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We present the theoretical basis of a cavity-enhanced polarimetric scheme for the measurement of parity-
nonconserving (PNC) optical rotation. We discuss the possibility of detecting PNC optical rotation in accessible
transitions in metastable Xe and Hg and ground-state I. In particular, the physics of the PNC optical rotation
is presented and we explore the line-shape effects on the expected PNC optical rotation signals. Furthermore,
we present an analysis of the eigenpolarizations of the cavity-enhanced polarimeter, which is necessary for
understanding the measurement procedure and the ability of employing robust background subtraction procedures
using two signal reversals. Using recent atomic structure theoretical calculations, we present simulations of the
PNC optical rotation signals for all proposed transitions, assuming a range of experimentally feasible parameters.
Finally, the possibility of performing sensitive measurements of the nuclear-spin-dependent PNC effects is
investigated for the odd-neutron nuclei 129Xe and 199Hg and the odd-proton nucleus 127I.
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I. INTRODUCTION

The possibility of measuring parity nonconservation (PNC)
in atoms was first considered by Zel’dovich in 1959 [1].
However, atomic PNC experiments began only after Bouchiat
and Bouchiat showed that parity mixing of atomic states scales
as ∼Z3 and measurable signals could be obtained for high-Z
atoms [2]. For high Z, the degree of s-p parity mixing, in
some atomic states, is of order 10−12–10−10. The precise
measurement of this atomic PNC can provide a stringent
low-energy test of the standard model [3], internucleon weak
interactions, and nuclear structure [4].

There are several methods in which the parity mixing can be
measured and for each method the optimal atomic candidates
are usually different. For example, the Stark interference
technique has been used to measure PNC in Cs [5], Yb [6],
and Dy [7] and proposed for Fr [8] and Rb [9,10]; the optical
rotation technique has been used successfully for Tl [11], Bi
[12], and Pb [13]; the ac Stark shift method has been proposed
for Ba+ [14] and Ra+ [15,16] ions; and the hyperfine transition
method has been proposed for K [17], Rb [9], and Fr [18]. To
date, the most successful atomic PNC measurement has been
the 0.35% precision measurement of nuclear-spin-independent
PNC in Cs [5]. As the precision in the atomic theory of other
PNC candidates is not expected to significantly surpass the
theoretical precision of Cs, current experiments are aiming at
other important goals that are not dependent on extremely
precise atomic theory calculations. Examples include the
measurement of atomic PNC on a chain of isotopes [19,20] and
the measurement of nuclear-spin-dependent effects in atomic
systems (see Ref. [4] and references therein) and in molecules
[21]. Therefore, along these lines, PNC experiments are in
progress as mentioned above [6,7,14,16].

Due to the difficulty of controlling all the relevant parame-
ters to the required precision, there have been only a handful
of successful atomic PNC measurements and even the few
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successful experiments have typically required 10–20 years to
yield precise results [5,6,11]. In addition, some of the current
atomic PNC experiments are no longer tabletop, as they are
performed on radioactive isotopes with short half-lives of a
few minutes, such as on Fr at TRIUMF [18] and Ra+ at KVI
[15,16].

Recently, our group has proposed an extension of the
optical-rotation technique, with the use of a bow-tie optical
cavity [22]. We show in detail that the proposed cavity-
enhanced technique produces large experimental optical-
rotation signals and robust experimental checks and allows
different atomic candidates to be considered. Specifically, our
proposal has several potential advantages, which solve some of
the problems of past PNC optical-rotation experiments. These
advantages include the following.

(a) The effective optical-rotation path length is enhanced
using a high-finesse cavity by 2F/π , where F is the finesse of
the cavity (for high-finesse cavities F ∼ 104–105), allowing
the study of PNC in atomic systems for which single-pass
optical rotation from available column densities is otherwise
too small. We focus on metastable states in Hg and Xe [22]
and ground-state I atoms [23], for which the single-pass
optical rotation from available column densities requires
enhancement of between 102 and 104 cavity passes to produce
measurable signals. In addition, the proposed atomic systems
are compatible with a high-finesse optical cavity, as high
atomic densities can be produced at around room temperature
(for the case of Tl, Bi, and Pb, temperatures in excess of
1000 K were required, which is difficult to combine with
high-transmission windows and a stable optical cavity).

(b) Two signal reversals are introduced. The main limitation
in the original optical-rotation experiments was the lack of
rapid subtraction procedures or signal reversals. The proposed
signal reversals are effected either by inverting the longitudinal
magnetic field in the cavity or by shifting the cavity resonance
to an opposite polarization mode. These signal reversals can
be performed at a high repetition rate and allow the absolute
optical rotation to be measured, without needing to remove the
gas sample from the cavity. In addition, as metastable Hg and
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Xe and ground-state I can be produced by optical pumping,
photodissociation, or electrical discharge, the concentration of
these species can be varied very quickly, giving an additional
rapid subtraction procedure.

(c) Of the proposed PNC candidates, both Hg and Xe have
several, commercially available, stable isotopes. In addition,
Hg and Xe each have two isotopes with an odd-neutron
nucleus (199Hg and 201Hg and 129Xe and 131Xe, respectively).
Moreover, iodine has a radioactive isotope 129I, which can be
commercially obtained. Both I isotopes have an odd-proton
nucleus. Therefore, nuclear-spin-dependent effects can be
measured for both odd-neutron and odd-proton nuclei, as well
as PNC measurements along a chain of isotopes [19,20,24].

The aim of this paper is to explain the main features of the
cavity-enhanced PNC optical-rotation scheme in depth and
to present simulated experimental signals for Hg, Xe, and I.
In Sec. II we describe in brief the origin of the PNC optical
rotation. In Sec. III we introduce the atomic systems consid-
ered for future PNC investigations using the cavity-enhanced
optical-rotation technique and we examine the experimental
feasibility of PNC measurements in these atomic systems. In
Sec. IV we describe the properties of the cavity-enhanced
scheme and derive the eigenmodes of a bow-tie cavity with
circular birefringence (Faraday rotation and PNC optical
rotation) and linear birefringence and discuss how the signal
reversals are implemented. Finally, in Sec. V we simulate the
PNC line shapes for several transitions in Hg, Xe, and I for a
range of experimental conditions and discuss the results.

II. PARITY-NONCONSERVATION OPTICAL ROTATION

In this section we present the physics of the PNC optical-
rotation technique. We note that the equations appearing here
are expressed in SI units and the presented formulas follow
largely the structure of Refs. [25,26] with helpful material
coming from Refs. [27–33]. In addition, the derivation of the
PNC rotation angle also draws from Refs. [4,34,35].

A PNC neutral-current interaction between the electrons
and the nucleus of an atom mixes the parity eigenstates of the
atom. This PNC-induced mixing allows for a weak electric
dipole transition, with amplitude EPNC

1 , between states of the
same parity. The size of EPNC

1 increases approximately as ∼Z3

and is inversely proportional to the energy difference between
the states of opposite parity mixed by the weak interaction [2]
and typically is of order 10−11eαB–10−10eαB (e is the charge
of the electron and αB the Bohr radius). Measurement of this
small parity-nonconserving amplitude is achieved through its
interference with a larger parity-conserving amplitude.

In a PNC optical-rotation experiment, the parity-conserving
amplitude is an allowed magnetic dipole amplitude M1. The
interference between the dominant M1-allowed amplitude and
the PNC-induced EPNC

1 amplitude leads to optical activity. The
PNC-induced optical rotation ϕPNC arises due to the difference
in the indices of refraction for left- and right-circularly
polarized light in the vicinity of the magnetic dipole resonance

ϕPNC = ωl

c

n′
+ − n′

−
2

= πl

λ
(n′

+ − n′
−), (1)

where l is the length of vapor, λ is the optical wavelength,
ω is the optical frequency, and n′

± are the real parts of the

refractive indices for left- and right-circularly polarized light,
respectively (which are functions of the optical frequency ω).

A. The M1 magnetic dipole interaction

We assume a magnetic dipole interaction of a laser beam
with an atomic vapor. Treating the transition as a damped
oscillator with a damping factor �, the index of refraction can
be put in the form

n = n′ + in′′ = 1 + πμ0e
2

4mω0
ρfL(ω − ω0), (2)

where m is the mass of the electron, μ0 is the vacuum
permeability, e is the electronic charge, ω0 is the resonant
transition frequency, ρ is the vapor density, f is the oscillator
strength, and L = L′ + iL′′ is the Lorentz line-shape function
[given in Eqs. (A1) and (A2)]. Assuming that the transition is
an isolated J → J ′ line without hyperfine structure, we have

f = 2mω0

3�e2

M2
1

2J + 1
, (3)

where M1 ≡ 〈M1〉 ≡ 〈J‖μ(1)‖J ′〉 is the reduced matrix el-
ement for the magnetic dipole operator μ(1). Note that the
magnetic dipole reduced matrix element M1 will be the same
for both states of circular polarization of the resonant laser
field. Taking into account the Doppler broadening mechanism
of the thermal vapor (see Appendix A) and using Eq. (3), we
can put Eq. (2) in the form

n = 1 + πμ0

2�

ρ

2J + 1

M2
1

3
V(ω − ω0), (4)

where V = V ′ + iV ′′ is the Voigt profile function [given in
Eqs. (A5) and (A6)].

To assume an atomic system with nonzero nuclear spin I

we must take into account the hyperfine structure. Using

〈F‖T (k)‖F ′〉 = (−1)I+k+J+F ′√
(2F + 1)(2F ′ + 1)

×
{

J k J ′
F ′ I F

}
〈J‖T (k)‖J ′〉, (5)

where k is the tensor rank of the operator T , and the fact that
the population density of the ground hyperfine state F is very
well approximated by

ρ(F ) = 2F + 1

(2J + 1)(2I + 1)
ρ, (6)

then, from Eq. (4), by summing over final states and averaging
over initial states we obtain

n = 1 + n0

∑
F,F ′

CFF ′VFF ′(ω), (7)

where we have defined

n0 = πμ0

2�

ρ

2J + 1

M2
1

3
, (8)

CFF ′ = (2F + 1)(2F ′ + 1)

2I + 1

{
J 1 J ′
F ′ I F

}2

, (9)
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and VFF ′(ω) ≡ V(ω − ωFF ′) for a specific F → F ′ transition.
Note that n0 is not a dimensionless constant, but has units of
angular frequency.

B. The E1PNC electric dipole interaction

The PNC-induced optical rotation [Eq. (1)] results from
the M1-E1PNC interference, which leads to a difference in
the indices of refraction for left- and right-circularly polarized
light in the vicinity of the magnetic dipole resonance.

A circularly polarized laser beam (propagating along ẑ, for
example) has electric- and magnetic-field vector components

Eη = −E(t)√
2

(x̂ + iηŷ), Bη = B(t)√
2

(iηx̂ − ŷ), (10)

where E(t) and B(t) are the electric- and magnetic-field
amplitudes of the laser’s electric- and magnetic-field vectors,
respectively, and η = ±1 denotes the two states of circular
polarization (the positive sign corresponds to left-circularly
polarized light).

Inclusion of the PNC-induced electric dipole amplitude and
the magnetic dipole amplitude in the formulas for the index of
refraction [Eqs. (7) and (8)] can be realized by performing the
following substitution:

M2
1

3
→ ∣∣〈J‖id (1)

η + μ(1)
η ‖J ′〉∣∣2

, (11)

where d (1)
η is the ηth component of the PNC electric dipole

operator. The i in Eq. (11) ensures that EPNC
1 ≡ 〈EPNC

1 〉 ≡
〈J‖id (1)‖J ′〉 violates parity but not time-reversal symmetry
and therefore is purely imaginary [2].

From Eq. (11) it is now apparent that the transition rate
will be different for right- and left-circularly polarized light
[35]. Therefore, the difference between the refractive indices
for left- (n+) and right- (n−) circularly polarized light will be
different [Eq. (8)]. In particular, the difference between the n+
and n− will be proportional to

n+ − n−
2(n − 1)

= |EPNC
1 E+ +M1B+|2 − |EPNC

1 E− + M1B−|2
|EPNC

1 E+ + M1B+|2 + |EPNC
1 E− + M1B−|2

= iM1(EPNC
1 − EPNC∗

1 )

|EPNC
1 |2 + |M1|2

� −2R, (12)

where we used |EPNC
1 |2 � |M1|2 and EPNC∗

1 = −EPNC
1 =

−i Im(EPNC
1 ) and introduced the factor R:

R ≡ Im

(
EPNC

1

M1

)
. (13)

Using Eqs. (1) and (12), the PNC optical-rotation angle is
given by

ϕPNC = −4πl

λ
[n(ω) − 1]R, (14)

where n(ω) is the index of refraction of the medium [Eqs. (7)
and (12)], which is a function of the transition frequency ω.
The proportionality relation between the PNC optical-rotation
angle ϕPNC and the ratio R serves as the basis for this
experimental technique.

Note that the corresponding electric dipole formulas for
Eqs. (3), (2), and (8) are obtained simply by substituting μ0 →

1/ε0, where ε0 is the vacuum permittivity, and 〈M1〉 → 〈E1〉.
Here 〈M1〉 is given in units of μB, the Bohr magneton, and
〈E1〉 in units of eαB, where αB is the Bohr radius.

C. Nuclear-spin-dependent PNC effects: Anapole moment

Nuclear-spin-dependent (NSD) contributions to the atomic
parity violation arise due to (a) neutral weak-current in-
teractions between the electron and the nucleus [36], (b)
electromagnetic interaction of the electron with the nuclear
anapole moment [37], and (c) spin-independent electron-
nucleon weak interactions combined with magnetic hyperfine
interactions [38]. These contributions can be included in a
dimensionless constant �, proportional to the strength of the
NSD-PNC interaction [4,39,40]

� = �A − K − 1/2

K �2 + I + 1

K �QW , (15)

where K = (−1)I+1/2−l(I + 1/2) (l is the orbital angular
momentum of the valence nucleon), �2 ≈ −0.05 [4,38] corre-
sponds to the weak neutral currents, |�QW | ≈ 0.02 [4] appears
as a radiative correction to the nuclear-spin-independent (NSI)
part, and �A is the nuclear anapole moment contribution to the
NSD-PNC effects.

The nuclear anapole moment �A is given by (in a simple
valence model) [39]

�A = 1.15 × 10−3A2/3μmgm, (16)

where A is the number of nucleons and μm is the magnetic
moment of the unpaired nucleon (μp = 2.8 and μn = −1.9).
The dimensionless constant gm gives the strength of the
weak interactions between the nucleons. Theoretical estimates
suggest that for neutrons gn ≈ −1 and for protons gp ≈ 4.5
[41]. From Eq. (16) we see that the nuclear anapole moment
scales with the number of nucleons (�A ∝ A2/3). For this
reason, the anapole moment gives the largest contribution
to NSD parity-violating effects in heavy atoms [4]. Using
Eq. (16), we see that the value of the anapole moment is
�A ≈ 0.1–1 [37,39].

The PNC matrix element is expressed in terms of a NSI and
a NSD component as follows [4]:

〈F‖EPNC
1 ‖F ′〉 = 〈F‖EPNC,(SI)

1 ‖F ′〉 + 〈F‖EPNC,(SD)
1 ‖F ′〉

= KFF ′EPNC
1 (1 + rFF ′�), (17)

where KFF ′ is the angular factor [using k = 1 in Eq. (5)],
rFF ′ is the ratio of spin-dependent to spin-independent PNC
amplitudes, and � is given by Eq. (15). From Eq. (17) we see
that measuring the PNC amplitudes for two different hyperfine
components of a specific transition allows the value of � to be
expressed by the ratio of the measured amplitudes.

The PNC rotation angle can be split into a NSI and a NSD
part:

ϕPNC = ϕSD + ϕSI = −4πl

λ
[n(ω) − 1](RSI + RSD). (18)

Calculated values of EPNC
1 , R, and the ratios rFF ′ (and thus

RSI and RSD) for the various proposed transitions in Xe, Hg,
and I can be found in Refs. [23,34].
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TABLE I. Reduced matrix elements for the M1, EPNC
1 , and R ≡ Im(EPNC

1 )/M1 for the proposed atomic transitions. Note that for one
absorption length ϕmax

PNC ≈ R/2.

λ M1 Isotopes Im(EPNC
1 ) R

Z Transition (nm) (μB ) with I �= 0 ×10−10eαB ×10−8

I 53 2P3/2 → 2P1/2 1315 1.15 127I 0.335(67) 0.80(16)
3P o

0 → 1P o
1 609 0.229 3.4(2), 3.5(2) 41(2), 42(2)

Hg 80 3P o
1 → 1P o

1 682 0.199 {199Hg,201Hg} 5.3(3), 5.4(3) 73(4), 74(4)
3P o

2 → 1P o
1 997 0.272 3.7(2), 3.8(2) 37(2), 38(2)

Xe 54 6s
2[3/2]o
2 → 6s

′2[1/2]o
1 988 1.22 {129Xe,131Xe} 3.17(31), 3.23(32) 7.1(7), 7.3(7)

III. ATOMIC SYSTEMS AND EXPERIMENTAL
FEASIBILITY

A. Parity-nonconservation candidates: Xe, Hg, and I

We have identified the following favorable PNC transitions
in the atomic systems of Xe, Hg, and I: (a) in metastable Xe,
the M1 transition (2P o

3/2)6s 2[3/2]o2 → (2P o
1/2)6s 2[1/2]o1 with

transition wavelength λ = 988 nm; (b) in metastable Hg, the
transitions 6s6p 3P o

J → 6s6p 1P o
1 at 609 nm (J = 0), 682 nm

(J = 1), and 997 nm (J = 2); and (c) the spin-orbit transition
of 127I, 2P3/2 → 2P1/2 with a transition wavelength of 1315 nm.
Partial energy diagrams of the three proposed atomic systems
are presented in Fig. 1.

In Bougas et al. [22], preliminary atomic calculations
for the magnetic dipole M1 and the PNC electric dipole
E1PNC transition amplitudes for the proposed transitions in
metastable Xe and Hg were presented (note that the simula-
tions presented in Ref. [22] were based on these preliminary
calculations). More recently, Dzuba and Flambaum [34], using
the configuration-interaction technique, presented calculations
for the relevant transition dipole amplitudes of the proposed
transitions in Xe and Hg. In particular, for the case of Hg, the
spin-forbidden M1 transition amplitudes were overestimated
in Ref. [22] and the calculated numbers for the M1 dipole
amplitudes were found to be strongly suppressed. In the case
of Xe the M1 dipole amplitude is found to be 6% different
from the initial calculation presented in Ref. [22]. In this
article we use the transition amplitudes presented in Ref. [34]
for the simulations of the expected PNC optical-rotation
signal under specific experimental conditions (see Sec. V). In
Table I we summarize the results presented in Ref. [34],
along with the preliminary atomic calculations for the dipole
transition amplitudes of the proposed PNC optical-rotation
scheme in ground-state I, as presented in Ref. [23].

B. Experimental feasibility

In the optical-rotation experiments using Tl, Bi, and
Pb vapors, PNC optical-rotation angles of ∼1 μrad were
measured (in the case of Tl with an experimental precision
of 1%) [11–13]. In order to achieve PNC rotation angles of
the order of ∼1 μrad, column densities of ∼1018–1019 cm−2

atoms were required (at temperatures of about ∼1300 K),
which correspond to optical depths of 10–60. Using Eq. (14),
an estimate for the maximum expected PNC optical rotation
signal can be given. Assuming a Lorentzian dispersion curve,
Eq. (14) yields ϕPNC ≈ R/2 for one absorption length.

FIG. 1. (Color online) Partial energy-level diagram of Xe, Hg,
and I (not to scale) showing the proposed E1PNC and M1 transitions.
In addition, the hyperfine-structure levels for the odd isotopes of Xe,
Hg, and I are presented. For each atomic system, indicated in green,
are the individual F → F ′ transitions constituting the separated
hyperfine groups of Figs. 5–7. The values for the hyperfine-structure
splittings and isotopic shifts for each of the proposed systems were
taken from Refs. [42–47].
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The production of Xe metastable states 6s 2[3/2]o2 and Hg
3PJ has been realized using low-pressure electrical discharge
lamps [48,49] or optical pumping [50], yielding steady-state
densities of about 1012 cm−3, allowing column densities of
about 1014 cm−2 (over a single-pass path length of 100 cm).
Similarly, high iodine atom densities of ∼1016 cm−3 have been
achieved in glow discharges (requiring high precursor and car-
rier gas pressures). Also, the photodissociation of I2 molecules
is expected to yield atomic densities of 1014–1016 cm−3 of
ground-state 2P3/2 iodine atoms, obtaining thus single-pass
column densities of 1016–1018cm−2 for an interaction path
length of 100 cm [23].

Given the calculated values R for Xe, Hg, and I (Table I)
and the experimentally feasible column densities for each of
the proposed atomic systems stated above, we see that single-
pass PNC optical-rotation angles of ∼10−11–10−9 rad are
expected. The polarization rotation noise per unit bandwidth
in a balanced polarimeter is ∼2 nrad/

√
Hz (assuming shot-

noise-limited detection for a probe beam with an intensity of
∼10 mW). This reasoning dictates that an additional enhance-
ment factor (∼102–104) is necessary to achieve measurable
signals.

In the following section we revisit the experimental tech-
nique proposed in Ref. [22] and describe in detail the principles
of the cavity-enhanced scheme as well as the measurement
procedure.

IV. CAVITY-ENHANCED POLARIMETRY

In comparison to a single-pass instrument, a cavity-
enhanced polarimeter introduces a phase-shift enhancement
factor of 2F/π , where F ≡ π 4

√
Rt/(1 − √

Rt ) is the finesse
of the cavity (Rt =R1R2R3R4, where Ri is the reflectivity
of the ith mirror). Using high-finesse cavities, measurements
with shot-noise-limited phase-shift resolution at the level of
3 × 10−13 rad have been demonstrated [51].

In Ref. [22], a cavity-enhanced polarimetric technique im-
plementing signal reversals was proposed for the enhancement
and precise measurement of the PNC optical-rotation angle
ϕPNC (14). The experimental scheme consists of a four-mirror
cavity in a bow-tie configuration. A four-mirror cavity design
has three main advantages over linear cavities: (a) It provides
the ability of measuring simultaneously polarization effects
of different symmetry under time reversal (as in the case of
magneto-optical effects and natural optical activity) without
altering the apparatus during measurements, (b) it supports
counterpropagating beams, which give an immediate signal
reversal, and (c) it avoids mechanical adjustments of possible
intracavity optical elements, as in the case of two-mirror
cavities used for the measurement of natural optical activity in
the gas phase where intracavity quarter-wave plates needed to
be modulated mechanically [52]. In this section we present the
eigenpolarization theory for the cavity-enhanced polarimeter,
based on the Jones matrix calculus [53–55] and discuss in
detail the principles of the proposed experimental technique.

In the Jones matrix formalism, the effect of any optical
element on the polarization state vector of the laser light is
described as a linear operator, expressed by a 2 × 2 matrix
whose matrix elements are in general complex. The direct
incorporation of amplitude and phase information allows

for the investigation of coherent phenomena. Furthermore,
since the incident clockwise and counterclockwise beams will
be mode matched into the TEM00 mode of the four-mirror
cavity, we focus our analysis on the polarization properties
of the longitudinal modes for either propagation direction. In
addition, changes in the spatial profile of the laser beams,
introduced by the intracavity elements, are neglected. The
Jones matrices corresponding to each of the optical elements
used in the proposed apparatus are denoted hereafter by
boldface letters J.

A. Jones matrices for polarization optics

The Jones matrix for reflection is the same for clockwise
and counterclockwise propagation and is given by

JMi
(δi) =

√
Ri

(−eiδi/2 0
0 e−iδi /2

)
, (19)

where the index i ranges from 1 to 4. We assume that
the Fresnel amplitude reflection coefficients for the s and p
polarizations are equal in magnitude (an assumption expressed
by the common factor

√
Ri), which is a good approximation for

near-normal angle-of-incidence reflections, as in the case of a
bow-tie cavity. The differential s-p phase shift δi = δp − δs

represents the linear birefringence obtained upon mirror
reflection. For non-normal incidence, these s-p phase shifts
can be of the order of 10−3 rad, while for normal incidence
they are of the order of 10−5–10−6 rad at a specific design
wavelength (for gyroquality supermirrors at normal incidence,
the linear birefringences can be as low as ∼0.1 μrad) [56].

In the presence of a longitudinal magnetic field a medium
becomes circular birefringent, an effect otherwise know as the
Faraday effect [57]. The Faraday optical rotation is expressed
as θF = V Bl, where B is the magnetic-field strength along
the direction of light propagation, l is the path length of
interaction, and V is the Verdet constant of the medium. The
Jones matrix for the Faraday rotation is an SU(2) rotation
matrix with argument θF:

JF(θF) =
(

cos θF − sin θF

sin θF cos θF

)
. (20)

Note that the physical direction of the polarization rotation
is defined by the magnetic-field orientation. Due to the
nonreciprocal nature of the Faraday effect, when either the
magnetic field or the direction of propagation of the light
reverses, the sign of rotation reverses (in the light frame). Thus,
for the counterclockwise propagation, the Faraday rotation will
be θCCW

F → −θCW
F . As we shall see, this directional symmetry

breaking, induced by the Faraday effect, is essential to our
signal reversals.

The Jones matrix representing the PNC optical rotation will
also be that of an SU(2) rotation matrix with argument ϕPNC:

JPNC(ϕPNC) =
(

cos ϕPNC − sin ϕPNC

sin ϕPNC cos ϕPNC

)
, (21)

where ϕPNC is given by Eq. (14). The PNC optical rotation,
being a pseudoscalar quantity, is odd under parity transforma-
tions and even under time-reversal transformations. Therefore,
the Jones matrix describing PNC optical rotation will be the
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same for both clockwise and counterclockwise propagation
directions ϕCW

PNC = ϕCCW
PNC .

Finally, anisotropies such as imperfections of transmission
optics, thermal- or stress-induced birefringences, and stray
magnetic fields can be described as linear birefringent optical
elements. The Jones matrix for a general linear wave retarder,
which introduces a differential phase shift δ′ and whose “fast
axis” is oriented at an angle θ with respect to the x axis, is
given by

J(θ,δ′) = S(θ ) ×
(

eiδ′/2 0
0 e−iδ′/2

)
× S(−θ ), (22)

where S(θ ) describes a general SU(2) rotation matrix. Revers-
ing the direction of propagation (in the light frame) reverses
the sign of the angle θ , which specifies the orientation of the
retardation axes. For the mirror-reflection linear birefringence,
we used J(θ,δ′) for θ = 0. Note that the eigenvectors of the
J(θ,δ′) are linear polarization states.

B. Clockwise and counterclockwise round-trip matrices

The round-trip Jones matrices for the clockwise (counter-
clockwise) propagation are obtained by the ordered multipli-
cation of the Jones matrices representing the optical elements.
A convenient starting point for the analysis is the point labeled
O in Fig. 2, from which the different propagation directions
are defined. The round-trip Jones matrices are given by

JCW = JM2 (δ/4) · JM3 (δ/4) · J(ϕPNC) · J(θF)

· JM4 (δ/4) · JM1 (δ/4) (23)

for the clockwise propagation path and

JCCW = JM2 (δ/4) · JM3 (δ/4) · J(−θF) · J(ϕPNC)

· JM4 (δ/4) · JM1 (δ/4) (24)

for the counterclockwise propagation path. Here we define δ as
the total single-pass linear birefringence. Note that reversing
the order of the individual operators and changing the sign of
each Faraday rotation angle for the clockwise (counterclock-
wise) path produces the counterclockwise (clockwise) path (if
an additional linear birefringent element is present, then the
sign of its respective orientation angle should be also reversed
so as to obtain the counterclockwise propagation matrix).

The Jones matrices for the Faraday rotation and the PNC
rotation are commutable, a property that reflects the fact
that rotations about the same axis are additive [J(ϕPNC) ·
J(θF) = J(ϕPNC + θF)]. Therefore, the total single-pass optical
rotation is different for the clockwise and counterclockwise
counterpropagating beams

αCW = θF + ϕPNC, αCCW = −θF + ϕPNC. (25)

This directional symmetry breaking is key for distinguishing
the PNC and Faraday-type optical rotation and thus for the
sensitive measurement of the PNC optical-rotation angle.

Rewriting Eqs. (23) and (24) in a compact form, we have

JCW = R2 · J(0,δ/2) · J(αCW) · J(0,δ/2), (26)

JCCW = R2 · J(0,δ/2) · J(αCCW) · J(0,δ/2), (27)

FIG. 2. (Color online) (a) Proposed experimental setup. The in-
put laser beam is split into two parts of equal intensity and orthogonal
polarizations. The laser frequency is brought into resonance with
the nearly degenerate RCW-LCCW modes of the cavity. Upon exit
from the cavity, the counterpropagating outputs are recombined into
linearly polarized light and analyzed with linear and circular balanced
polarimeters (BP1 and BP2, respectively). The 532-nm laser beam
that will be used for the production of high atomic iodine densities
through the photodissociation of I2 is also depicted. (b) Cavity
frequency polarization spectrum. For the simulations we used θF = 13
mrad and δ = θF/2 = 6.5 mrad and for demonstration purposes
ϕPNC = 0.6 mrad. (i) The Faraday effect splits the cavity spectrum
into R and L modes by 2ωF = 2θF(c/L) (twofold degeneracy);
(ii) the PNC optical rotation splits further the clockwise (CW)
and counterclockwise (CCW) modes by 2ωPNC = 2ϕPNC(c/L), while
the cavity modes remain circular polarization states; (iii) in the
presence of linear birefringence (δ �= 0) the frequency splitting of
the eigenmodes increases as ω′

F = 1/qωF and the measured PNC-
induced splitting is reduced ω′

F = qωF (0 ≤ q ≤ 1) (see Fig. 3);
the eigenmodes transform into elliptical states as observed from the
different amplitudes of the output light (see the text for discussion).
We also assume that the clockwise input beam was p polarized, while
the counterclockwise beam was s polarized. The cavity’s linewidth
is exaggerated for demonstration purposes; note that the free spectral
range of the cavity is �ωFSR = 2π × 40 MHz. In (i)–(iii), the gray
dashed line corresponds to the fourfold degenerate axial mode of
an isotropic cavity. PBS stands for polarizing beam splitter and BS
stands for beam splitter.

where we omit the mirror index under the assumption that all
four mirrors have the same reflectivity and linear birefringence.
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C. Frequencies and polarizations of the cavity spectrum

The allowed polarizations of the cavity modes, along with
their respective frequencies, are determined by the anisotropies
of the cavity. Using the explicit form of the transfer matrices
for clockwise and counterclockwise propagation [Eqs. (26)
and (27)], we can obtain the eigensystem for both directions
as a function of the anisotropy parameters (θF, ϕPNC, and δ)
[55]. For the following discussion, we set R = 1, as we are
interested only in the properties of the frequency spectrum of
the optical resonator.

The matrices JCW and JCCW are unitary matrices of rank
2. Therefore, each matrix has two eigenvalues and two
eigenvectors; the eigenvectors ν± are generally complex,
orthogonal vectors and represent the eigenpolarizations of
each cavity mode. The eigenvalues can be written in the form
λ± = e±i�. The phase of each eigenvalue is the round-trip
optical phase shift obtained during light propagation and
therefore yields the frequency splittings of the eigenmodes.

In the simple case of an isotropic cavity (α = 0 and δ = 0),
the four eigenmodes are degenerate and any polarization state
can couple into the cavity (JCW and JCCW become proportional
to the identity matrix for α = 0 and δ = 0). The introduction
of anisotropies lifts this fourfold degeneracy. Therefore, in the
most general case, the spectrum of the cavity is represented
by four nondegenerate modes of elliptical polarization, whose
frequencies lie above and below the degenerate frequency of
the isotropic case. We examine three cases.

(i) θF �= 0, ϕPNC = 0, and δ = 0. The Jones matrices for
clockwise and counterclockwise become

JCW = JF(θF), JCCW = JF(−θF). (28)

It is easy to verify that the allowed eigenpolarizations of a
rotation matrix are circular polarization states. Therefore, in
the presence of single-pass Faraday rotation θF, the spectrum
splits into right-circular and left-circular polarization modes;
the frequency splitting is equal to 2ωF = 2θF(c/L), where c is
the speed of light and L is the round-trip cavity length. The
nonreciprocal nature of the Faraday effect, embedded in the

change of sign of the Faraday rotation when the direction of
propagation is reversed, is directly reflected in the frequency
spectrum of the cavity. The RCW mode is degenerate with the
LCCW, while the RCCW mode is degenerate with the LCW mode
[see Fig. 2(b), case (i)].

(ii) θF,ϕPNC �= 0, and δ = 0. For single-pass rotations ϕPNC

and θF and in the absence of any linear birefringence (δ = 0),
the round-trip matrices for clockwise and counterclockwise
correspond to rotation matrices with arguments αCW and αCCW

[Eq. (25)]:

JCW = J(αCW), JCCW = J(αCCW). (29)

The eigenpolarizations remain circular polarization states
for both propagation directions since the transfer matrices
are simply rotation matrices. Their respective eigenvalues
are λ±

CW = e±iαCW and λ±
CCW = e±iαCCW . The difference in

rotation [Eq. (25)] results in splitting the clockwise and
counterclockwise modes by 2ωPNC = 2ϕPNC(c/L), yielding
the four-mode structure depicted in Fig. 2(b), case (ii).

(iii) θF, ϕPNC, and δ �= 0. Linear birefringence prevents the
enhancement of circular birefringence through the transfor-
mation of a linearly polarized beam into a circular one. If,
however, a large circular birefringence is induced, then the
effects of linear birefringence will be averaged out [22,54].
Using the general form of the clockwise and counterclockwise
matrices [Eqs. (26) and (27)], we demonstrate how the
extraction of ϕPNC is affected in the presence of δ. Expanding
Eqs. (26) and (27), we obtain

JCW =
(

eiδ/2 cos(θF + ϕPNC) − sin(θF + ϕPNC)
sin(θF + ϕPNC) e−iδ/2 cos(θF + ϕPNC)

)
,

(30)

JCCW =
(

eiδ/2 cos(θF − ϕPNC) sin(θF − ϕPNC)
− sin(θF − ϕPNC) e−iδ/2 cos(θF− ϕPNC)

)
.

(31)

The eigenvalues and eigenvectors are

λ±
CW = cos αCW cos

δ

2
∓ i

√
1 − cos2 αCW cos2

δ

2
,

ν±
CW ∝

(
csc αCW

(
cos αCW sin δ

2 ∓
√

1 − cos2 αCW cos2 δ
2

)
−i

)
(32)

for the clockwise transfer matrix and

λ±
CCW = cos αCCW cos

δ

2
∓ i

√
1 − cos2 αCCW cos2

δ

2
,

ν±
CCW ∝

(
csc αCCW

(
cos αCCW sin δ

2 ∓
√

1 − cos2 αCCW cos2 δ
2

)
i

)
(33)

for the counterclockwise transfer matrix. We see that in the
most general case the polarization eigenstates for both the
clockwise and counterclockwise modes are represented by
orthogonal ellipses and their frequency splitting is proportional
to � = cos−1[cos α cos( δ

2 )].

Linear birefringence δ prevents the effective amplification
of circular birefringence α by transforming the cavity modes
into elliptical polarization states. Therefore, the measurement
of ϕPNC in the presence of linear birefringence will be reduced
to ϕ′

PNC = qϕPNC, where q (0 ≤ q ≤ 1) is the reduction factor.

052127-7



BOUGAS, KATSOPRINAKIS, VON KLITZING, AND RAKITZIS PHYSICAL REVIEW A 89, 052127 (2014)

FIG. 3. (Color online) The presence of linear birefringence δ

prevents the enhancement of the PNC optical rotation ϕPNC. The res-
onance peaks of the cavity eigenpolarization frequency spectrum are
presented as a function of the ratio δ/α. As δ increases, and therefore
the magnitude of the total cavity anisotropies increases, the frequency
difference between the respective clockwise (or counterclockwise)
R-L modes increases by 1/q, while the PNC-induced frequency
splitting (exaggerated here for clarity) decreases by q [Eq. (34)].
For the simulations we used θF = 13 mrad and ϕPNC = 0.8 mrad (this
value of ϕPNC was chosen purely for demonstration purposes).

From Eq. (32) and (33) we obtain the form of the reduction
factor for ϕPNC � 1:

q = � − �|ϕPNC=0

ϕPNC
= cos δ

2 sin θF√
1 − cos2 δ

2 cos2 θF

+ O(ϕPNC).

(34)

In Fig. 3 we investigate the effect of the linear birefringence
δ as a function of the ratio of the total linear birefrin-
gence anisotropy over the total circular birefringence δ/α.
The introduction of this extra anisotropy δ will increase the
frequency splitting of the modes for each sense of propagation.
This effective increase in frequency is inversely proportional
to and equal in magnitude to the simultaneous decrease of
the PNC-induced splitting, i.e., 2�/(2�|δ=0) ≡ 1/q (Fig. 3).
Figure 2(b), case (iii) and Fig. 3 show simulations based
on Eqs. (32) and (33), which demonstrate how the presence
of linear birefringence prohibits the enhancement of circular
birefringence, as the PNC-induced mode splitting vanishes
for large δ/α. Note that the cavity’s eigenpolarization modes
become more elliptical with increasing δ; the input beams
are linearly polarized and therefore the induced ellipticity is
depicted on the different intensity amplitudes of the cavity
(output) modes. Therefore, to ensure q ∼= 1, one must satisfy
α � δ (see also the relevant discussion in Ref. [22]).

For the numerical simulations presented in Figs. 2(b) and 3,
we assumed that each mirror introduces a linear birefringence
phase shift equal to δ/4 and that the optical axes of all
four cavity mirrors are parallel. As discussed previously, the
important parameter is the total introduced linear birefringence
and in the case where the optical axes of the mirrors are parallel,
then the mirror-related linear birefringent phase shifts will
add. In contrast, for random orientations of the mirrors optical

axes, there will be partial cancellation of the total introduced
birefringence. Thus, the reduction factor presented in Fig. 3
represents the worst-case estimation.

D. Principles of the measurement

The principles of the measurement have been described
previously in Ref. [22] and are briefly discussed here. We
will assume for the following discussion a bow-tie four-mirror
cavity with round-trip cavity length L = 7.5 m.

A laser beam is split into two beams of equal intensity
and orthogonal linear polarizations. The s-polarized laser
beam is locked to the RCW mode and frequency-locked
using the Pound-Drever-Hall (PDH) scheme [58]. Note that
alternative locking schemes have also demonstrated shot-
noise-limited phase-shift measurements (see Ref. [51] and
references therein). The PNC-related mode splitting is equal
to 2ωPNC = 2ϕPNCc/L. For the different values of R presented
in Table I, we obtain ωmax

PNC ∼ 150 mHz to 15 Hz. The
PNC-induced mode splitting is much smaller than the cavity
linewidth �ωcav (for L = 7.5 m and F ∼ 1.5 × 104, �ωcav =
2π × 2.5 kHz). Therefore, the p-polarized laser beam excites
the nearly degenerate LCCW mode [see Fig. 2 (b)]. The spatial
recombination of the RCW and LCCW output beams produces
a linearly polarized beam rotated by NϕPNC, where N is
the average number of round-trip cavity passes. The rotation
angle NϕPNC will be measured with a balanced polarimeter.
Note that the spatial recombination of the two output beams
is expected to be a source of depolarization, for which the
signal needs to be corrected. Therefore, we propose the use
of two separate balanced polarimeters, implementing rotating
half-wave and quarter-wave plates, respectively, yielding the
complete set of Stokes parameters of the output recombined
light (see Ref. [59]).

Observe that by bringing the clockwise and counterclock-
wise beams into resonance with the RCCW-LCW mode pair, the
recombination of the exit beams will give now a signal output
of −NϕPNC, yielding thus a net difference in polarization
rotation of 2NϕPNC. This is accomplished through the use
of two signal reversals. First, the frequency of the laser can be
brought into resonance with the RCCW-LCW mode pair with
the use of an acoustic optic modulator. Second, reversing
the magnetic field is equivalent to the interchange of the
clockwise and counterclockwise beams and thus the laser will
couple to the RCCW-LCW mode pair. These two signal reversals
allow for the absolute measurement of the PNC optical
rotation, avoiding the need for cell removal, as was required
in previous PNC optical-rotation experiments. Additionally,
these reversals can be performed at high frequencies of
∼1 kHz, allowing a sufficient subtraction of experimental
drifts. Note that the frequency of the reversals are constrained
by the photon lifetime inside the cavity [for R = R1R2R3R4 =
0.99994 then τphoton = L/(c|lnR|) ∼ 63 μs].

In the previous sections we saw that a linear birefringence
can suppress the enhancement of the PNC optical rotation.
In general, linear birefringences originating from mirror-
reflection phase shifts and thermal and/or stress-induced
birefringences are expected to be ∼10−3 rad (per single
pass per reflection or transmission). Inducing a large circular
birefringence protects the coherent accumulation of the PNC
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optical rotation inside the cavity. The circular birefringence can
be induced using the Faraday effect of the proposed transitions
themselves. Theoretical calculations for the Faraday effect on
the M1 transitions under consideration and the proposed col-
umn densities yield θF ∼ 10−3 rad for a 200-G magnetic field
[25,26]. An alternative is the use of an antireflection-coated
high-Verdet-constant glass window inside the cavity, a dense
flint glass for example. A terbium gallium garnet (TGG) crystal
has a Verdet constant of V ∼ 45 μrad G−1 cm−1 with losses
of ∼10−4/mm−1 at 1064 nm. For a 1-mm crystal thickness
and magnetic fields of 3000 G one obtains θF ∼ 13.5 mrad,
ensuring that α � 10δ, for which the depolarization factor
q � 0.9993 (see also discussion in Ref. [22]). Finally note
that in the case of large linear birefringences, a compensator
(for example, a thin MgF2 glass) with antireflection coatings
can be placed appropriately to reduce the cavity’s total linear
birefringence and therefore to satisfy the condition α � 10δ.

As a final remark, note that the metastable Xe and Hg are
produced in a discharge lamp or via optical pumping, or in the
case of I from molecular photodissociation, and can thus be
switched on and off. This gives us an additional subtraction
procedure that allows for the real-time investigation of the
“empty” cavity and thus of possible experimental errors.

V. THEORETICAL SIMULATIONS

A. Optical absorption length

Upon exiting from the cavity, the recombined laser beams
will be analyzed by a balanced polarimeter. The signal S is
given by

S = 2NϕPNC(ω)T (ω), (35)

where N is the average number of round-trip cavity passes,
ϕPNC(ω) denotes the dispersive line shape of the PNC optical
rotation, and T (ω) is the transmission of the light beam through
the vapor, which is governed by the Beer-Lambert law [27]

T (ω) = I (ω)

I0
= e−A(ω) ≡ e−ρσ (ω)l . (36)

Here A(ω) is the absorptivity, l is the interaction path length,
ρ is the number density of the atoms, σ (ω) is the absorption
cross section, which is a function of the optical frequency, and
I0 is the intensity of the incident laser beam.

The absorption cross section σ is given by the expression

σ (ω) = σ0

∑
i

∑
F,F ′

biCFF ′V ′′
FF ′,i(ω), (37)

where bi is the abundance of isotope i (see Appendix B),
the CFF ′ are geometrical factors [Eq. (B6)], and V ′′

FF ′ is the
absorptive part of the Voigt profile [given in Eq. (A5)]. In the
equation above, the integrated absorption cross section σ0 is

σ0 = πμ0ωJJ ′

�c

1

2J + 1

M2
1

3
. (38)

Note that
∑

i

∑
F,F ′ biCFF ′ = 1 and, since

∫ ∞
0 V ′′(ω)dω = 1,

we obtain
∫ ∞

0 σ (ω)dω = σ0, hence σ0 is justifying its name. In
addition, note that σ0 has units of (area)×(angular frequency).

The extremely long effective path lengths, which can be
realized in stable high-finesse optical cavities, lead to large
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FIG. 4. (Color online) The PNC optical-rotation signal is pro-
portional to the product ϕPNC(ω)T (ω) [Eq. (35)]. Assuming Voigt
line-shape profiles, the maximum PNC rotation signal is plotted as
a function of the resonant optical depth (OD). We demonstrate that
the signal scales linearly with OD when the vapor is optically thin
and continues to increase with a square-root dependence as the vapor
becomes thicker. The y axis is given in units of μrad and we assumed
R = 14 × 10−8.

effective resonant absorption lengths. In Fig. 4 we present
calculations for the maximum PNC optical-rotation signal
expected, as a function of the resonant absorption optical
lengths l0. The PNC optical-rotation signal is proportional to
the product ϕPNC(ω)T (ω) [Eq. (35)], i.e., proportional to the
product of a dispersive line-shape profile times an absorption
line-shape profile. For resonant optical depths l0 � 1, the
maximum PNC optical-rotation angle increases linearly with
increasing column densities, i.e., ϕmax

PNC ∝ ρl (where ρ is the
density and ρl is column density of the vapor), as shown in
the upper inset of Fig. 4. For optical depths l0 � 1, the vapor
is optically thick near the line center where ϕPNC is largest
and can no longer be observed. The effective maximal rotation
angle is shifted further off resonance as

√
ρl and ϕmax

PNC ∝ √
ρl,

as can be shown by maximizing the product of dispersion
and transmission. Therefore, the rotation angle can still be
increased with increasing column density for l0 � 1, albeit
with a rate slower than linear (see the lower inset of Fig. 4).

Finally, note that the average number of cavity passes
N (which is a measure of the effective path length) needs
to be determined precisely so that ϕPNC can be determined
from the experimental observable NϕPNC [Eq. (35)]. Such
measurements will be needed particularly near absorption lines
where (for large resonant optical depths) N will be reduced
and wavelength dependent. A well-established method for
measuring N is the cavity ring-down technique [60].

B. Parity-nonconserving optical-rotation simulations

In this section we present theoretical simulations of the
PNC optical-rotation signals for the proposed transitions in
Xe, Hg, and I, where we explore a range of experimentally
feasible parameters. We assume a four-mirror bow-tie cavity
of round-trip cavity length L = 7.5 m (free spectral range
�ωFSR = 2π × 40 MHz), each mirror having a reflectivity
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FIG. 5. (Color online) Theoretical simulations of the PNC
optical-rotation signal in Hg vs optical frequency for two cases. (a)
Simulations for the three proposed transitions (transition wavelength
λ = 609, 682, and 997 nm) assuming a discharge lamp filled with
isotopically pure 202Hg, which produces for all the initial states 3P0,
3P1, and 3P2 densities of ρ = 5 × 1012 cm−3. In addition, identical
Lorentz line widths �L = 2π × 100 MHz for all transitions are
used, while the Doppler line widths for the 609-, 682-, and 997-nm
transitions are ∼2π×183, 163, and 112 MHz, respectively. The
(red) points in the 3P2 → 1P1 transition are separated by one FSR
(2π × 40 MHz) and the inset shows the reversal mechanism, which
allows for the switching between different polarization mode pairs
yielding thus a net polarization difference of 2NϕPNC. (b) We assume
a discharge lamp filled with isotopically pure odd-isotope 199Hg
producing densities of ρ = 5 × 1012 cm−3 and a transitional Lorentz
contribution of �L = 2π × 100 MHz. The inset shows the full
hyperfine structure of the transition (the hyperfine-structure values
were taken from Refs. [42,43]). The effect of the nuclear anapole
moment is presented, setting � = 1 to yield visibly large signal
differences. See the text for a detailed discussion. All values were
taken from Ref. [34].

of R = 99.99% (enhancement factor N ∼ 104) and a gas-cell
(lamp) path length of l = 1.5 m. We present the enhanced PNC
optical rotation 2NϕPNC(ω) multiplied by the transmission,
which depends on the absorptivity of the specified transition
through the atomic medium (Sec. V A).

1. Hg

In Fig. 5 we present the theoretical PNC optical-rotation
simulations for the proposed transitions in Hg (using the

values for R from Ref. [34] as presented in Table I). In
Fig. 5(a) we assume equal densities ρ = 5 × 1012 cm−3 of
pure 202Hg for all the initial states of the proposed PNC
transitions (3P0, 3P1, and 3P2), produced in a discharge lamp
(or using an optical pumping scheme). The line shape is
a Voigt profile, with a Doppler contribution in the line
width of �D � 2π× 267, 238, and 163 MHz for the 609-,
682-, and 997-nm transitions, respectively [see Eq. (A4) for
∼320 K]. The Lorentzian contribution for all three lines was
taken to be �L = 2π × 100 MHz. This assumption is based on
the fact that in a low-pressure discharge lamp (<10 mTorr), the
pressure broadening mechanisms are negligible compared to
other homogeneous broadening mechanisms [48]. Therefore,
the main contributions come from radiative processes. Lines
originating from the 3PJ states have Lorentz linewidths on the
order of 20 MHz and for lines originating from the 1P1 state on
the order of 100 MHz [48]. Assuming an effective path length
of 150 × 104 cm, we get column densities that correspond to
12, 3, and 3 absorption lengths at the strongest resonance for
the 609-, 682-, and 997-nm transitions, respectively.

In Fig. 5(b) we examine the nuclear-spin-dependent PNC
effects for the 682-nm transition in 199Hg (nuclear spin I =
1/2). Using the values calculated by Dzuba and Flambaum in
Ref. [34] for the PNC amplitudes between different hyperfine
components and by setting � = 1, we see that the peak
signals differ by about 5.4% and −8.6%, resulting in total
signal differences of up to ∼14%. The actual value of � can
be estimated using Eqs. (15) and (16) to be ∼0.1 for the
Hg nucleus. Therefore, achieving an experimental precision
of at least 0.25% is necessary to measure the NSD-PNC
effects with a 6σ precision in the 682-nm transition for
199Hg. Note that, similarly to the case of I [23], the PNC
signals for the two hyperfine groups F = 1/2 → F ′ = 1/2
and F = 1/2 → F ′ = 3/2 deviate in opposite directions, a
signature that serves as an important experimental check.

2. Xe

In Fig. 6 the theoretical simulations for the expected
PNC rotation signals for metastable Xe are presented. In the
simulations presented in Fig. 6(a) we assume densities of
ρ = 1 × 1012 cm−3 for 136Xe, which can be produced in a
discharge lamp. The Doppler width is �D � 2π × 192 MHz
(300 K) and the Lorentz width �L � 2π × 60 MHz, based on
preliminary measurements on a low-pressure He-Xe discharge
lamp performed in our laboratory and on measurements
presented in Ref. [49]. Assuming leff = 150 × 104 cm, we
calculate column densities that correspond to 12 absorption
lengths at the center of the absorption. Figure 6(b) shows the
PNC optical-rotation signal for the case of pure 129Xe (with
nuclear spin I = 1/2) demonstrating a resolved hyperfine
structure. Assuming the same density and Doppler and
Lorentz widths as in the simulations for the 136Xe, we obtain
column densities that correspond to 7 absorption lengths (at
maximum absorption). Similarly to Hg, we set � = 1 to see
the experimental sensitivity to NSD effects. Using the values
from Ref. [34], we obtain a total signal difference of up to
∼6.2%. As the actual value of � is again expected to be ∼0.1
(Xe has an odd-neutron nucleus), an experimental precision of
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FIG. 6. (Color online) Theoretical prediction of the PNC optical-
rotation signal for metastable Xe vs optical frequency assuming
(a) a discharge lamp filled with isotopically pure metastable 136Xe
producing densities ρ = 1012 cm−3 and (b) a discharge lamp filled
with isotopically pure odd-isotope 129Xe, producing densities of
ρ = 5 × 1012 cm−3. The inset shows the full hyperfine structure
of the transition (the hyperfine-structure values were taken from
Refs. [44–46]). The effect of the nuclear anapole moment is presented,
setting � = 1 to yield visibly large signal differences. In both cases we
assume transitional Lorentz contributions of �L = 2π × 100 MHz.
See the text for a detailed discussion. All values were taken from
Ref. [34].

about 0.1% (6σ precision) is required to measure the nuclear
anapole moment in Xe.

In addition, Hg and Xe have large distributions of stable
isotopes (�N/N = 8/120 and 12/76, respectively). Ratios
of atomic PNC measurements along an isotope chain of the
same element can exclude large errors associated with atomic-
structure effects [19] and are sensitive to variations in the
neutron distribution [20,24].

3. 127I

In Ref. [23], investigations of the expected PNC optical-
rotation signal in the 1315-nm transition in 127I were pre-
sented. Here we explore further the range of experimental
conditions, for which a measurable PNC optical-rotation signal
is achievable. In Fig. 7 we present the maximum (peak)
PNC optical-rotation angle as a function of the Lorentzian
broadening of the line and the average number of passes N

(proportional to the finesse of the cavity) for two different

FIG. 7. (Color online) Shown on the top is the theoretical pre-
diction of the PNC optical-rotation signal for the 2P3/2 → 2P1/2

transition in 127I (we assume a column density of ρl = 1.75 ×
1021 cm−2 and �L = 2π × 3 MHz). The hyperfine-structure values
were taken from Ref. [47]. Shown on the bottom and in the
middle are calculations of the maximum (peak) PNC optical-rotation
angle as a function of the Lorentzian broadening of the line and
the average number of passes N (proportional to the finesse of the
cavity), respectively. The simulations are performed for two different
extreme-case densities ρ = 1014 and 1016 cm−3, assuming constant
interaction path length and temperature (�D = 2π × 151 MHz). The
nonsmooth features in the simulations are the result of the fact that
the peak rotation is not always associated with the same hyperfine
component, but switches between hyperfine components (depicted
by black circles in the top figure).

extreme-case densities ρ = 1014 and 1016 cm−3 (the former
is the minimum density needed to produce observable PNC
signals and the latter is arguably the largest that can be
produced using the photodissociation method [23]). Note that
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the peak optical rotation is not always associated with the
same hyperfine component, but switches between hyperfine
components depending on the experimental conditions. This
peak switching is responsible for the kinks present in the curves
of Fig. 7. Finally, we propose the production of these densities
from the photodissociation of I2 with 532-nm radiation (see
relevant discussion in Ref. [23]).

Using the values presented in Fig. 7, we see that for
densities of ρ = 1016 cm−3, a Lorentzian contribution of
�L = 2π × 10 MHz, and an average number of passes of 400,
a peak ϕmax

PNC optical-rotation angle of ∼1 μ rad is expected.
Setting � = 1, we predict NSD-PNC signal differences of
∼8.5%. Using the previously measured values of κ for Cs
[5] as the expected value for the anapole moment in iodine
[�(127I) � −�(133Cs) � −0.38(6)], we see that a measure-
ment of about ∼0.5% sensitivity, corresponding to a 5-nrad
detection sensitivity, is required to measure the NSD-PNC
effects in 127I with a 6σ precision (see also discussion in
Ref. [23]).

VI. CONCLUSION

In this article we presented the fundamental elements
of a cavity-enhanced polarimetric measurement of PNC
optical rotation. The polarization eigenstates of a four-mirror
bow-tie cavity supporting counterpropagating beams were
presented. We demonstrated how an absolute measurement
of the PNC optical rotation is possible even in the presence
of linear birefringence. The measurement procedure and the
availability of robust subtraction procedures using two distinct
signal reversals were also discussed. Furthermore, theoretical
simulations for the expected PNC optical-rotation signals,
utilizing the cavity-enhanced optical-rotation technique under
experimentally feasible parameters, were presented. These
suggest that, for the proposed systems and experimental
conditions, measurements of odd-neutron and odd-proton
NSD-PNC effects are experimentally feasible. In addition,
all the proposed systems are suitable for PNC measurements
along a chain of isotopes, particularly Xe, which has the
largest distribution of stable isotopes. Finally, we demonstrated
that particularly for the case of 127I, large optical-rotation
signals are expected. We argued that the proposed experimental
conditions, as well as the corresponding expected signal
values and detection sensitivities for the proposed transition
in iodine, compare favorably with those of successful PNC
optical-rotation experiments [11–13], suggesting that iodine is
the most favorable candidate for future PNC optical-rotation
experiments, currently pursued in our laboratory.
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APPENDIX A: LINE SHAPES

In the absence of inhomogeneous broadening mechanisms
and for frequency detunings much smaller than the resonance
frequency |ω − ω0| � ω0, the dispersive and absorptive parts
of the line-shape function take the familiar Lorentzian form

L′(ω − ω0) = 1

π

ω − ω0

(ω − ω0)2 + (�/2)2
, (A1)

L′′(ω − ω0) = 1

π

�/2

(ω − ω0)2 + (�/2)2
, (A2)

where � is the full width at half maximum of the Lorentzian
line shape. In a thermal vapor the Doppler broadening
of the transition due to the motion of the atoms cannot
be neglected. The natural way to include it would be to
substitute the frequency variable ω by its Doppler shifted
value ω − k · υ, where k is the wave number and υ the atomic
velocity, and integrate the Lorentzians over a Maxwell velocity
distribution, thus arriving at what is known as the Voigt profile.
However, this convolution of a Lorentzian with a Gaussian
distribution is, for computational purposes, more conveniently
expressed through the Faddeeva function w(z), which is a
scaled complementary error function of a complex variable
z = x + iy:

w(z) = e−z2
erfc(−iz) = w′(x,y) + i w′′(x,y). (A3)

For an atom of mass M and for a transition centered at ω0, the
Doppler half-width at 1/e is

�ωD = ω0

√
2kBT

Mc2
, (A4)

where kB is the Boltzmann constant, c is the speed of light,
and T is the vapor temperature. The absorptive and dispersive
parts of the line shape are related to the real w′ and imaginary
w′′ parts of the Faddeeva function, respectively, via

L′′(ω − ω0) → V ′′(ω − ω0) = w′(ω−ω0
�ωD

,
�/2
�ωD

)
√

π�ωD
, (A5)

L′(ω − ω0) → V ′(ω − ω0) = w′′(ω−ω0
�ωD

,
�/2
�ωD

)
√

π�ωD
. (A6)

APPENDIX B: INDEX OF REFRACTION

1. Electric quadrupole interaction E2

In our proposed transitions for Xe, Hg, and I (with the
exception of the 3P o

0 → 1P o
1 transition in Hg) selection rules

allow for the existence of an electric quadrupole interaction
that must be included. The electric quadrupole operator for the
η = ±1 component of circular polarization (with the positive
sign denoting left-circularly polarized light) is

− ηω

4
√

3
Q(2)

η for Q(2)
η = −2er2

√
4π/5Y (2)

η , (B1)

where Y (2)
η is a spherical harmonic function [61]. Inclusion of

the E2 electric quadrupole amplitude to the index of refraction
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(in addition to the inclusion of the E1PNC dipole amplitude) is
performed by the substitution in Eq. (4):

M2
1

3
→ |〈J‖id (1) + μ(1) − ω

4
√

3
Q(2)‖J ′〉|2. (B2)

Introducing the electric quadrupole to magnetic dipole ratio
parameter χ ,

χ = ω

4
√

3

〈J‖Q(2)‖J ′〉
〈J‖μ(1)‖J ′〉 , (B3)

and using (assuming that space is isotropic)

〈J‖T (k)
η ‖J ′〉 = 1

2k + 1
〈J‖T (k)‖J ′〉 (B4)

(where T (k)
η is the ηth component of the rank-k tensor T ), we

arrive at [by use of Eq. (5)]

n = 1 + n0

∑
F,F ′

C ′
FF ′VFF ′(ω), (B5)

the difference with Eq. (7) being the CFF ′ → C ′
FF ′ substitution

with

C ′
FF ′ = (2F + 1)(2F ′ + 1)

2I + 1

×
({

J 1 J ′
F ′ I F

}2

+ 3χ2

5

{
J 2 J ′
F ′ I F

}2
)

.

(B6)

Note that no interference term between the electric quadrupole
and PNC dipole interactions appears, as it cancels out when
one explicitly performs the summation across the magnetic
sublevels before reducing the matrix elements.

2. Accounting for isotopes

In the case where the studied vapor comprises more than
one isotope, each with an abundance bi , the index of refraction
will just be the sum of the refractive indices for each isotope
ni weighted by their respective abundances:

n =
∑

i

bini . (B7)

The central difference among the various ni is in the resonance
frequency ωFF ′ → ωFF ′,i . Each isotope has an isotope-shifted
resonance frequency, stemming from the slight variations in
the electron wave functions due to the different nuclear masses.
This is the only difference for even isotopes that have no
nuclear spin, hence F (F ′) → J (J ′) and ωFF ′,i → ωJJ ′,i . For
odd isotopes, the nonzero nuclear spin causes the appearance
of hyperfine structure with different ground- and excited-state
hyperfine constants for each odd isotope. It is then ωFF ′,i =
ωJJ ′ + δωi + �ω

(hf)
F ′,i − �ω

(hf)
F,i , with

�ω
(hf)
F = 1

2
A(hf)K + B(hf)

3
2K(K+1) − 2I (I + 1)J (J + 1)

I (I−1)(2I − 1)J (J − 1)(2J − 1)

for K = F (F + 1) − I (I + 1) − J (J + 1), (B8)

where A(hf) and B(hf) are the magnetic dipole and electric
quadrupole hyperfine constants, respectively, and δωi is the
isotope shift. Other affected quantities are the Doppler width
(which is proportional to 1/

√
Mi and is taken into account

in the calculations) and the reduced matrix elements (where
changes are generally very small).
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