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Time from quantum entanglement: An experimental illustration
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In previous years several theoretical papers discussed if time can be an emergent property deriving from
quantum correlations. Here, to provide insight into how this phenomenon can occur, we present an experiment
that illustrates Page and Wootters’ mechanism of “static” time [D. N. Page and W. K. Wootters, Phys. Rev. D
27, 2885 (1983)], and Gambini et al. for subsequent refinements [R. Gambini et al., Phys. Rev. D 79, 041501(R)
(2009)]. A static, entangled state between a clock system and the rest of the universe is perceived as evolving by
internal observers that test the correlations between the two subsystems. We implement this mechanism using
an entangled state of the polarization of two photons, one of which is used as a clock to gauge the evolution of
the second: An “internal” observer that becomes correlated with the clock photon sees the other system evolve,
while an “external” observer that only observes global properties of the two photons can prove it is static.
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One of the main aspects of the “problem of time”1 [1–6]
stems from the fact that a canonical quantization of general
relativity yields the Wheeler–De Witt equation [7,8] predicting
a static state of the universe, contrary to obvious everyday
evidence. This is only a facet of the “problem of time,” but
similar aspects also occur in other approaches to quantum
gravity [5]. A solution was proposed by Page and Wootters
[9,10]: thanks to quantum entanglement, a static system may
describe an evolving “universe” from the point of view of the
internal observers. Entanglement between a “clock” system
and the rest of the universe can yield a stationary state for an
(hypothetical) external observer that is able to test it vs abstract
coordinate time. The same state will be, instead, evolving for
internal observers that test the correlations between the clock
and the rest [9–14]. Thus, time would be an emergent property
of subsystems of the universe deriving from their entangled
nature: an extremely elegant but controversial idea [2,15]. Here
we want to illustrate it by showing experimentally that it can be
naturally embedded into (small) subsystems of the universe,
where Page and Wootters’ mechanism (and Gambini et al.
subsequent refinements [12,16]) can be easily studied. We
show how a static, entangled state of two photons can be seen
as evolving by an observer that uses one of the two photons as a
clock to gauge the time evolution of the other photon. However,
an external observer can show that the global entangled state
does not evolve.

I. THE PAW MECHANISM

Even though it revolutionizes our ideas on time, interpreta-
tion of Page and Wootters’ (PaW) mechanism is easily summa-
rized [9–11]: They provide a static entangled state |�〉 whose
subsystems evolve according to the Schrödinger equation for
an observer that uses one of the subsystems as a clock system
C to gauge the time evolution of the rest R. While the division

1Quid est ergo tempus? si nemo ex me quaerat, scio; si quaerenti
explicare velim, nescio [1].

into subsystems is largely arbitrary, the PaW model assumes
the possibility of neglecting interaction among them writing
the Hamiltonian of the global system as H = Hc ⊗ 1r + 1c ⊗
Hr , where Hc,Hr are the local terms associated with C and R,
respectively [10]. In this framework the state of the “universe”
|�〉 is then identified by enforcing the Wheeler–De Witt
equation H|�〉 = 0, i.e., by requiring |�〉 to be an eigenstate
ofH for the zero eigenvalue. The rational of this choice follows
from the observation that by projecting |�〉 on the states
|φ(t)〉c = e−iHct/�|φ(0)〉c of the clock, one gets the vectors,

|ψ(t)〉r := c〈φ(t)|�〉 = e−iHr t/�|ψ(0)〉r , (1)

that describe a proper evolution of the subsystem R under
the action of its local Hamiltonian Hr , the initial state being
|ψ(0)〉r = c〈φ(0)|�〉 (see Fig. 1). Therefore, despite the fact
that globally the system appears to be static, its components
exhibit correlations that mimic the presence of a dynamical
evolution [9–11].

Two main flaws of the PaW mechanisms have been pointed
out [2,15]. The first is based on the (reasonable) skepticism to
accept that quantum mechanics may describe a system as large
as the universe, together with its internal observers [11,12].
The second has a more practical character and is based on the
observation that in the PaW model the calculations of transition
probabilities and of propagators appear to be problematic
[2,11]. An attempt to fix the latter issue has been discussed
by Gambini et al. (GPPT) [12,16] by extending a proposal
by Page [11] and invoking the notion of “evolving constants”
of Rovelli [17]. It will be analyzed in detail in the following
section.

In this work we present an experiment which reproduces
the basic features of the PaW and GPPT models. In this section
we consider the PaW model. It is realized by identifying |�〉
with an entangled state of the vertical V and horizontal H

polarization degree of freedom of two photons in two spatial
modes c,r , i.e. (see Sec. III),

|�〉 = 1√
2

(|H 〉c|V 〉r − |V 〉c|H 〉r ), (2)
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FIG. 1. Gate array representation of the PaW mechanisms for a
CR noninteracting model. Here Ur (t) = e−iHr t/� and Uc(t) = e−iHct/�

are the unitary time evolution operators of the clock C and of the rest
of the universe R, respectively. |�〉 is the global state of the system
which is assumed to be an eigenstate with null eigenvalue of the
global Hamiltonian H = Hc + Hr (see text).

and enforcing the Wheeler–De Witt equation by taking Hc =
Hr = i�ω(|H 〉〈V | − |V 〉〈H |) as local Hamiltonians of the
system (ω being a parameter which defines the time scale of
the model)2. For this purpose rotations of the polarization of
the two photons are induced by forcing them to travel through
identical birefringent plates as shown in Fig. 2(a). This allows
us to consider a setting where everything can be decoupled
from the “flow of time,” i.e., when the photons are traveling
outside the plates.

Although quite simple, our model captures the two, seem-
ingly contradictory, properties of the PaW mechanism: the
evolution of the subsystems relative to each other, and the
staticity of the global system. This is achieved by running
the experiment in two different modes [Fig. 2(a)]: (1) an
“observer” mode, where the experimenter uses the readings
of the clock photon to gauge the evolution of the other; by
measuring the clock photon polarization he becomes corre-
lated with the subsystems and can determine their evolution.

2It may be worth noticing that this state is analogous to the
spin singlet state [9,10]. In this case the local Hamiltonians then
correspond to local spin (σy) rotations.

This mode describes the conventional observers in the PaW
mechanism; they are, themselves, subsystems of the universe
and become entangled with the clock systems so that they see
an evolving universe; (2) a “super-observer” mode, where he
carefully avoids measuring the properties of the subsystems
of the entangled state, but only global properties; he can then
determine that the global system is static. This mode describes
what an (hypothetical) observer external to the universe would
see by measuring global properties of the state |�〉. Such an
observer has access to abstract coordinate time (namely, in our
experimental implementation he can measure the thickness
of the plates) and he can prove that the global state is static,
as it will not evolve even when the thickness of the plates
is varied. In observer mode [Fig. 2(a), pink (light gray) box]
the clock is the polarization of a photon which has a dial with
only two values, either |H 〉 (detector 1 clicked), corresponding
to time t = t1, or |V 〉 (detector 2 clicked), corresponding to
time t = t2. [Here t2 − t1 = π/2ω, where ω is the polarization
rotation rate of the quartz plate, since the polarization is flipped
in this time interval.] The experimenter also measures the
polarization of the first photon with detectors 3 and 4. This
last measurement can be expressed as a function of time
(he has access to time only through the clock photon) by
considering the correlations between the results from the two
photons: the time-dependent probability that the first photon is
vertically polarized (i.e., that detector 3 fires) is p(t1) = P3|1
and p(t2) = P3|2, where P3|x is the conditional probability that
detector 3 fired, conditioned on detector x firing [experimental
results for the observer mode are presented in Fig. 3(a)].
This type of conditioning is typical of every time-dependent
measurement; experimenters always condition their results on
the value they read on the laboratory’s clock (the second
photon in this case). The experimenter has access only to
physical clocks, not to abstract coordinate time [10,17,18]. In
our experiment this restriction is implemented by employing

FIG. 2. (Color online) Scheme for the two experiments. (a) PaW experiment in “Observer” mode [left, pink (light gray) box] and “Super-
observer” mode [right, orange(dark gray) box]. The experimenter in observer mode can prove the time evolution of the first photon (upper
path) using only correlation measurements between it and the clock photon (lower path) without access to an external clock. The experimenter
in super-observer mode [orange(dark gray) box] proves that the global state of the system is static through state tomography. (b) Two-time
measurements in the GPPT mechanism. The two time measurements are represented by the two polarizing beam splitters PBS1 and PBS2,
respectively. The blue (gray dashed) boxes (A) represent different thicknesses of birefringent plates which evolve the photons by rotating their
polarization; different thicknesses represent different time evolutions. The PaW mechanism (a) is completely independent of the thickness,
whereas the GPPT mechanism (b) allows it to be measured by the experimenter only through the clock photon (the abstract coordinate time
is unaccessible and averaged away); the dashed box (B) represents a (known) phase delay of the clock photon only. PBS stands for polarizing
beam splitter in the H/V basis; BS stands for beam splitter.
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FIG. 3. (Color online) PaW experimental results. (a) Observer mode. Plot of the clock-time-dependent probabilities of measurement
outcomes as a function of the optical plate thickness (corresponding to abstract coordinate time T ). Downward triangles and squares represent
p(t1) = P3|1 and p(t2) = P3|2, respectively, namely the probabilities of measuring V on the subsystem 1 as a function of the clock time t1, t2;
upward triangles and circles represent P4|1 and P4|2, the probabilities of measuring H on the subsystem 1 as a function of the clock time. As
expected from the PaW mechanism, these probabilities are independent of the abstract coordinate time T (dimensionless unit), represented by
different phase plate A thicknesses (here we used a 957-μm-thick quartz plate rotated by 15 different equiseparated angles). The inset shows the
graph that the observer himself would plot as a function of clock time; squares representing the probabilities of finding the system photon V at
the two times t1, t2, the circles of finding it H . (b) Super-observer mode. Plot of the conditional fidelity between the tomographic reconstructed
state and the theoretical initial state |�〉 of Eq. (2) as a function of the abstract coordinate time T . The fact that the fidelity is constant and close
to one (up to experimental imperfections) proves that the global entangled state is static.

a different phase plate A (of random thickness unknown to the
experimenter) in every experimental run. In super-observer
mode [Fig. 2(a), orange (dark gray) box] the experimenter
takes the place of a hypothetical observer external to the
universe that has access to the abstract coordinate time and tests
whether the global state of the universe has any dependence on
it. Hence, he must perform a quantum interference experiment
that tests the coherence between the different histories (wave-
function branches) corresponding to the different measurement
outcomes of the internal observers, represented by the which-
way information after the polarizing beam splitter PBS1. In our
setup, this interference is implemented by the beam splitter BS
of Fig. 2(a) [orange (dark gray) box]. It is basically a quantum
erasure experiment [19,20] that coherently “erases” the results
of the time measurements of the internal observer; conditioned
on the photon exiting from the right port of the beam splitter,
the information on its input port (i.e., the outcome of the time
measurement) is coherently erased [21]. The erasure of the
time measurement by the internal observers is necessary to
avoid having the external observer (super-observer) himself
become correlated with the clock. However, the super-observer
has access to abstract coordinate time; he knows the thickness
of the blue plates, which is precluded to the internal observers,
and he can test whether the global state evolves [experimental
results for the super-observer mode are presented in Fig. 3(b)].

II. THE GPPT MECHANISM

In addition to the PaW mechanism, we also test the
Gambini et al. (GPPT) proposal [12,16] for extending the PaW
mechanism [9–11] to describe multiple time measurements.
We start by describing this mechanism, and then relate it to
our experimental setup.

Time-dependent measurements performed in the laboratory
typically require two time measurements: they establish the
times at which the experiment starts and ends, respectively.
The PaW mechanism can accommodate the description of
these situations by supposing that the state of the universe
will contain records of the previous time measurements [11].
However, this observation in itself seems insufficient to derive
the two-time correlation functions (transition probabilities and
time propagators) with their required properties, a strong
criticism directed to the PaW mechanism [2,11]. The GPPT
proposal manages to overcome this criticism. It is composed
of two main ingredients: the recourse to Rovelli’s “evolving
constants” to describe observables that commute with global
constraints, and the averaging over the abstract coordinate
time to eliminate any dependence on it in the observables.
Our experiment illustrates only the latter aspect of the GPPT
theory.

Measurements of a physical quantity at a given clock
time, say t , are described by the conditional probability of
obtaining an outcome on the system, say d, given that clock
time measurement produces the outcome t . This conditional
probability is given by [12,16]

p(d|t) =
∫

dT Tr[Pd,t (T )ρ]∫
dT Tr[Pt (T )ρ]

, (3)

where ρ is the global state, Pt (T ) is the projector relative
to a result t for a clock measurement at coordinate time T ,
and Pd,t (T ) is the projector relative to a result d for a system
measurement and t for a clock measurement at coordinate
time T (working in the Heisenberg picture with respect to
coordinate time T ). Clearly, such expression can be readily
generalized to arbitrary POVM measurements. (A similar
expression, but in the Schrödinger picture, already appears in
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[11].) The integral that averages over the abstract coordinate
time T in (3) embodies the inaccessibility of the time T by the
experimenter: he can access only the clock time t , an outcome
of measurements on the clock system.

A generalization of this expression to multiple time mea-
surements is expressed by [12]

p(d = d ′|tf ,di,ti)

=
∫

dT
∫

dT ′ Tr[Pd ′,tf (T )Pdi,ti (T
′) ρ Pdi,ti (T

′)]∫
dT

∫
dT ′ Tr[Ptf (T )Pdi,ti (T ′) ρ Pdi,ti (T ′)]

, (4)

which gives the conditional probability of obtaining d ′ on the
system given that the final clock measurement returns tf and
given that a “previous” joint measurement of the system and
clock returns di , ti . (This expression can also be formulated as
a conventional state reduction driven by the first measurement
[16].)

In our experiment to implement the GPPT mechanism
[Fig. 2(b)] we must calculate the conditional probability that
the system photon is V (namely detector 3 clicks) given that
the clock photon is H after the first polarizing beam splitter
PBS1 (initial time measurement) and is H or V after the second
polarizing beam splitter (final time measurement). The initial
time measurement succeeds whenever one of photodetectors
1 or 2 click: This means that the clock photon chose the H

path at PBS1. (Our experiment discards the events where the
first time measurement at PBS1 finds V , although in principle
one could easily take into account these cases by adding a
polarizing beam splitter and two photodetectors also in the
V output mode of PBS1.) The final time measurement is
given by the click either at photodetector 1 or 2; the clock
dial shows tf = t1 and tf = t2 = t1 + π/2ω, respectively.
Using the GPPT mechanism of Eq. (4), this means that the
time-dependent probability that the system photon is vertical
(detector 3 clicks) is given by

p(d = 3|tf = tk,di,ti)

=
∫

dT
∫

dT ′ Tr[Pd=3,tf =tk (T )Pdi,ti (T
′)ρPdi ,ti (T

′)]∫
dT

∫
dT ′ Tr[Ptf =tk (T )Pdi,ti (T ′)ρPdi ,ti (T ′)]

, (5)

where Pd=3,tf =tk is the joint projector connected to detector
3 and detector k = 1 or k = 2 and Pdi,ti is the projector
connected to the first time measurement. The latter projector
is implemented in our experiment by considering only those
events where either detector 1 or detector 2 clicks; this ensures
that the clock photon chose the H path at PBS1 (namely the
initial time is ti) and that the system photon was initialized as
|V 〉 at time ti . (In principle, we could consider also a different
initial time t ′i by employing also the events where the clock
photons choose the path V at PBS1.) Introducing the unitary
abstract-time evolution operators UT , the numerator of Eq. (5)
becomes∫

dT

∫
dT ′ Tr[Pd=3,tf =tkUT −T ′Pdi,ti UT ′ρU

†
T ′Pdi,ti U

†
T −T ′]

=
∫

dT Tr[Pd=3,tf =tkUT Pdi ,ti ρPdi ,ti U
†
T ],

where we use the property UT UT ′ † = UT −T ′ and we dropped
one of the two time integrals by taking advantage of the time
invariance of the global state ρ (which has been also tested

experimentally in the super-observer mode). Gambini et al.
typically suppose that the clock and the rest are in a factorized
state [16], but this hypothesis is not strictly necessary for their
theory [12]; we drop it so that we can use the same initial
global state that we used for testing the PaW mechanism.

Using the same procedure also to calculate the denominator
of Eq. (5), we can rewrite this equation as

p(d = 3|tf = tk,di,ti) = Tr[Pd=3,tf =tk ρ̄]

Tr[Ptf =tk ρ̄]
, (6)

where ρ̄ is the time average of the global state after the first
projection, namely,

ρ̄ ∝
∫

dT UT ρti ,di
U

†
T , ρti ,di

≡ Pdi,ti ρPdi ,ti , (7)

where the averaging over the abstract coordinate time T is used
to remove its dependence from the state. In our experiment
such average is implemented by introducing random values
of the phase plates A (unknown to the experimenter) in
different experimental runs. In our GPPT experiment there
are two possible values for the initial projector Pdi,ti : Either
the clock photon is projected on the H path after PBS1

(corresponding to an initial time ti) or it is projected onto
the V path (corresponding to an initial time ti + π/2ω). We
will consider only the first case, which corresponds to a
click of either detector 1 or 2: We are postselecting only
on the experiments where the initial time is ti . In this case,
the global initial state will be |H 〉c|V 〉r which is evolved
into the vector |�(T )〉 = [cos(ω(T + τ ))|H 〉c − sin(ω(T +
τ ))|V 〉c][cos ωT |V 〉r + sin ωT |H 〉r ] where τ is the time delay
introduced by the plate B of Fig. 2(b), which represents
a known clock delay introduced by the experimenter (as
discussed below). Moreover, the projectors in Eq. (6) are

Pd=3,tf =tk ≡ |k〉c〈k| ⊗ |V 〉r〈V |, and

Ptf =tk ≡ |k〉c〈k| ⊗ 1r , (8)

where |k = 0〉c ≡ |H 〉c and |k = 1〉c ≡ |V 〉c. The projector
Pd=3,tf =tk corresponds to the joint click of detectors k and 3,
while Ptf =tk corresponds to the click of detector k and either
one of detectors 3 or 4. In other words, Eq. (6) can be written
as

p(d = 3|tf = tk,di,ti) = P3k/(P3k + P4k), (9)

where Pjk is the joint probability of detectors j and k clicking.
For example, P32 is the joint probability that detector 3 and
2 click, namely that both the clock and the system photon
were V . Considering only the component |V 〉c|V 〉r of the state
|�(T )〉, this is given by

P32 = 1

2π

∫ 2π

0
dϕ sin2(ϕ + ωτ ) cos2 ϕ = 1 + 2 cos2 ωτ

8
,

(10)

where we have calculated the integral over T of Eq. (7) using
a change of variables ωT = ϕ. Proceeding analogously for all
the other joint probabilities, namely replacing the projectors
(8) into (6), we find the probability for detector 3 clicking
(namely the system photon being V ) conditioned on the time
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tf read on the clock photon as

p(3|tf = t1) = (1 + 2 cos2 ωτ )/4, (11)

p(3|tf = t2) = (1 + 2 sin2 ωτ )/4. (12)

Summarizing, in our experiment [see Fig. 2(b)] the two-
time measurements are implemented by the two polarizing
beam splitters PBS1 and PBS2. PBS1 represents the initial
time measurement that determines when the experiment starts.
It is a nondemolition measurement obtained by coupling
the photon polarization to its propagation direction, while
the initialization of the system state is here implemented
through the entanglement. PBS2 together with detectors 1
and 2 represents the final time measurement by determining
the final polarization of the photon. Between these two time
measurements both the system and the clock evolve freely
(the evolution is implemented by the birefringent plates A).
In the GPPT mechanism, the abstract coordinate time (the
thickness of the quartz plates A) is inaccessible and must
be averaged over [11,12,16]. This restriction is implemented
in the experiment by avoiding having to take into account
the thickness of the blue quartz plates A when extracting
the conditional probabilities from the coincidence rates; the
rates obtained with different plate thicknesses are all averaged
together.

The time-dependent probability of finding the system
photon vertically polarized is (as for the PaW mechanism
described above) p(t1) = P3|1 and p(t2) = P3|2. However, a
clock that returns only two possible values (t1 and t2) is
not very useful. To obtain a more interesting clock, we can
introduce a τ dependence in the expressions of these quantities
by introducing varying time delays to the clock photon,
implemented through quartz plates of variable thickness
[dashed box B in Fig. 2(b)]. (Even though the experimenter
has no access to abstract coordinate time, he can have access
to systems that implement known time delays, that he can
calibrate separately.) In this way, as detailed in Eqs. (11)
and (12), he obtains a sequence of time-dependent values for
the conditional probability: p(t1 + τi) = (1 + 2 cos2 ωτi)/4
and p(t2 + τi) = (1 + 2 sin2 ωτi)/4, where τi = δi/ω is the
time delay of the clock photon obtained by inserting the
quartz plate B with thickness δi in the clock photon path.
The experimental results of the GPPT experiment are detailed
in Fig. 4.

III. EXPERIMENTAL SETUP

The experimental setup consists of two blocks: “prepara-
tion” and “measurement.” The preparation block produces a
singlet Bell state,

|�〉 = 1√
2

(|H 〉c|V 〉r − |V 〉c|H 〉r ), (13)

by exploiting the standard method of coherently superimpos-
ing the emission of two type I BBO crystals whose optical
axes are rotated by 90◦, nonpolarizing beam splitter, which
is used to split the initial (collinear) biphoton field into two
spatial modes c,r and an additional half-wave plate at 45◦ in
the transmitted arm [22].

FIG. 4. (Color online) GPPT experimental results. Probability Pv

that the upper photon is V as a function of the time τ (dimensionless
unit) recovered from the lower photon. The points with matching
colors and forms represent p(t1 + τi) and p(t2 + τi): blue pentagon,
red circle, violet square, etc., for i = 0,1,2, . . ., respectively. Here
nine different values of τi are obtained from a thick quartz plate rotated
by nine different angles. The dashed line is the theoretical value from
Eq. (12). Since t2 = t1 + π/2ω, we have plotted the points relative
to p(3|t2) as displaced by π/2 with respect to the points relative to
p(3|t1), so that the two curves (11) and (12) are superimposed in the
graph.

The measurement block can be mounted in different con-
figurations corresponding to “observer” and “super-observer”
ones of the PaW and GPPT schemes (Fig. 2). In general,
each arm of the measurement block contains interference
filters with central wavelength 702 nm [full width at half
maximum (FWHM) 1 nm] and a polarizing beam splitter
(PBS). Before the PBS the polarization of both photons evolves
in the birefringent quartz plates A (blue boxes in Fig. 2) as
|V 〉 → |V 〉 cos δ + i |H 〉 sin δ, where δ is the material’s optical
thickness.

“Observer” mode in PaW scheme (Fig. 2, block a). In
this mode, the polarization of the photon in the lower arm
is used as a clock: The first polarizing beam splitter PBS1

acts as a nondemolition measurement in the H/V basis of
the polarization of the second photon, finally detected by
single-photon avalanche diodes (SPADs) 1-2. In this mode,
the experimenter has no access to an external clock; he can
only use the correlations (coincidences) between detectors.
The time-dependent probability of finding the first photon in
|V 〉 is obtained from the coincidence rate between detectors
3-1 (corresponding to a measurement at time t1), or 3-2
(corresponding to a measurement at time t2). Appropriately
normalized, these coincidence rates yield the conditional
probabilities P3|x . The impossibility of directly accessing
abstract coordinate time (the thickness of the plates) is
implemented by averaging the coincidence rates obtained for
all possible thicknesses of the birefringent plates A: The plate
thickness does not enter into the data processing in any way.
The corresponding experimental results are shown in Fig. 3(a).

“Super-observer” mode in PaW scheme (Fig. 2, block
a). This mode is employed to prove that the global state is
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static with respect to abstract coordinate time, represented
by the thickness of the quartz plates A. The 50/50 beam
splitter (BS) in block b performs a quantum erasure of the
polarization measurement (performed by the polarizing beam
splitter PBS1) conditioned on the photon exiting its right
port. For temporal stability, the interferometer is placed into
a closed box. Iris diaphragms and narrow interference filters
are used for spatial and frequency mode selection. The output
state is reconstructed using ququart state tomography [23–25]
(the two-photon polarization state lives in a four-dimensional
Hilbert space), where the projective measurements are re-
alized with polarization filters consisting of a sequence of
quarter- and half-wave plates and a polarization prism which
transmits vertical polarization (V). The fidelity between the
tomographically reconstructed state and the theoretical state
|�〉 is reported in Fig. 3(b).

GPPT two-time scheme. Here a second PBS preceding
detectors allows a two-time measurement. To obtain a more
interesting time dependence we delay the clock photon with
an additional birefringent plate B (dashed box in Fig. 2), a
1752-μm-thick quartz plate rotated at nine different angles,
placed in the lower arm, and we repeat the same procedure
described above for different thicknesses of plate B. This
represents an internal observer that introduces a (known) time
delay to his clock measurements. Our results are summarized
in Fig. 4, where each color represents a different delay: the
blue pentagon points refer to τ0; the red circle points to τ1, etc.
They are in good agreement with the theory (dashed line). The
reduction in visibility of the sinusoidal time dependence of the
probability is caused by the decoherence effect due to the use
of a low-resolution clock, a well-known effect [10,16,26,27].

IV. CONCLUSIONS

In conclusion, we presented two experimental setups. In the
PaW setup, by running our experiment in two different modes
(“observer” and “super-observer” mode) we have experimen-
tally shown how the same entangled Hamiltonian eigenstate
can be perceived as evolving by the internal observers that
test the correlations between a clock subsystem and the rest
(also when considering two-time measurements), whereas it is
static for the super-observer that tests its global properties.
In the GPPT setup we have shown one of the possible
adaptations of the PaW mechanism to allow for multiple-time
measurements. Our experiment is a practical implementation
of the PaW and GPPT mechanisms but, obviously, it cannot
discriminate between these and other proposed solutions for
the problem of time [2–6]. In closing, we note that the
time-dependent graphs of Fig. 4 have been obtained without
any reference to an external time (or phase) reference, but only
from measurements of correlations between the clock photon
and the rest; they are an implementation of a “relational”
measurement of a physical quantity (time) relative to an
internal quantum reference frame [28,29].
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