fn(q) in the limit q → q0, i.e.,

ωn = lim
q→q0

Fn(q). (B2)

Let us introduce the shifted Hamiltonian H′ = H3 − μ1

and the function ψn(q) = Fn(q)/(q − q0). Hence
H′ψn(q) = (μ − μ1)ψn(q) for any q in the neighborhood of
q1, with q �= q1, and μ = μ(q). Let us then apply the operator
H′ to the function (q − q0)(∂ψn/∂q). One has

H′
(

(q − q0)
∂ψn

∂q

)
= (q − q0)

∂

∂q
H′ψn

= ∂μ

∂q
Fn + (μ − μ1)

∂Fn

∂q
− (μ − μ1)ψn,

(B3)

i.e.,

H′
(

ψn + (q − q0)
∂ψn

∂q

)
= ∂μ

∂q
Fn + (μ − μ1)

∂Fn

∂q
. (B4)

Since ψn + (q − q0)(∂ψn/∂q) = (∂Fn/∂q), from Eq. (B4)
one obtains

H′ ∂Fn

∂q
= ∂μ

∂q
Fn + (μ − μ1)

∂Fn

∂q
. (B5)

If we take the limit of both sides in Eq. (B5) for q → q0, since
μ − μ1 → 0, Fn(q) → ωn, and ∂Fn/∂q is a nonsingular
function, one has

H′
(

lim
q→q0

∂Fn

∂q

)
=

(
∂μ

∂q

)
q0

ωn. (B6)

Taking into account that (∂μ/∂q)q0 = −2κ sin q0,
H′ = H3 − μ1, and using Eqs. (7) and (B1) one finally obtains

(H3 − μ1)fn = ωn, (B7)

where we have set

fn = − i

8κ sin2 q0
lim

q→q0

∂Gn(q)

∂q
(B8)

and Gn(q) is defined by Eq. (15) given in the text. It should be
noted that (∂Gn/∂q) contains secularly growing terms with
the power law ∼n as n → ∞; however, it can be readily shown
from Eqs. (8)–(10) and (15) that such terms vanish when
taking the limit q → q0; i.e., fn is a limited function with
respect to index n. More precisely, the following asymptotic
behavior for the associated function fn as n → ±∞ can be
readily obtained after taking the limit q → q0 in Eq. (B8):

fn � − 1

2κ sin q0
sin[q0(n − 1) + σ ]. (B9)
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APPENDIX C: TRANSFER MATRIX METHOD FOR THE
COMPUTATION OF THE SPECTRAL TRANSMISSION

AND REFLECTION COEFFICIENTS OF
A DEFECTIVE LATTICE

In this Appendix we briefly discuss an accurate transfer
matrix method to compute the spectral transmission and
reflection coefficients in a defective lattice, described by a
rather generic Hamiltonian H given by Eq. (1) in the text, with
κn → κ and Vn → 0 as n → ±∞. To this aim, let us consider
a sufficiently large integer N , and let us effectively assume
κn = κ for n � −N , n � N + 1, and Vn = 0 for |n| � N .
This is a physically reasonable assumption, since in practice
the defective region can be considered compact. Under such
an assumption, there are generally two linearly independent
scattered states ofH with energy E = 2κ cos q, corresponding
to a Bloch wave incident from either the left or right side of
the defect. For left-side incidence, in the homogenous lattice
regions the scattered state has the form

cn(q) =
{

exp(−iqn) + r(q) exp(iqn) n � −N,

t(q) exp(−iqn) n � N,
(C1)

where t(q) and r(q) are the spectral transmission and reflection
(for left-side incidence) coefficients, and q is the Bloch wave
number (0 � q � π ). To determine the expressions of t(q) and
r(q), let us note that from Eq. (A2) the following relation holds:(

cn+1

cn

)
= Mn

(
cn

cn−1

)
, (C2)

where we have set

Mn =
(

(E − Vn)/κn+1 −κn/κn+1

1 0

)
(C3)

and E = 2κ cos q. Hence one has(
cN+1

cN

)
= Q

(
c−N

c−N−1

)
, (C4)

where

Q = MN × MN−1 × · · · × M−N+1 × M−N . (C5)

From Eqs.(C1) and (C4) it then follows that(
t(q) exp[−iq(N + 1)]

t(q) exp(−iqN )

)

=
(
Q11 Q12

Q21 Q22

) (
exp(iqN ) + r(q) exp(−iqN )

exp[iq(N + 1)] + r(q) exp[−iq(N + 1)]

)
,

(C6)

where Qik are the elements of the 2 × 2 matrix Q. Equation
(C6) can be solved, yielding the following expressions for the
reflection and transmission coefficients:

r(q) = exp(2iqN )

× Q21 exp(−iq) − Q12 exp(iq) + Q22 − Q11

Q11 − Q22 exp(−2iq) + (Q12 − Q21) exp(−iq)
,

(C7)

t(q) = Q11 exp(iq)[exp(2iqN )

+ r(q)] + Q12[exp(2iqN + 2iq) + r(q)]. (C8)

Hence, to compute the spectral transmission and reflection
coefficients, for a fixed value of the Bloch wave number q one
first calculate the transfer matrix Q using Eqs. (C3) and (C5),
and then one calculate r(q) and t(q) using Eqs. (C7) and (C8).
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[15] C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides,
M. Segev, and D. Kip, Nat. Phys. 6, 192 (2010).

052132-9

http://dx.doi.org/10.1016/S0370-1573(98)00002-7
http://dx.doi.org/10.1016/S0370-1573(98)00002-7
http://dx.doi.org/10.1016/S0370-1573(98)00002-7
http://dx.doi.org/10.1016/S0370-1573(98)00002-7
http://dx.doi.org/10.1016/j.physrep.2004.03.002
http://dx.doi.org/10.1016/j.physrep.2004.03.002
http://dx.doi.org/10.1016/j.physrep.2004.03.002
http://dx.doi.org/10.1016/j.physrep.2004.03.002
http://dx.doi.org/10.1088/1751-8113/42/15/153001
http://dx.doi.org/10.1088/1751-8113/42/15/153001
http://dx.doi.org/10.1088/1751-8113/42/15/153001
http://dx.doi.org/10.1088/1751-8113/42/15/153001
http://dx.doi.org/10.1103/PhysRevLett.80.5243
http://dx.doi.org/10.1103/PhysRevLett.80.5243
http://dx.doi.org/10.1103/PhysRevLett.80.5243
http://dx.doi.org/10.1103/PhysRevLett.80.5243
http://dx.doi.org/10.1088/0034-4885/70/6/R03
http://dx.doi.org/10.1088/0034-4885/70/6/R03
http://dx.doi.org/10.1088/0034-4885/70/6/R03
http://dx.doi.org/10.1088/0034-4885/70/6/R03
http://dx.doi.org/10.1023/B:CJOP.0000044002.05657.04
http://dx.doi.org/10.1023/B:CJOP.0000044002.05657.04
http://dx.doi.org/10.1023/B:CJOP.0000044002.05657.04
http://dx.doi.org/10.1023/B:CJOP.0000044002.05657.04
http://dx.doi.org/10.1088/0305-4470/37/6/034
http://dx.doi.org/10.1088/0305-4470/37/6/034
http://dx.doi.org/10.1088/0305-4470/37/6/034
http://dx.doi.org/10.1088/0305-4470/37/6/034
http://dx.doi.org/10.1088/1751-8113/45/44/444016
http://dx.doi.org/10.1088/1751-8113/45/44/444016
http://dx.doi.org/10.1088/1751-8113/45/44/444016
http://dx.doi.org/10.1088/1751-8113/45/44/444016
http://dx.doi.org/10.1088/0305-4470/38/21/L04
http://dx.doi.org/10.1088/0305-4470/38/21/L04
http://dx.doi.org/10.1088/0305-4470/38/21/L04
http://dx.doi.org/10.1088/0305-4470/38/21/L04
http://dx.doi.org/10.1088/1751-8113/42/12/125303
http://dx.doi.org/10.1088/1751-8113/42/12/125303
http://dx.doi.org/10.1088/1751-8113/42/12/125303
http://dx.doi.org/10.1088/1751-8113/42/12/125303
http://dx.doi.org/10.1007/s12043-009-0111-y
http://dx.doi.org/10.1007/s12043-009-0111-y
http://dx.doi.org/10.1007/s12043-009-0111-y
http://dx.doi.org/10.1007/s12043-009-0111-y
http://dx.doi.org/10.1103/PhysRevLett.86.787
http://dx.doi.org/10.1103/PhysRevLett.86.787
http://dx.doi.org/10.1103/PhysRevLett.86.787
http://dx.doi.org/10.1103/PhysRevLett.86.787
http://dx.doi.org/10.1103/PhysRevLett.106.150403
http://dx.doi.org/10.1103/PhysRevLett.106.150403
http://dx.doi.org/10.1103/PhysRevLett.106.150403
http://dx.doi.org/10.1103/PhysRevLett.106.150403
http://dx.doi.org/10.1103/PhysRevLett.103.134101
http://dx.doi.org/10.1103/PhysRevLett.103.134101
http://dx.doi.org/10.1103/PhysRevLett.103.134101
http://dx.doi.org/10.1103/PhysRevLett.103.134101
http://dx.doi.org/10.1103/PhysRevLett.104.153601
http://dx.doi.org/10.1103/PhysRevLett.104.153601
http://dx.doi.org/10.1103/PhysRevLett.104.153601
http://dx.doi.org/10.1103/PhysRevLett.104.153601
http://dx.doi.org/10.1103/PhysRevLett.74.46
http://dx.doi.org/10.1103/PhysRevLett.74.46
http://dx.doi.org/10.1103/PhysRevLett.74.46
http://dx.doi.org/10.1103/PhysRevLett.74.46
http://dx.doi.org/10.1103/PhysRevLett.99.173003
http://dx.doi.org/10.1103/PhysRevLett.99.173003
http://dx.doi.org/10.1103/PhysRevLett.99.173003
http://dx.doi.org/10.1103/PhysRevLett.99.173003
http://dx.doi.org/10.1103/PhysRevLett.103.123003
http://dx.doi.org/10.1103/PhysRevLett.103.123003
http://dx.doi.org/10.1103/PhysRevLett.103.123003
http://dx.doi.org/10.1103/PhysRevLett.103.123003
http://dx.doi.org/10.1103/PhysRevA.84.013419
http://dx.doi.org/10.1103/PhysRevA.84.013419
http://dx.doi.org/10.1103/PhysRevA.84.013419
http://dx.doi.org/10.1103/PhysRevA.84.013419
http://dx.doi.org/10.1103/PhysRevA.82.063601
http://dx.doi.org/10.1103/PhysRevA.82.063601
http://dx.doi.org/10.1103/PhysRevA.82.063601
http://dx.doi.org/10.1103/PhysRevA.82.063601
http://dx.doi.org/10.1103/PhysRevA.77.013618
http://dx.doi.org/10.1103/PhysRevA.77.013618
http://dx.doi.org/10.1103/PhysRevA.77.013618
http://dx.doi.org/10.1103/PhysRevA.77.013618
http://dx.doi.org/10.1088/1751-8113/41/25/255206
http://dx.doi.org/10.1088/1751-8113/41/25/255206
http://dx.doi.org/10.1088/1751-8113/41/25/255206
http://dx.doi.org/10.1088/1751-8113/41/25/255206
http://dx.doi.org/10.1103/PhysRevA.82.013629
http://dx.doi.org/10.1103/PhysRevA.82.013629
http://dx.doi.org/10.1103/PhysRevA.82.013629
http://dx.doi.org/10.1103/PhysRevA.82.013629
http://dx.doi.org/10.1080/09500340308234532
http://dx.doi.org/10.1080/09500340308234532
http://dx.doi.org/10.1080/09500340308234532
http://dx.doi.org/10.1080/09500340308234532
http://dx.doi.org/10.1103/PhysRevLett.108.173901
http://dx.doi.org/10.1103/PhysRevLett.108.173901
http://dx.doi.org/10.1103/PhysRevLett.108.173901
http://dx.doi.org/10.1103/PhysRevLett.108.173901
http://dx.doi.org/10.1103/PhysRevLett.101.080402
http://dx.doi.org/10.1103/PhysRevLett.101.080402
http://dx.doi.org/10.1103/PhysRevLett.101.080402
http://dx.doi.org/10.1103/PhysRevLett.101.080402
http://dx.doi.org/10.1038/nphys1515
http://dx.doi.org/10.1038/nphys1515
http://dx.doi.org/10.1038/nphys1515
http://dx.doi.org/10.1038/nphys1515


STEFANO LONGHI AND GIUSEPPE DELLA VALLE PHYSICAL REVIEW A 89, 052132 (2014)

[16] J. Wiersig, S. W. Kim, and M. Hentschel, Phys. Rev. A 78,
053809 (2008).

[17] A. Mostafazadeh, Phys. Rev. Lett. 102, 220402 (2009);
S. Longhi, Phys. Rev. B 80, 165125 (2009); ,Phys. Rev. Lett. 105,
013903 (2010); B. F. Samsonov, J. Phys. A 43, 402006 (2010);
Z. Ahmed, ibid. 45, 032004 (2012); X. Liu, S. Dutta Gupta, and
G. S. Agarwal, Phys. Rev. A 89, 013824 (2014).

[18] X. Yin and X. Zhang, Nat. Mater. 12, 175 (2013).
[19] A. Regensburger, C. Bersch, M.-A. Miri, G. Onishchukov,

D. N. Christodoulides, and U. Peschel, Nature (London) 488,
167 (2012); L. Feng, Y.-L. Xu, W. S. Fegadolli, M.-H. Lu, J.
E. B. Oliveira, V. R. Almeida, Y.-F. Chen, and A. Scherer, Nat.
Mater. 12, 108 (2013).

[20] A. V. Sokolov, A. A. Andrianov, and F. Cannata, J. Phys. A 39,
10207 (2006).

[21] A. A. Andrianov and A. V. Sokolov, SIGMA 7, 111 (2011);
A. V. Sokolov, ibid. 7, 112 (2011).

[22] N. Fernandez-Garca, E. Hernandez, A. Jauregui, and
A. Mondragon, J. Phys. A 46, 175302 (2013).

[23] J. von Neumann and E. Wigner, Z. Phys. 30, 465 (1929).
[24] F. H. Stillinger and D. R. Herrick, Phys. Rev. A 11, 446 (1975);

H. Friedrich and D. Wintgen, ibid. 31, 3964 (1985); ,32, 3231
(1985); L. S. Cederbaum, R. S. Friedman, V. M. Ryaboy, and
N. Moiseyev, Phys. Rev. Lett. 90, 013001 (2003).

[25] F. Capasso, C. Sirtori, J. Faist, D. L. Sivco, S.-N. G. Chu, and
A. Y. Cho, Nature (London) 358, 565 (1992); J. U. Nöckel, Phys.
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