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We consider the process of changing reference frames in the case where the reference frames are quantum
systems. We find that, as part of this process, decoherence is necessarily induced on any quantum system
described relative to these frames. We explore this process with examples involving reference frames for phase
and orientation. Quantifying the effect of changing quantum reference frames provides a theoretical description
for this process in quantum experiments, and serves as a first step in developing a relativity principle for theories
in which all objects including reference frames are necessarily quantum.

DOI: 10.1103/PhysRevA.89.052121 PACS number(s): 03.65.Ta, 03.67.−a

I. INTRODUCTION

Quantum states and dynamics are commonly described
with respect to a classical background reference frame. Even
defining a basis for the Hilbert space of a quantum system
will in general make reference to a background frame. For
example, the state |0〉 for a spin- 1

2 particle may be defined as
the spin parallel to the z axis of a laboratory reference frame,
and the (|0〉 + |1〉)/√2 state as spin parallel to the x axis. In
place of a classical background frame, one could use a second
quantum system prepared in a state that indicates an orientation
or alignment of a frame. The basis can then be defined
with respect to this “quantum reference frame.” In this case,
quantum information is encoded in degrees of freedom that
are independent of the orientation of the laboratory reference
frame.

In this paper, we consider the process of changing quantum
reference frames. That is, we begin with a situation wherein
the quantum state of a system S is defined with respect to a
quantum reference frame A, and we seek a procedure such that
in the end we are describing the same quantum system with
respect to a new quantum reference frame B. We will focus
on the scenario in which we have no prior knowledge of the
orientation of the new quantum reference frame B with respect
to the original frame A. As a concrete example, consider a
quantum optics experiment where the quantum state of an atom
is defined with respect to a phase reference in the form of a
laser, denoted A. We want to switch to a new phase reference B,
i.e., a different laser, for which the phase relationship between
A and B is initially unknown. In order to describe our atom
with respect to laser B, some procedure must be performed that
correlates the two lasers, ideally in a way that minimally affects
the quantum state of the atom; practically, this may involve
phase locking the lasers [1]. (Note that there are other possible
ways of defining a “change of quantum reference frame,” for
example, when there are two reference frames for which the
observer knows the orientation, changing reference frames is
simply a matter of discarding the undesired reference frame.
Another interpretation of a “change” is a single reference frame
transformed under a symmetry action.) In this paper, we will
investigate and quantify how the description of the quantum
system S changes as a result of this change of quantum
reference frame process. This analysis provides the theoretical
description of a process that occurs in numerous experimental

guises [1–14], and may also form the first element of a relativity
principle for quantum reference frames, which dictates how the
description and dynamics of a physical system change under
a change of reference frame.

Quantum reference frames in general will use finite re-
sources, quantified by some parameter such as the Hilbert
space dimension of the frame. If our reference frames describe
a continuum of orientations and we restrict the size (e.g.,
Hilbert space dimension) of the frames, then reference frame
states corresponding to different orientations will not be
perfectly distinguishable. This uncertainty of the frame results
in decoherence in information encoded using the reference
frame [15]. In particular, as we will show, decoherence
can result from a change of quantum reference frame.
This decoherence would be important to limit in quantum
experiments, and would also be a novel effect for a relativity
principle. With a construction and characterization of a change
of quantum reference frame procedure, we quantitatively
investigate the decoherence resulting from changing physical
quantum reference frames. We interpret this appearance of
decoherence in terms of a type of intrinsic decoherence, which
is a proposed semiclassical phenomenon of quantum gravity
arising from fundamental uncertainties in the background
space [16–21].

The structure of the paper is as follows. Section II
reviews the concepts and mathematical formalism of quantum
reference frames. Section III presents the definition of the
quantum operation describing a change of quantum reference
frame, and an analysis of the properties of this quantum
operation for some special cases of quantum reference frame.
We also discuss the significance of the decoherence induced,
and what consequences the procedure has. In Secs. IV and V,
we provide examples of the procedure for phase references
[characterized by the group U(1)], and a Cartesian frame and
direction indicator [characterized by SU(2)]. In Sec. VI, we
present some concluding remarks.

II. PRELIMINARIES: CLASSICAL AND QUANTUM
REFERENCE FRAMES

In this section, we review the conceptual and mathematical
tools used in the description of a quantum state relative to a
classical or quantum reference frame. We follow the notation
of the review article [22].
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A. Types of reference frames

Physical quantities are often defined (perhaps implicitly)
with respect to a nondynamical background reference frame,
e.g., a coordinate system. We want to use physical objects as
reference frames and define quantities with respect to these.
In this paper, we consider the quantum case in which the
physical objects are quantum systems which will be used as
reference frames for other quantum systems. These quantum
reference frames are therefore physical systems with their own
dynamics since they are included in the description just as any
other quantum system. When using a physical system as a
reference frame, well-defined relationships between the frame
system and other systems can be meaningful even without
a background reference frame. Such quantities are called
relational degrees of freedom, which we define in detail in
the following.

We also distinguish between a reference frame that has
some correlation with the system of interest, which we call
an implicated reference frame, and one that is completely
uncorrelated with the system, which we call a nonimplicated
reference frame. Consider the example of the quantum optics
experiment described in the introduction. An experiment is
performed involving the state of an atom defined relative to a
phase reference laser. This phase reference is implicated with
the system of atoms. Another independent laser, not phase
locked with the first, is a nonimplicated frame for the system.

B. Quantum reference frames

A quantum reference frame is a quantum system and is
therefore described by a state in an associated Hilbert space.
Different quantum states in this Hilbert space can describe
different “orientations” of the quantum reference frame with
respect to a hypothetical background frame. To formalize
these notions, we will look at how to mathematically describe
the manipulation of quantum reference frames and relational
quantum degrees of freedom using techniques from the theory
of group representations.

To set up the use of a quantum reference frame for encoding
information in relational degrees of freedom, we begin with a
background reference frame and a quantum system S in the
state ρS with respect to this background frame. Changes of
orientation of this system relative to the background frame
are described by a unitary representation US(g) of an element
g from a group G which describes all possible changes of
orientation.

Next, consider an additional system R prepared in a
quantum reference frame state ρR , also defined with respect
to the background reference frame. The reference frame
state breaks a symmetry associated with G, which has a
representation as a unitary UR acting on the Hilbert space of
the quantum reference frame systemHR . We can now consider
using R as a reference frame for S.

To ensure that we are not still making accidental use of
the background frame, we deimplicate it. This deimplication
involves decorrelating the compound quantum system SR

from the background frame. For a general state ρ, this is
done by averaging the state over all rotations g ∈ G using
USR(g) = US(g) ⊗ UR(g), the unitary representation of G on
the combined (tensor product) Hilbert space of S and R. The

resulting map G is called the G twirl of the state, given by

G(ρ) =
∫

dμ(g)USR(g)[ρ] =
∫

dμ(g)USR(g)ρUSR(g)†,

(1)
where USR(g)[ρ] := USR(g)ρUSR(g)† is the unitary map of
the left action of the group and dμ(g) is the group-invariant
Haar measure of the group [for example, the U(1) integration
measure is dθ/2π ]. [Note that although here we are consid-
ering USR(g), this G-twirl map can be generalized to any
unitary representation.] We restrict our attention to compact
Lie groups, where the average is well defined and bounded,
although we note there exist similar methods for more general
cases. We will call the states that are invariant under G

twirling σ = G(σ ) [including G-twirled states σ = G(ρ)]
“group invariant” or “G invariant.” These states are well
defined independent of a background reference frame. Note
that a G-twirled state may be mixed even if the original state
ρ was pure.

C. Relational degrees of freedom

Relational degrees of freedom are those which are inde-
pendent of any background frame. Given a system state ρS

and a quantum reference frame ρR , it is not immediately
obvious what are the relational degrees of freedom in the
G-twirled joint state G(ρS ⊗ ρR). In the following, we will
define the Hilbert space subsystems associated with these
relational degrees of freedom, following [15,22]. Again, for
simplicity of the mathematics, we will consider symmetries
corresponding to compact Lie groups such as U(1) and SU(2).
However, many of the concepts developed can be directly
transferred to general groups and reference frames.

The unitary representation of a compact Lie group on
a Hilbert space H consists of a number of inequivalent
representations called “charge sectors.” The Hilbert space can
be decomposed into a tensor sum of these charge sectors,
each labeled by q [for example, q may be total spin in a
representation of SU(2) on a collection of spins]. Each of these
charge sectors may be a reducible representation, which can
be further decomposed into a Hilbert subsystemM(q) carrying
an irreducible representation (irrep), and a “multiplicity
subsystem” N (q) which carries the trivial representation and
whose dimension indicates how many copies of the irreducible
representation exist in the charge sector q. The representation
on the full Hilbert space then has the structure

H =
⊕

q

M(q) ⊗ N (q), (2)

where q ranges over all the irreps (charge sectors) of G that
are supported on H.

The G-twirl map (1) is closely related to the representations
of the group, in that it averages an input state ρ over the unitary
action of every element in the symmetry group. Decomposing
this map following (2), we have

G(ρ) =
∑

q

(DM(q) ⊗ IN (q) )[�(q)ρ�(q)†]. (3)

The terms in this operation are defined as follows. First, �(q) is
the projector onto the subspaceM(q) ⊗ N (q), the charge sector
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q. This removes all coherences between the charge sectors.
Next, D is the completely depolarizing channel, which is a
trace-preserving map that takes every density operator to a
scalar multiple of the identity operator on the space M(q).
This is the effect of an average of the action of a unitary group
on an irrep. Finally, I (q) is the identity map on the multiplicity
subsystem N (q).

We can now identify the relational degrees of freedom,
unaffected by G twirl, as the multiplicity subsystem N (q).
The degrees of freedom in the subsystems M(q) are defined
only with respect to a background frame, and are completely
decohered by the G twirl.

D. Quantum reference frame states

In this section, we describe how to define useful quantum
reference frame states. A reference frame breaks a symmetry
by indicating an orientation. The set of possible orientations
is associated with a symmetry group G. To construct a set of
reference states, we begin with a fiducial state |ψ(e)〉, which
serves as a quantum reference frame oriented with respect to
a background frame and which we choose to associate with
the identity e ∈ G. Given this fiducial state we can construct
states corresponding to other orientations g ∈ G by generating
the states in the orbit of |ψ(e)〉 under the group action U (g),
yielding |ψ(g)〉 := U (g)|ψ(e)〉 for all g ∈ G. Such states obey
the relation U (h)|ψ(g)〉 = |ψ(hg)〉, and we say that they
transform covariantly under the action of the symmetry group.

Quantum reference frames generally use limited finite
resources quantified by some parameter sR . A fundamental
example of a size parameter is the dimensionality of the Hilbert
space HR , constraining the number of charge sectors qR under
the representation of the group (however, this is not the only
choice of size parameter). We define the notation |sR; ψ(g)〉 to
denote a G-covariant state ψ(g) with size parameter sR . Where
it is unnecessary to indicate size, we may suppress the size
parameter. The groups considered in the theory of this paper
are compact Lie groups, meaning the reference frames can
take one of a continuum of orientations in a closed manifold.
With only finite-dimensional representations of such groups,
reference frame states for different orientations in a Lie group
can not all be perfectly distinguishable. Consequently, a state
will have a mean orientation g, but also possess an uncertainty
in orientation.

We would like reference frame states to have a well-defined
classical limit in which the overlap of states with different
orientations becomes zero as the size parameter sR increases
to infinity, i.e.,

lim
sR→∞ DsR

|〈sR; ψ(g)|sR; ψ(h)〉|2 = δ(gh−1), (4)

where δ(g) is the delta function on G defined by∫
dμ(g)δ(g)f (g) = f (e) for any continuous function f of

G [15], and DsR
is the dimension of the Hilbert space spanned

by {|sR; ψ(h)〉; h ∈ G}.
In the finite-size case, one may wish to maximize the

distinguishability of the quantum reference frame used for
a given size constraint sR . Distinguishability can be quantified
using maximum likelihood or fidelity measures [22–26].
Because we also want the reference frame states to become
ideal (perfectly distinguishable) in the classical limit, we

want this distinguishability to scale with DsR
(see [23,25–

27] regarding asymptotic measures). A useful choice of
reference frame states for a group G on DsR

dimensions are
the maximum likelihood states [23], denoted |g〉 or |sR; g〉
[the latter following the notation |sR; ψ(g)〉], as these states
are optimal for a range of operational tasks involving reference
frames. These pure states transform covariantly and have the
property that

G(|g〉〈g|) = D−1
sR

I , (5)

i.e.,these have uniform support over their Hilbert space,
which will make these states useful in the construction of
measurements [positive operator-valued measures (POVMs)].
The form of a maximum likelihood state is specific to the group
G and Hilbert space HR . We will consider quantum reference
frame Hilbert spaces HR for which the decomposition 2 of just
HR is such that dq := dimN (q) = dimM(q) for every charge
sector q [15]. Then, the maximum likelihood states take the
simple form [28]

|e〉 = D
− 1

2
sR

∑
q∈QR

dq |	(q)〉, (6)

where in this case DsR
= ∑

q d2
q and |	(q)〉 =

d
− 1

2
q

∑dq

m=1 |φ(q)
m 〉 ⊗ |r (q)

m 〉 is a normalized maximally entangled
state on M(q) ⊗ N (q) in some pair of bases |φq

m〉 ∈ M(q) and
|r (q)

m 〉 ∈ N (q). The set QR includes the charge sectors on which
this state has support and is determined by the size parameter
sR . It is straightforward to generalize the machinery to cases
where dimM(q) 	= dimN (q) (see Refs. [15,22,23,28–30]).
For more details regarding properties of these states, see
Refs. [15,22,31–36]. We will be using examples of maximum
likelihood states as quantum reference frames in Secs. IV
and V.

E. Encoding and recovering relational states

One essential task when using quantum reference frames is
to implicate a quantum reference frame for a system state ρS

while deimplicating the background frame, called relationally
encoding ρS . A second essential task is to do the reverse:
extract the information from this encoding by removing the
quantum reference frame and recovering a ρ ′

S defined relative
to a background frame. In this section we define the operations
that do these tasks.

Given a quantum system S defined relative to a background
frame, we want to introduce a quantum reference frame R and
deimplicate the background frame. This is achieved by the
encoding map

EρR
(ρS) := GSR(ρS ⊗ ρR). (7)

Equation (7) results in a G-invariant state σSR = EρR
(ρS)

which is called the relational encoding of ρS using ρR . The
map can be implemented by applying Eq. (1) to ρS ⊗ ρR ,
where the unitary representation on the compound Hilbert
space HS ⊗ HR is given by US(g) ⊗ UR(g). It can also
be implemented by the projection to charge sectors and
depolarization of irreps given by (3).

Now, if we are given an encoded state but wish to recover
the state ρS in terms of a background frame, this usually can not
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be done perfectly [15]. The procedure we use is the recovery
map [15]

R(σSR)

= DsR

∫
dμ(g)[US(g−1) ⊗ 〈g|R]σSR[US(g−1)† ⊗ |g〉R],

(8)

which results in a state ρ ′
S on HS . This map describes the

measurement of the quantum reference frame on system R

against a background reference frame, described by a covariant
POVM formed with elements proportional to projectors onto
the states |g〉R on the reference frame. If the reference frame
is measured to have orientation “g” relative to the background
frame, then the orientation of the state is corrected by a
transformation by g−1.

The finite size of a quantum reference token means that
for symmetries described by compact Lie groups, the token
is an imperfect reference frame. Consequently, the use of a
quantum reference frame causes an effective decoherence to
the information in ρS . We can describe this decoherence by
composing (7) and (8) to produce

R ◦ EρR
(ρS) = DsR

∫
dμ(g)〈g|ρR|g〉US(g−1)[ρS]. (9)

This map takes the form of a noise map on ρS , describing a
mixing of this state over a distribution of unitaries determined
by the distribution 〈g|ρR|g〉. We want to minimize this
decoherence by optimizing the recovery operation to produce
the state closest to ρS possible from an encoding EρR

(ρS).
The figure of merit used to quantify this optimization is the
average entanglement fidelity of an arbitrary input ensemble
of states σSR into R [15]. The recovery map is generically
near optimal in the sense that if the average fidelity of an
optimal recovery map Ropt. is F̄e = 1 − η then the recovery
map R has average fidelity F̄e � (1 − η)2 � 1 − 2η, i.e.,the
error η is never greater than twice that of the best recovery
operation [37].

III. CHANGE OF A QUANTUM REFERENCE FRAME

We now consider the central problem of changing quantum
reference frames. We begin this section with a qualitative dis-
cussion of the issues regarding measurement when changing
reference frames, including an example to illustrate the central
ideas. If the reader prefers, Sec. III A can be skipped in favor
of the mathematical formulation in Sec. III B.

A. Changing quantum reference frames:
A qualitative discussion

As an example, also investigated in [38,39], consider a
particle S in one dimension, with position defined relative
to a reference frame consisting of another particle A which
provides an origin. Introduce a second particle B, which we
would like to use as a new reference frame for S. Classically,
this seems straightforward: the position of S described in
terms of B will differ by the relative position of the two
reference frames xB − xA. (Note that this relational quantity
is independent of any choice of origin.) After adjusting our

description of the position of S by this difference, particle A

can be subsequently discarded.
In this classical scenario, we can implicitly assume that the

relative position of the two frames xB − xA is known a priori.
In the quantum scenario we consider, the reference frame B

is initially deimplicated, meaning that it is uncorrelated with
either A or S; in general, we would require a measurement to
determine such relationships. There are two natural options
for doing this. The relationship between S and B can be
directly measured, or the relationship between A and B

can be measured (giving us the relational quantity xB − xA

for adjusting the description of S). Let us concentrate on
the quantum mechanical case now, and first consider a
semiclassical configuration in which the A and B reference
frames are in position eigenstates and the measurements are
ideal projective measurements of relative position. The S state
is arbitrary. For the first measurement option, the relative
position of S and B is measured. The wave function of S will
in general not be a position eigenstate, and therefore will be
disturbed by a measurement of relative position; specifically,
a projective measurement of xB − xS in the situation where B

is in a position eigenstate will collapse the wave function of S

to a position eigenstate as well. This complete disturbance is
not consistent with what we expect of a change of reference
frame. Instead, consider an alternative, where the relative
position xB − xA of the two reference frames A and B is
measured, and the system S is not involved. After obtaining
a well-defined value of xB − xA, we can combine this with
preexisting correlation between S and A to obtain a correlation
between S and B since the associated operators for xS − xA

and xS − xB commute. This act of measurement has implicated
the reference frame B, and we can now discard A. The new
description of the state S will have changed by xB − xA due to
the difference in position of reference frame B versus A, thus
accomplishing a change of quantum reference frame.

There are, however, some subtleties in this procedure.
In the above example, A and B were position eigenstates
and the measurements were projective to these position
eigenstates, allowing for arbitrarily good precision in the
relational variables. In general, quantum reference frames
for generic degrees of freedom will not possess such ideal,
perfectly distinguishable configurations due to their bounded
size [15]. We will see that the bounded nature of the A reference
frame results in decoherence to the quantum system ρS after
A is discarded. If the measurement is also only capable of
projecting xB − xA to a state with finite variance in position,
then discarding the frame A yields a system wave function
correlated with an imperfect reference frame B. Recovering
ρS from quantum frame B will then also cause decoherence to
the system.

In the next section, we will formalize these concepts and
problems, and construct a general framework for describing a
change of quantum reference frame. In particular, because we
use quantum states to indicate orientations in a continuous
group, in many cases we can not perfectly distinguish
nonorthogonal states for different reference frame orientations.
One of the main limiting factors for distinguishability is the
dimension of the Hilbert space used for the reference frame.
The imperfect distinguishability results in an uncertainty in
the orientation given by a quantum reference frame, leading
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to decoherence when we change the quantum frame used for
encoding a quantum system.

B. General results of change of quantum reference
frame procedure

In this section, we formally develop the change of quantum
reference frame procedure and then calculate the final states for
a physically relevant class of initial states. We can formulate
the notion of changing quantum reference frames as an
operational task. An observer possesses a quantum system
S and implicated quantum reference frame A; the initial state
of this combined system is given by the encoding EρA

(ρS)
given in Eq. (7). This observer wishes to use a second, initially
nonimplicated, quantum reference frame B. The task of the
observer is to use the B quantum system as a quantum
reference frame for the system S, and to discard the initial
reference frame A. That is, the observer seeks to end up with a
new encoding EρB

(ρ ′
S) of the system S with respect to B, where

we note that the state of the system ρ ′
S may have changed as a

result of this procedure. We measure success at this operational
task by determining how close (relative to some natural figure
of merit, such as fidelity or trace distance) is the final encoded
state ρ ′

S compared with the original ρS .
As well as being of theoretical interest, this occurs in several

experimental guises [1]. For example, in switching phase or
clock reference lasers from a locked laser A to an uncorrelated
laser B, one first needs to phase lock the two lasers [2–5] (this
has been extended to issues in optical teleportation [6,7]). In
another example, determining the relative phase of two Bose-
Einstein condensates [5,8–12] can be interpreted as correlating
quantum reference frames [1,13,14].

In the following sections, we develop such a procedure
based on a relational measurement between the old and new
quantum reference frames A and B. We then consider how the
encoded state on S is affected by this procedure, and quantify
how well this procedure performs at the above operational
task.

1. A measurement to determine the relationship between frames

The core element of the procedure to change quantum ref-
erence frames is a relational measurement of the two reference
frames A and B that determines a relative orientation h ∈ G

between these two frames [40]. Performing this measurement
leads to a correlation in orientation of the two reference frames.
Because there was initially correlation between frame S and the
system A, we obtain correlation between S and B. Now, we can
discard the A reference frame by tracing and use B as the new
quantum reference frame. If the reference frames use finite
resources such as finite Hilbert space dimension to indicate
orientations, we expect decoherence in the post-measurement
state. The fact that it is a relational measurement means that it
can be made independent of any background reference frame.
In the following, we construct the relational POVM and update
map for this measurement, and prove key properties of the
construction.

The quantum statistics of a relational measurement of the
two reference frames A and B are given by a relational
POVM {Eh|h ∈ G}. A POVM allows us to calculate the
probabilities of the h outcomes for an input state, but here

we are equally interested in the post-measurement state. We
therefore construct a family of trace-decreasing completely
positive (CP) maps Mh

AB associated with the POVM elements
to determine the post-measurement state for a given outcome
h. (Such maps, which describe the POVM and also the post-
measurement update rule, are sometimes called instruments.)
We require these operations to be implementable without the
use of a background reference frame.

We now define a measurement, as a POVM, satisfying
the above conditions. The POVM is designed to determine
orientation within the symmetry group, so will be formed from
the maximum likelihood states {|g〉; g ∈ G} for the particular
symmetry group G of the scenario, using the techniques
of II D.1 The maximum likelihood states |g〉A and |g〉B for
each reference frame system A and B satisfy the conditions
G(|g〉A〈g|) = D−1

sA
IA and G(|g〉B〈g|) = D−1

sB
IB , where Ds∗ are

normalization factors given by the dimensions of the Hilbert
space spanned by each projector on A and B. We construct a
family of projectors �

g,h

AB on the two reference frame systems
AB given by

�
g,h

AB = |g〉〈g|A ⊗ |gh〉〈gh|B = UAB(g)[|e〉〈e|A ⊗ |h〉〈h|B],
(10)

with |g〉 = U (g)|e〉. The projector �
g,h

AB projects onto the state
describing an orientation g ∈ G of the state on A and an
orientation gh ∈ G of the state on B.

The projectors are defined with respect to a background
frame. By using a G twirl, we can define relational POVM
effects {Eh} as

Eh = DsA
DsB

∫
dμ(g)�g,h

AB. (11)

This measurement satisfies POVM completeness∫
dμ(h)Eh = IAB . To show this, observe that∫

dμ(h)Eh = DsA
DsB

∫
dμ(g)dμ(h)|g〉〈g|A ⊗ |gh〉〈gh|B

=
(

DsA

∫
dμ(g)|g〉〈g|A

)

⊗
(

DsB

∫
dμ(h)|h〉〈h|B

)
= IAB, (12)

with the second line obtained by measure invariance, and
the last using the property of maximum likelihood states
G(|e〉A〈e|) = D−1

sA
IA and G(|e〉B〈e|) = D−1

sB
IB .

With each effect Eh, we can define a corresponding CP
map Mh

AB describing both the measurement and subsequent
update map in terms of the projectors as

Mh
AB(ρAB) = DsA

DsB

∫
dμ(g)�g,h

AB ρAB �
g,h

AB

†
. (13)

Note that this update map is chosen such that the measurement
is repeatable. As with the POVM, this map can be implemented
without the use of a background frame. We prove this fact by

1It was shown in [29] that this is the POVM for measuring the
orientation of a quantum reference frame which maximizes the
likelihood. Note that the recovery map (8) also uses a POVM of
this form.
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demonstrating that the map is group invariant, which means
that the measurement map (13) is invariant under any global
rotation UAB(f ) := UA(f ) ⊗ UB(f ), i.e., for any f ∈ G we
have that [41,42]

UAB(f ) ◦ Mh
AB ◦ U†

AB(f ) = Mh
AB. (14)

To show this, observe using (13) that

UAB(f ) ◦ Mh
AB ◦ U†

AB(f )[σ ] = DsA
DsB

×
∫

dμ(g)UAB(f )�g,h

AB U
†
AB(f )σUAB(f ) �

g,h

AB

†
U

†
AB(f ).

(15)

Focusing on just the projectors, from (10) we have that

UAB(f )�g,h

ABU
†
AB(f ) = |fg〉〈fg|A ⊗ |fgh〉〈fgh|B = �

fg,h

AB .

(16)

The group invariance of the integration measure in (13) allows
us to redefine fg → g, thereby recovering the original map.

Note that, for a non-Abelian symmetry group, this G invari-
ance of the map constrains the construction of the projectors. If
we had instead defined the projectors as |g〉〈g|A ⊗ |hg〉〈hg|B ,
the resulting map would not be G invariant except in the special
case of h satisfying hg = gh for all g ∈ G (i.e., h in the center
of the group).

2. Using the relational measurement to change quantum
reference frames

We have constructed a quantum operation (17) to determine
the relative orientation between two quantum reference frames.
In this section, we will apply this operation to the problem of
changing quantum reference frames. We will show that this
measurement can be used to construct a quantum operation
that takes system ρS encoded with respect to the quantum
reference frame ρA on A, i.e., the encoded state EρA

(ρS), and
transforms it to a state ρ ′

S encoded with respect to a new
reference frame ρB on B as the encoded state EρB

(ρ ′
S). We

will quantify the performance of this task, i.e., how well the
encoding of ρS is preserved, in Sec. III C 2.

Consider the action of the measurement mapMh
AB given by

Eq. (13) on generic G-invariant states σSAB on systems S,A,B

(defined to act as the identity map on S). Because it is G

covariant, the map will produce a G-invariant state on SAB.
For the purposes of the change of quantum reference frame
procedure we want a map from SAB to SB, as we want to

discard the A reference frame following the measurement.
This is done by applying a partial trace over A to the post-
measurement state. The result is a final (unnormalized) G-
invariant state on systems S and B with correlation between
the subsystems. The unnormalized final state corresponding to
measurement outcome h is

TrA
[
Mh

AB(σSAB)
] = DsA

DsB

×
∫

dμ(g)[〈g|A ⊗ 〈gh|B] σSAB[|g〉A
⊗ |gh〉B] ⊗ |gh〉〈gh|B. (17)

The measurement outcome h is a continuous parameter, so
we have a probability density function for outcomes h for the
measurement of a state σSAB given by

P (h) = Tr[EhσSAB] = Tr[Mh
AB(σSAB)] . (18)

The probability density function normalizes by∫
P (h)dμ(h) = 1 when using the group-invariant Haar

measure dμ(g).
Consider a relational encoding of a quantum state ρS

using a quantum reference frame |ψ(a)〉A, a pure state with a
well-defined orientation a ∈ G. (As we define the procedure
to act on encoded states, the parameter a describing the
orientation of A relative to a background has no operational
significance. However, for the purposes of clarity, we leave
this parameter a in the derivation as it takes the role of
xA from the example of Sec. III A.) We are particularly
interested in the case where this is a maximum likelihood
state |ψ(a)〉A = U (a)|e〉A for a ∈ G, although our map can
be defined for a general quantum reference frame state. No
other reference frame is implicated, so we describe the joint
SA system by the G-twirled state E|ψ(a)〉A (ρS) = GSA[ρS ⊗
|ψ(a)〉〈ψ(a)|A]. We introduce a second reference frame ρB

which is nonimplicated, i.e., uncorrelated with the other two
quantum systems, described by the state GB(ρB). The full
initial state on all components (the system S and both quantum
reference frames A and B) is then

σSAB = GSA[ρS ⊗ |ψ(a)〉〈ψ(a)|A] ⊗ GB(ρB). (19)

We apply the operation σSAB → TrA[Mh
AB(σSAB)] given

by Eq. (17) to this state σSAB . This state is group invariant,
satisfying GSAB (σSAB) = σSAB , and Mh

AB is G covariant, so
we can commute the G twirl with the operation, allowing us
to write the final state on SB as

TrA
[
Mh

AB(σSAB)
] = GSB

[
ρS ⊗

(
DsA

DsB

∫
dμ(g) |〈g|ψ(a)〉A|2 〈gh|GB(ρB)|gh〉 |gh〉〈gh|B

)]

= GSB

[
ρS ⊗

(
DsA

∫
dμ(g) |〈g|ψ(a)〉A|2 |gh〉〈gh|B

)]
, (20)

where the second line follows from the simplifica-
tion 〈gh|GB(ρB)|gh〉 = Tr[G(|e〉〈e|)ρB] = D−1

sB
, arising from

properties of the G-twirl and maximum likelihood states
|e〉. As B was initially in the G-invariant state GB(ρB), all
measurement outcomes h are equally likely, and the result

of the measurement is to initialize a reference frame state
|gh〉B on B with a well-defined orientation with respect to A.
Solving Eq. (18) using Eq. (20), we have that P (h) = 1 for
input states of the form Eq. (19). We can therefore associate
Tr[Mh

AB(σSAB)] with a trace-one normalized state.
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To continue simplifying (20), the G twirl GSB allows us to
move the action of g onto the state of the system S as

TrA
[
Mh

AB(σSAB)
]

= GSB

[
DsA

∫
dμ(g) |〈g|ψ(a)〉A|2

×US(g−1)[ρS] ⊗ |h〉〈h|B
]

= GSB(ρ ′
S ⊗ |h〉〈h|B), (21)

where we have defined

ρ ′
S = DsA

∫
dμ(g) |〈g|ψ(a)〉A|2 US(g−1)[ρS] . (22)

With |ψ(a)〉 covariant, we have that 〈g|ψ(a)〉A =
〈a−1g|ψ(e)〉A. Redefining g → ag, we have that the new
encoded system state ρ ′

S is related to the original system state
ρS by the composition of maps

ρ ′
S = F (A)

S ◦ US(a−1)[ρS], (23)

where the form of the CP map F (A)
S is

F (A)
S := DsA

∫
dμ(g)|〈g|ψ(e)〉A|2US(g−1). (24)

Note that the map F (A)
S is trace preserving since∫

dμ(g)|〈g|ψ(e)〉A|2 = D−1
sA

. From Eq. (21) we now see ex-
plicitly that the result of the relational measurement, followed
by tracing out of A, results in a final state that takes the form
of ρ ′

S encoded with respect to a quantum reference frame on
|h〉B on B, i.e., a state of the form

TrA
[
Mh

AB(σSAB)
] = E|h〉B (ρ ′

S), (25)

which depends explicitly on the measurement outcome h. The
CP map F (A)

S that takes ρS to ρ ′
S is a convex mixture of unitary

maps determined by the overlap of a maximum likelihood state
with the reference frame state on A. Therefore, in general, this
map results in decoherence of ρS due to the uncertainty in
orientation of the reference frame state |ψ(e)〉A.

C. Decoherence and performance of the change of quantum
reference frame procedure

We will now characterize the decoherence of the system
ρS due to the change of quantum reference frame procedure.
In particular, we will show that the decoherence, which is
described by the CP mapF (A)

S , is equivalent to the decoherence
associated with the “recovery” operation defined in Sec. II E.

For a system S in a relational encoding with a quantum
reference frame A, the recovery map R of (8) can be
implemented by measuring the orientation g of the quantum
reference frame A relative to a background classical frame,
discarding the quantum reference frame, and rotating ρS by
g−1. This recovery map applied to a relational encoding of a
system E|ψ(a)〉A(ρS) leads to a noise map on ρS :

R ◦ E|ψ(a)〉A (ρS) = DsA

∫
dμ(g)|〈g|ψ(a)〉A|2US(g−1)[ρS].

(26)

ρS

Encoding E|h BE|h B
◦R

E|ψ(a) A
(ρS)

Recovery R

Change of frame

TrA[Mh
AB(∗⊗σB)] E|h B

(ρS)

FIG. 1. The procedure (17) on states of the form given by (19) is
the same map as E|h〉B ◦ R on an encoding E|ψ(a)〉A (ρS). The change
of quantum reference frame map results in description of the state
relative to a different reference frame without measuring against a
background classical frame, whereas the reencoding map E|h〉B ◦ R
changes a reference frame using a background reference frame for
the intermediate state ρ ′

S .

This map is identical to the decoherence map F (A)
S ◦ US(a−1)

in (23). We then have the equivalence of maps

R ◦ E|ψ(a)〉A ≡ F (A)
S ◦ US(a−1). (27)

As depicted in Fig. 1, the transformation E|ψ(a)〉A (ρS) �→
E|h〉B (ρ ′

S) achieved by the change of quantum reference frame
procedure can also be achieved by composing the recovery
and encoding maps E|h〉B ◦ R. We can therefore write the final
state of the change of quantum reference frame procedure as

E|h〉B (ρ ′
S) = E|h〉B [(R ◦ E|ψ(a)〉A )[ρS]]. (28)

We have shown that the change of quantum reference frame
procedure results in a encoded state E|h〉B (ρ ′

S) where ρ ′
S is

related to the initial state ρS [in the encoded state E|ψ(a)〉A(ρS)]
by the map R ◦ E|ψ(a)〉A . Let us now view the change of
quantum reference frame procedure in terms of the operational
task set out at the start of Sec. III B.

1. Classical limits

Recall the notation introduced in Sec. II D, with the
states of quantum reference frames |s; ψ(g)〉 parametrized
by a size parameter s, and for which s → ∞ describes the
classical limit. Given that decoherence occurs in the change of
quantum reference frame procedure due to the uncertainties
in orientation of each reference frame state |s; ψ(g)〉, we
want to identify the conditions under which there is no
decoherence. For a class of quantum reference frame states
|s; ψ(g)〉 that possess a well-defined classical limit s → ∞
in which there is no uncertainty in orientation (for example,
the maximum likelihood states |s; g〉), we demonstrate that
the change of quantum reference frame procedure has an
appropriate classical limit.

To reproduce a classical change of reference frame map,
for size parameters sA,sB → ∞ we should have the initial
relational encoding limsA→∞ E|sA;ψ(a)〉A (ρS) map to the final
relational encoding limsB→∞ E|sB ;ah〉B (ρS) with no change to
the encoded state ρS , i.e., no decoherence. We now show that
this is the case. As sA → ∞, the overlap of |sA; ψ(e)〉 with
other orientations in the group becomes zero, i.e., we have

lim
sA→∞ DsA

|〈sA; g|sA; ψ(e)〉A|2 = δ(g), (29)
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where δ is the Dirac delta function on the group. The decoher-
ence map (24) then becomes the identity map limsA→∞ F (A)

S =
IS . The final state is then σh

SB = E|sB ;ah〉B [ρS] where the size of
the reference frame B is determined by the size sB of the initial
B reference frame. This reproduces the required classical limit.

We can also consider the single limits where only one of
the reference frames A or B is taken to be classical. For the
case where we take the classical limit of A, the change of
quantum reference frame procedure is simply the encoding
map E|ah〉B (ρS). In the alternate case where A remains finite but
B becomes classical, the operation is simply the recovery map.
This classical limit corresponds to recovery from a quantum
frame A into a classical frame B with associated decoherence
F (A)

S .

2. Performance of the procedure for changing
quantum reference frames

In Sec. III B, we defined the operational task for changing
quantum reference frames as follows: an observer possesses a
quantum system S and implicated quantum reference frame A

as the initial encoded state EρA
(ρS). This observer wishes to use

a second, initially nonimplicated, quantum reference frame B

as a quantum reference frame for the system S, and to discard
the initial reference frame A, resulting in a final encoded state
EρB

(ρ ′
S).

We can now quantify the performance of our change
of reference frame procedure defined in Sec. III B for this
operational task. We can view any such procedure as a
map O : ρS �→ ρ ′

S and quantify its performance according to
some figure of merit such as its process fidelity. We have
shown in Sec. III C that this map for our change of reference
frame procedure is the decoherence map F (A)

S ◦ US(a−1) =
R ◦ E|ψ(a)〉A . As US(a−1) is unitary, any loss in fidelity is due
to the map F (A)

S .
To determine whether our map is optimal relative to some

figure of merit, i.e., whether the map induces the least amount
of decoherence for the task outlined above, is a difficult
problem in general. However, we note that in the classical
limits defined in Sec. III C 1, the associated decoherence is that
corresponding to either E|ah〉B orR for a given reference frame,
and these maps are shown to be optimal and near optimal in
Ref. [37] (see Sec. II E). Therefore, our change of reference
frame procedure is near optimal in these classical limits.

D. Consequences and interpretation of decoherence

In the previous sections, we have developed the mathemati-
cal tools to describe the change of a quantum reference frame.
Before investigating two examples in Secs. IV and V, it is
worthwhile to consider at this stage some of the conceptual
consequences of the procedure.

As we identified in Sec. III C, following the change of quan-
tum reference frame procedure, the system in the final encoded
state appears to be affected by a form of decoherence. This
decoherence is absent in the classical limit. In this section, we
will investigate the properties of the decoherence, the necessity
of its existence in a change of reference frame procedure,
and consider the consequences for the relativity principle for

quantum reference frames, suggesting a connection to a type
of intrinsic decoherence.

1. Properties of the decoherence from changing quantum frames

First, we pose some questions regarding the properties of
the decoherence in the procedure: Is decoherence necessary
when changing a quantum reference frame? Could the deco-
herence be reduced by changing to a better (more precise)
reference frame?

In Sec. III C, we determined that the decoherence due to
changing quantum reference frames with the procedure is
associated with the map F (A)

S , a convex mixture of unitary
maps determined by the overlap |〈g|ψ(e)〉A|2 of a maximum
likelihood state with the reference frame state on A. The
states in this overlap are generally not orthogonal unless
the reference frame A approaches infinite size, and so the
change of reference frame procedure will cause decoherence.
Additionally, unless reference frame B is of infinite size, there
is also decoherence associated with the encoding with respect
to the quantum frame B. The net decoherence on the system
is the composition of these two sources. As a consequence,
changing from a less precise frame A to a more precise frame
B nonetheless still results in a net increase in the decoherence
to the system.

2. Interpreting the decoherence as an intrinsic decoherence

Now that we have identified the decoherence as being
fundamental to change of quantum reference frames, there
is still the question of how to view the decoherence arising
as a result of a change of quantum reference frame in
the context of the relativity principle. To this end, we will
interpret the decoherence in terms of an intrinsic decoherence.
Intrinsic decoherence is decoherence to a quantum state that
occurs without interaction with an environment [43]. It has
been proposed to occur as a result of fluctuations in the
space-time metric or other aspects of background space-time
due to quantum effects of the space-time in theories of
quantum gravity [16–18,21,44]. By internalizing parameters
into a quantum model, quantum reference frames provide
a way to model the effects of a background space-time. A
connection between deformed symmetries of semiclassical
gravity and quantum reference frames was demonstrated in
Ref. [20]. Most closely related to quantum reference frame
measurement is by Milburn [19] in which intrinsic decoher-
ence arises when a quantum state is translated in position by
an operator whose parameters are not precisely known, due
to the quantization and uncertainty of the background time
parameter.

We will interpret the decoherence of the change of quantum
reference frame procedure (Sec. III) within the space-time in-
trinsic decoherence framework introduced above. The change
of quantum reference frame procedure is a complete, closed
description of the decoherence that occurs to a system ρS

due to changing between two quantum reference frames. The
corresponding description of a change of reference frame when
the two reference frames are treated as background frames,
so that only the system ρS remains quantum mechanical, is
that the system experiences a noise map F (A)

S as an isolated
quantum system; i.e., in this description the quantum system
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experiences intrinsic decoherence. Viewed from the other
perspective, we have that the change of quantum reference
frame map is the self-contained description of this intrinsic
decoherence once the quantum nature of the reference frames
is included. As such, it is an operational derivation of a process
that leads to intrinsic decoherence. Note that this particular
model consists of an abrupt measurement rather than dynamics
or continuous time evolution.

IV. EXAMPLE: PHASE REFERENCE

In this section, we explore a simple example illustrating the
details of the change of quantum reference frame procedure
for reference frames associated with an Abelian group.
Specifically, we consider a phase reference, whose orientation
corresponds to an element of U(1). We will pay particular
attention to the explicit forms and interpretation of the final
state described in Sec. III B 2 which results from a change of
quantum reference frame procedure.

The example will be structured as follows. First, we will
describe the reference frame states we will use and how
these allow storage of quantum information in relational
degrees of freedom. We will then review the change
of quantum reference frame procedure in this Abelian
case. We then explicitly calculate the decoherence for the
cases where the reference frame is described by a phase
eigenstate or coherent state. There will be some comparison
of the decoherence for these choices. We will use these
results to verify the classical limits of the procedure as
described in Sec. III C 1. Finally, we comment on the
similarity of the relational reference frame measurement
to balanced homodyne detection, with details in the
Appendix.

A. Representation of U(1) on harmonic oscillators

We first present the structure of the representation of U(1)
on a collection of harmonic oscillators, and how we might
encode information in a relational way. For an Abelian group,
group multiplication becomes addition and the identity e can
be written as 0. The unitary group U(1) can be considered as
the group of phases θ with the group multiplication being
addition modulo 2π . We will, however, retain the generic
group-element notation g,a,h ∈ U(1) for familiarity with the
general formalism. The charge sectors of the representation are
subspaces of total photon number. The unitary representation
of U(1) on a single-mode state is U (g) = ein̂g where n̂ is the
number operator n̂|k〉Fock = k|k〉Fock. The U(1) Haar integra-
tion measure is dμ(g) = dg/2π . Therefore, for a single-mode
harmonic oscillator, the G twirl of a state

∑∞
k=0 ak|k〉Fock is

G
( ∞∑

k,l=0

aka
∗
l |k〉〈l|Fock

)
=

∫ 2π

0

dg

2π
ei(k−l)g

∞∑
k,l=0

aka
∗
l |k〉〈l|Fock

=
∞∑

k=0

|ak|2|k〉〈k|Fock (30)

with the integral giving the constraint k = l. The phase
information in a single-mode state is thus completely de-
cohered. However, if we introduce a second mode, i.e.,
a second oscillator with distinguishable frequency, we can
form the two-mode pure state |ψSA〉 = ∑

k,l ak,l|kl〉Fock. Writ-
ten in terms of total photons 2n = k + l and difference
2j = k − l, where n can take any non-negative half-integer
value and where j = −n, − n + 1, . . . ,n [45], this becomes∑

n,j an+j,n−j |n + j,n − j 〉Fock. The G twirl on this state is

GSA(|ψ〉〈ψ |SA) =
∑
n,j

∑
m,k

∫
dg

2π
ei(2n−2m)g(an+j,n−j |n + j,n − j 〉Fock)(a∗

m+k,m−k〈m + k,m − k|Fock)

=
∑

n

(
∑
j,k

an+j,n−j a
∗
n+k,n−k|n + j,n − j 〉〈n + k,n − k|Fock). (31)

Phase coherence remains within subspaces of total photon-
number eigenstates, producing a total state that is a mix-
ture over total photon number 2n of pure eigenstates∑

j an+j,n−j |n + j,n − j 〉Fock of total photon number 2n. With
judicious choices of a reference frame state on A, a state on S

can be relationally encoded into the subspaces of total photon
number [1,46].

B. Reference frames for U(1)

We define our two reference frames A and B to be
single-mode harmonic oscillators in group-covariant states
|ψ(gh)〉 = U (g)|ψ(h)〉. The particular examples we will study
are the U(1) maximum likelihood states, and U(1) coherent
states, both of which have well-defined size parameters. In
this example, the recovery map using the maximum likelihood
states is optimal [15], as defined in Sec. II E, and so provides
the optimal change of quantum reference frame procedure as
defined in Sec. III C 2.

1. Reference frame A in phase eigenstate

The maximum likelihood states (introduced in Sec. II D) for
a representation of the U(1) group on a single-mode Fock space
truncated in maximum photon number s are the bounded-size
phase eigenstates with photon-number cutoff s [47]. The phase
eigenstate with phase g and size parameter s is given by

|s; g〉 := N
− 1

2
s

s∑
k=0

eikg|k〉Fock, (32)

where |k〉Fock is the Fock state with k excitations, and
the state normalization is Ns = (s + 1) = Ds , the dimension
of the Hilbert space. In addition, as these states satisfy
G(|s; g〉〈s; g|) = (s + 1)−1Is , they will also be used to form
the projectors Eq. (10) for measurement.

We now consider the change of quantum reference frame
procedure for the U(1) group, using phase eigenstates both
for our initial reference frame on A as well as forming the
relational measurement. In this procedure, an initial state
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σSAB = GSA[ρS ⊗ |ψ(a)〉〈ψ(a)|A] ⊗ GB(ρB) is transformed
to the final state for outcome h on SB given by

σh
SB = TrA

[
Mh

AB(σSAB)
] = E|a+h〉B

(
F (A)

S [ρS]
)
, (33)

where we have commuted the rotations a, h, and the map
F (A)

S due to U(1) being Abelian. For the state of reference
frame A prepared in the bounded-size phase eigenstate ρA =
|sA; a〉〈sA; a| with cutoff sA, the overlap between two phase
eigenstates with cutoffs s gives [48]

|〈s; g|s; h〉|2 = D−2
s

s∑
k=−s

(s + 1 − |k|)eik(h−g)

= 1

(s + 1)2

1 − cos[(s + 1)(h − g)]

1 − cos[h − g]
. (34)

The measurement of relative orientation h is constructed from
a family of projectors (10) on the A and B Hilbert spaces. In
this example, the projectors will be constructed in terms of
U(1) maximum likelihood states with size cutoffs sA,sB . Due
to the equally weighted superposition of number states of the
phase states in the projectors, a measurement constructed from
such a family of projectors resolves the identity on the space
of the reference frames A and B. The sizes of the projectors
are set to be equal to the cutoff of the reference frame states
sA and sB . The decoherence map (17) then takes the form

F (A)
S = DsA

∫
dg

2π
|〈sA; g|sA; 0〉A|2US(−g) (35)

= 1

(s + 1)

∫
dg

2π

1 − cos[(sA + 1)g]

1 − cos g
US(−g). (36)

The distribution of unitaries in g ∈ G is graphed in Fig. 2 for
average photon numbers 〈n〉A = sA/2 = 4 and 8. The function
is symmetric about g = 0, at which it is peaked.

FIG. 2. (Color online) Plotted are the state overlaps
DsA |〈g|ψ(0)〉|2 for reference frame A in a U(1) phase eigenstate
[(34), “PE”] and coherent state [(38), “CS”], for choices of average
photon number 〈n〉A. This indicates the distribution of unitaries in
the decoherence maps F (A)

S . For small average photon number, the
decoherence for the coherent states has a narrower peak than the phase
eigenstate, but the phase eigenstate becomes more narrowly peaked
by 〈n〉A = 5. For calculations, the summations for the coherent-state
overlap were truncated at the 21st terms, accounting for 99.99% of
the support.

We note that the relational measurement has many sim-
ilarities to balanced homodyne detection: a measurement
technique from quantum optics. We explore this relationship
in the Appendix.

2. Reference frame A in coherent state

We also consider reference frame A given by a coherent
state

|sA; g〉CS = e−s2
A/2

∞∑
k=0

sk
Aeikg

√
k!

|k〉Fock. (37)

The coherent state has a well-defined phase g [i.e., orien-
tation in U(1)] and transforms covariantly under the group:
U (g)|sA; 0〉CS = |sA; g〉CS. It has a size sA characterized by
the square root of the mean photon number sA = √〈n〉. The
G twirl of this state gives a Poisson distribution in photon
number, with no phase coherence.

Although coherent states are suitable as quantum refer-
ence frames, there are challenges to constructing relational
measurements using projectors onto these states because
G(|s; g〉〈s; g|) is not proportional to the identity. We therefore
restrict to the relational measurement constructed out of phase
eigenstate projectors.

Coherent states have nonzero support on all photon numbers
n → ∞, so we will use an infinite limit for the size sA of the
projectors on A for this example. The POVM will resolve
the identity on the full infinite-dimensional Fock space. We
will need to keep in mind that the initial B state may also
have sB → ∞, for example, if it is a mixture of coherent
states, in which case the projectors on B and consequently the
post-measurement state on B will have infinite size.

The overlap of a coherent state with a phase eigenstate used
in the projectors is

〈s; g|t ; h〉CS = D
− 1

2
s e−t2/2

s∑
k=0

t keik(h−g)

√
k!

, (38)

where we take the support of the projectors s → ∞. (Because
the POVM has normalization factors Ds , this limit will still
result in a well-defined projector.) The decoherence map (24)
is then

F (A)
S =

∫
dμ(g)e−t2/2

s∑
k=0

t ke−ikg

√
k!

US(−g). (39)

The distribution of the unitaries in this decoherence map is
plotted in Fig. 2 for choices of sA, and compared with the
corresponding phase eigenstate distribution Eq. (36) for the
same average photon number.

C. Classical limits

We briefly examine and interpret the results of the change of
reference frame procedure for the classical limits of reference
frames A and B, i.e., when one or both of the size parameters
sA,sB are taken to infinity.

We will examine the B classical limit first. The decoherence
map (36) is not dependent on the B frame, so it does not change
in the sB → ∞ limit. The final state then has decoherence
due to the finite size of the A reference frame. If B is
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initially in a mixture of a finite-size phase eigenstate, then
the effect of sB → ∞ is merely to increase the size of the final
reference frame B to its classical limit. For the coherent-state
example, the final state on B is already an infinite-cutoff phase
eigenstate. The interpretation of this limit is a recovery from
quantum reference frame to classical frame, with noise accu-
mulated solely due to the encoding with reference frame A.

To compute the decoherence map in the limit sA → ∞ we
want to show that the overlap functions (34) and (38) approach
perfect distinguishability. For the phase eigenstate, using (34)
we can show that in the limit sA → ∞ the term becomes a
delta function

lim
sA→∞ DsA

|〈sA; g|sA; h〉|2 = lim
sA→∞

sA∑
k=−sA

sA + 1 − |k|
sA + 1

eik(h−g)

=
∞∑

k=−∞
eik(h−g) = δ(h − g), (40)

where the denominator is provided by the state normalization
DsA

= sA + 1 (32) and δ is normalized in the Haar measure:∫ 2π

0 δ(g) dg

2π
= 1. For coherent states, rather than attempting to

directly compute the limit of the overlap, there are existing
results we can use: a phase operator can be defined in terms
of the states |θ〉 = ∑∞

n=0 einθ |n〉Fock [49]. These are the same
operators that we use in the projectors, so characteristics of
phase indicate characteristics of the overlap function (38).
Indeed, the operator is used to define a phase distribution
P (θ ) = |〈θ |ψ〉|2/2π for some state ψ . Particularly, for ψ a
large coherent state |s,φ〉, the mean of the phase distribution is
〈θ〉 = φ and the standard deviation is �θ = 1

2s
[49]. Then, as

s → ∞, the phase uncertainty becomes �θ → 0. Therefore
we have lims→∞ |〈s,φ|θ〉|2 is nonzero only for θ = φ, for
which the value is 1.

V. EXAMPLE: CARTESIAN AND DIRECTION FRAMES

In this section, we will consider the change of reference
frame procedure for reference frames based on a non-Abelian
group SU(2), which describes the orientations of a Cartesian
reference frame for three dimensions. We also consider a
“direction indicator” state for three dimensions, which, due
to rotational invariance around the single indicated direction,
is associated with the coset space SU(2)/U(1). We use SU(2)
rather than SO(3) so that we can use spin representations.

The representation of SU(2) decomposes a Hilbert space
into a tensor sum of charge sectors of total spin j , where j is
a positive integer or half integer. In general, each of these is a
reducible representation which can be further decomposed into
a subsystem Mj carrying an irreducible representation in a
tensor product with a multiplicity subsystem Nj which carries
the trivial representation. The Hilbert space of a reference
frame state would then decompose as HA = ⊕

j M
(j )
A ⊗

N (j )
A [15].

A. SU(2) fiducial states (Cartesian frame)

We define our reference frame systems using a Hilbert
space HR = ⊕

j M
(j )
R ⊗ N (j )

R , with the dimensions of the

subsystems M(j )
R and N (j )

R chosen to be equal. Such a

space carries the regular representation of SU(2), where each
irrep j appears with multiplicity equal to its dimension.
Following [15], we define a fiducial Cartesian reference frame
state, with truncation parameter s, to be

|s; e〉 := D
− 1

2
s

s∑
j=0

√
2j + 1

j∑
m=−j

|j,m〉rot ⊗ |φj,m〉, (41)

which has support on integer spin-j charge sectors up to
j = s. Here, |j,m〉rot is an eigenstate of Jz, and these for
m = −j, − j + 1, . . . ,j form a basis for M(j )

A , denoted by
| . . .〉rot. The states |φj,m〉 form a basis for N (j )

A . Together,∑j

m=−j |j,m〉rot ⊗ |φj,m〉 forms a state in the spin-j charge
sector which is maximally entangled between the irreducible
representation and multiplicity subsystems. The state normal-
ization is the dimension of the vector space that |eA〉 spans,
and is given by

Ds =
s∑

j=0

(2j + 1)2 = 1

3
(2s + 1)(2s + 3)(s + 1)

=
(

2s + 3

3

)
. (42)

For rotations of these states under SU(2) we will use the
polar parametrization

U (g) = U (ω,θ,φ) = eiωn·J (43)

with ω the rotation angle, n = (sin θ cos φ, sin θ sin φ, cos θ )
the axis of rotation, φ

2 ,θ,ω ∈ [0,π ), and with the Haar measure
given by dμ(g) = sin2 ω

2 sin θ dφ dθ dω/2π2.
For this example, we will use rotated fiducial states (41)

to form the measurement projectors (10), with maximum j

cutoffs sA and sB for the projectors on A and B, respectively.
The overlap function of an unrotated fiducial state with an
SU(2)-rotated state |sA; g〉 = U (g)|sA; e〉 of the same size is

〈sA; e|sA; g〉 = D−1
sA

sA∑
j=0

(2j + 1)χ (j )(ω,θ,φ), (44)

where χ (j )(ω,θ,φ) = cos[(j + 1
2 )ω]/ cos(ω/2) are the char-

acters of SU(2) [15]. Using cos[(j + 1
2 )ω]/ cos(ω/2) =∑j

m=−j eimω and reordering summations [using
∑sA

j=m(2j +
1) = (sA + 1)2 − m2] we have

〈sA; e|sA; g〉 = D−1
sA

sA∑
j=0

(2j + 1)
j∑

m=−j

eimω

= D−1
sA

sA∑
m=−sA

eimω[(1 + sA)2 − m2]. (45)

The decoherence map (24) is then

F (A)
S =

(
2sA + 3

3

)−1 ∫
dω dθ dφ

2π2
sin2

(
ω

2

)
sin θ

×
{

sA∑
m=−sA

eimω[(1 + sA)2 − m2]

}2

US(−ω,θ,φ).

(46)
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FIG. 3. (Color online) Plots of integrand of decoherence
map (46) for fiducial state Cartesian reference frames with sA =
1,4,8. The fiducial-state overlap depends only on the rotation angle ω

and not on the axis of the rotation n = (sin θ cos φ, sin θ sin φ, cos θ ).
The mixing is symmetric about the identity, identified by ω = 0. The
first plot shows the details of the plot across ω, and the second plot
shows the full range for small ω, indicating that overlap function
becomes extremely peaked near ω = 0 even for small sA since the
density of states approaches zero as ω → 0.

The state overlap in this map is plotted in Fig. 3 for choices
of sA. The overlap function (45) is independent of the axis of
rotation n of g, depending only on the rotation angle ω.

1. Classical limits of reference frame states

Again, we can verify several classical limits: the limit in
which the A reference frame becomes infinitely large; when
the B reference frame becomes infinitely large; and when both
become infinitely large.

We can write the overlap function (45) as

〈sA; e|sA; g〉 = D−1
sA

[
(1 + sA)2 + d2

dω2

] sA∑
k=−sA

eikω. (47)

Then, for the limit sA → ∞, we have, since DsA
∼ s3

A,

lim
sA→∞ D−1

sA

[
(1 + sA)2 + d2

dω2

] sA∑
k=−sA

eikω = D−1
sA

2

ω2
δ(ω)

(48)

and in addition we enforce the normalization condition
〈sA; e|sA; e〉 = 1 for all sA.

We can replace one inner product in the decoherence
map (46) with (48) to obtain 2

ω2 δ(ω)〈g|e〉A � 2
ω2 δ(ω) in the

integrand. Now, integrating over ω, the unitary is constrained
to US(0,θ,φ) = I, and so the θ and φ integrals are trivial. The
final state is then σh

SB = GSB [ρS ⊗ |ah〉〈ah|B], mimicking an
encoding from a classical frame to a quantum frame.

The sB → ∞ limit results in an unchanged decoherence
map, but an infinite reference frame on B in the final state.
This final state can be interpreted as a recovery (8) from a finite
reference frame A to infinite (“classical”) reference frame B,
where the mixing on the system ρS is the decoherence due to
the initial encoding with the imperfect A reference frame. The
simultaneous infinite limit of sA and sB → ∞ then describes
a change of classical reference frame operation.

B. SU(2) coherent states: A direction indicator

As an illustrative example of the effect of the choice of
fiducial state, we consider using an SU(2) coherent state to
define a direction reference frame. Such a state indicates a
direction on the two-sphere and has rotational symmetry (it is
invariant up to global phase) about this direction. These SU(2)
coherent states reside within a single irreducible representation
M(j ) of SU(2) and transform under SU(2), but with a U(1)
invariance corresponding to the rotation about the direction in
which the state is pointing. The set of possible orientations of a
direction indicator therefore has the structure of a coset space
SU(2)/U(1), rather than a group. Consequently, the results in
this example take different forms to the previous examples.
Even in classical cases or limits of frames using this coset
space, we will see dephasing operations on quantum systems
due to the U(1) rotational symmetry [15].

For this example, we will use the Euler angle parametriza-
tion of SU(2) [15], as it allows us to easily separate the Jz

rotations under which the coherent states are invariant up to
global phase

U (g) = U (α,β,γ ) = e−iαJze−iβJy e−iγ Jz (49)

with α,2β,γ ∈ [0,2π ] and dμ(g) = dα sin β dβ dγ /8π2. The
coherent state corresponding to the identity orientation, on
irreducible representation with total spin j , is defined and
denoted as |j ; e〉CS := |j,j 〉rot and the SU(2)-rotated state
|j ; g〉CS ≡ |j ; (α,β,γ )〉CS is [50]

U (α,β,γ )|j,j 〉rot = e−iγj

j∑
m=−j

(
2j

j + m

) 1
2

× cosj+m β

2
sinj−m β

2
e−iαm|j,m〉rot

= : |j ; g〉CS. (50)

The overlap of a rotated state with the identity coherent state
is

CS〈j ; e|l; g〉CS = rot〈j,j |U (g)|l,l〉rot

= δjle
−i(α+γ )j cos2j (β/2). (51)

The G twirl of Eq. (50) is (2j + 1)−1I(2j+1).
In this example, the reference frame state size parameters

sA and sB are given by the total spin j of the coherent state.
The measurement projectors (10) will consist of coherent
states of the same sizes. The normalization factors in the
measurement (13) are given by Ds = 2s + 1. The decoherence
map is then

F (A)
S = DsA

∫
dμ(g) cos4sA

β

2
US(g−1)

= (2sA + 1)
∫

dα

2π

dγ

2π
sin β

dβ

2
cos4sA

β

2
Rz

S(−γ )

◦Ry

S(−β) ◦ Rz
S(−α)

= DS ◦
[

(2sA + 1)
∫ π

0
sin β

dβ

2
cos4sA

β

2
Ry

S(−β)

]
◦ DS,

(52)
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FIG. 4. (Color online) Overlap functions in β for the SU(2)
coherent-state decoherence map (52), where β = 0 to π is the
standard polar angle. The overlap function depends on β and is
unconstrained in α and γ : they are rotationally symmetric on the
two-sphere about the north pole (the identity), indicating that there is
mixing around circles of constant latitude. The distribution becomes
more tightly peaked near β = 0 as sA increases.

where Ri
S(θ )[ρ] := e−iθJi ρeiθJi is the superoperator for a

unitary rotation of θ around the i = y or z axis and DS[ρS] =∫ 2π

0
dθ
2π

Rz(θ )ρSRz(θ )† is dephasing noise on ρS .
This overlap function is plotted in Fig. 4 for choices of

sA. Note that the function is rotationally symmetric about the
direction β = 0 on the two-sphere, indicating that there is
only a single relative parameter: the angle between the two
spins [40]. Note that for this example the recovery map and
therefore the change of reference frame procedure (25) is not
the optimal transformation, as defined in Sec. II E. The optimal
recovery map is a projection of GSA(ρS ⊗ ρA) to total angular
momentum J [40].

1. Classical limits of reference frame states

We focus on the differences in the classical limits of
this coset space example to the previous group examples.
From [51,52], for large j , the overlap function (51) can be
approximated as

|CS〈j ; e|j ; (α,β,γ )〉CS|2 = cos4j (β/2) → e−jβ2/2. (53)

This distribution has a variance of σ 2 = 1/2j . Up to nor-
malization we thus have that in the j → ∞ limit exp[−jβ2]
approaches the delta function δ(β). Therefore, for the sA → ∞
limit, the overlap in the decoherence map (52) becomes
essentially a delta function in β. Then, although other examples
of this scenario in this limit indicate no mixing, for coherent-
state reference frames we instead have that the decoherence
function F (A)

S = DS[ρS] is dephasing noise on ρS . The final
state then has a uniform average over z rotations of the system
state ρS , i.e.,

σh
SB = E|h〉CSB

{DS(US(a−1)[ρS])}. (54)

As this limit takes the form of an encoding from classical
frame A to quantum frame B, it demonstrates that the
direction indicator reference frame fundamentally can not
encode phases. Interestingly, the a and h rotations do not
commute with the dephasing operator, so we can not write
this in the usual form as E|ah〉CSB

(DS[ρS]).

When sB → ∞, the decoherence map is unaffected and
we have an infinite-size B reference frame, which indicates
the decoherence that would occur due to recovering the state
ρS from the reference frame A. Even in the simultaneous limit
sA,sB → ∞, there is still dephasing noise. The U(1) dephasing
is merely an artifact of describing the SU(2)/U(1) coset in a
representation of SU(2).

VI. CONCLUSIONS

In this paper, we investigated how the description of a
state changes under a change of quantum reference frame
in a static scenario. We did this by constructing a quantum
operation which changes the quantum reference frame used
to define a basis for another quantum system. We found that
decoherence is in general induced on the quantum system
due to the procedure. This decoherence is interpreted as a
form of intrinsic decoherence due to a change of reference
frame if one treats the frames as background parameters which
possess fundamental quantum uncertainties. Our results may
provide insight into what form a relativity principle would
take in such a scenario. A relativity principle would dictate
how the descriptions of a physical system and its dynamics
change upon a change to a new quantum reference frame. This
is distinct to the “equivalence principle” as studied in [38],
where the choice of reference frame had an effect on relational
measurements that used the reference frame; i.e., no active
change of quantum reference frame was made. Examples of
the change of quantum reference frame procedure for U(1) and
SU(2) reference frames were presented.
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APPENDIX: BALANCED HOMODYNE DETECTION OF
QUANTUM PHASE REFERENCES

In this section, we will make some connections of relational
quantum measurements with experiment. Balanced homodyne
detection is a measurement technique in quantum optics in
which two beams are incident on either side of a beam splitter.
The angle of incidence with the plane of reflection is 45◦
so that reflected and transmitted beams are on two paths,
but these can not mix with the incident beams. The beams
on the two transmission paths are then measured with photon
counters, returning numbers of photons nA and nB . Therefore,
the projected state is a simultaneous number eigenstate for
each path. It has total photon number 2j = nA + nB , and
difference in photons 2m = nA − nB where m = −j to j in
integer steps [45]. The basic idea is that the outcome m/j is
related to the relative phase of the two beams. If j is large, there
are more outcome possibilities, admitting a greater resolution
of relative phase.
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We want to see whether balanced homodyne detection
is a way to perform the POVM (13) that measures relative
orientation of the reference frames A and B. If it is, it provides
an immediately experimentally accessible way to study the
change of quantum reference frame procedure for phase
references. Indeed, there exists a coherent-state amplification
scheme using balanced homodyne measurement [53], which
may be considered as a specific change of quantum phase
reference operation, from one coherent state to an amplified
coherent state.

The standard treatment of balanced homodyne detection
is that one input is the quantum state with a phase to be
measured, and the second input is a classical “local oscillator,”
providing the phase reference for the measurement [45]. In the
scenario suggested in this section, whereby two quantum phase
references are directly measured in a single measurement, we
would need to consider the general situation where each input
state is of finite size. Also, we want to analyze the possibility of
measurement of two phase eigenstates, as well as two coherent
states. Since this view of a balanced homodyne detection treats
both input beams equally as quantum states, the interpretation
of the measurement is then that it measures relative phase of
the two optical states, and requires no phase reference to do so.
Adapting results in Ref. [45] we can analyze the large sA and
sB limits of balanced homodyne measurements of coherent
states and phase eigenstates. See also Ref. [54].

1. Two coherent states

From Ref. [45] we have that the probability of 2j total
photons and 2m difference in photons for two coherent states
|sA; a〉CS and |sB ; b〉CS is

P j
m = e−s2

Ae−s2
B

1

(j + m)!(j − m)!
2−2j

×|sAeia − sBeib|2(j+m)|sAeia + sAeib|2(j−m). (A1)

For two coherent states with equal amplitude s and with phases
a and b, the measurement probabilities for m are a function of
cos2[(b − a)/2]:

P j
m = e−2s (2s2)2j

(2j )!

(
2j

j + m

)[
cos2

(
b − a

2

)]j+m

×
[

1 − cos2

(
b − a

2

)]j−m

. (A2)

The magnitude of the relative phase is monotonically mapped
to m ∈ [−j,j ]. Larger j gives better relative phase accuracy.
As s → ∞, the resolution becomes perfect.

From [45] we have for large coherent state |sA; a〉CS the
outcome probability

P j
m = e−(2j−s2

A)2/2s2
A

√
πs2

A

∣∣∣∣
〈
x = m√

j

∣∣∣∣ψ(b − a − π )

〉∣∣∣∣
2

, (A3)

where x are the eigenvalues of x̂ = (â + â†)/
√

2, so for
two coherent states with one amplitude sA large we replace
|ψ(b)〉 → |sB ; b〉CS and use the position representation of a

coherent state [55, Chap. V] to obtain

P j
m = e−(2j−s2

A)2/2s2
A

√
πs2

A

(π�)−
1
2

× exp{−[m/
√

j − sB cos(a − b + π )]2}. (A4)

Again, this maps cos(b − a) to m. Probability P
j
m is sharply

peaked about j = s2
A/2 for sA large, so we obtain accurate

phase measurement.

2. Coherent state and phase eigenstate

Balanced homodyne detection worked well as a phase
measurement for a coherent state |sB,b〉CS with a coherent
state |sA,a〉CS (treated in this case as the “reference” oscillator)
because the state is localized in the x-p phase space (with
a Gaussian probability distribution). If we instead were
measuring a phase eigenstate |ψ(b)〉 = |sB ; b〉 and a large
coherent state |sA; a〉CS, we can again use (A3). Calculating
〈x〉 and �x for the phase eigenstate using x̂ = (â + â†)/2 on
Fock states [55, Chap. V], we have in the large-sB limit

〈x〉 = D
1
2
sB

2
3 cos b and (A5)

(�x)2 ≈ 1
2

(
3
2 + 2

9DsB
cos2 b

)
. (A6)

As B increases, the position variance is predominantly
determined by the phase (b − a) of the state, and by the size of
the Hilbert space on which the state has support, DsB

= sB + 1.
By (A3) we have a mapping of cos(b − a) to m.

3. Two phase eigenstates

Consider balanced homodyne detection of two phase
eigenstates |sA; a〉 and |sB ; b〉 with size sA and sB . The beam
splitter does not change total photon-number probability.
Therefore, the total probability of detection of 2j photons
is

P j = (sA + 1)−1(sB + 1)−1(min{j,sA − j}
+ min{j,sB − j} + 1). (A7)

The probability grows from D−1
sA

D−1
sB

at 2j = 0 linearly with
j to a plateau of (max{sA,sB} + 1)−1 at 2j = min{sA,sB} to
max{sA,sB}, then falling linearly with j until probability is
zero at 2j = sA + sB + 1. This plateau at moderate j yields
a lower average measurement accuracy than with two large
coherent states. Modifying the derivation in Ref. [45] that
led to (A3), the probability for |j,m〉 of balanced homodyne
detection of two phase eigenstates is approximately in the form
of an overlap of a position eigenstate with a phase eigenstate:

P j
m ≈ D−1

sA
D−1

sB

×
∣∣∣∣∣∣j− 1

4

〈
x = m√

j

∣∣∣∣
⎛
⎝ min{sB ,2j}∑

k=max{2j−sA,0}
eik(a−b−π) |k〉

⎞
⎠

∣∣∣∣∣∣
2

.

(A8)

For 2j > sA,sB , this superposition in the overlap looks like the
(sB − sA + 2j + 1) highest photon-number components of a
phase eigenstate |sB ; a − b − π〉. From (A6), we saw that the
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x variance and expectation value of phase eigenstates depends
on their cutoff and phase orientation. From our picture of phase
eigenstates in phase space, this overlap is the outer part of the
pseudodistribution of a phase eigenstate, without the inner part
of the state. Since this becomes an isolated packet away from
the origin, it allows some accuracy in correlation of a position
measurement with the cosine of the phase. Notice, however, as
j falls to sA/2, the state becomes a complete phase eigenstate,
so the overlap produces great inaccuracy mapping position to
phase.

4. Balanced homodyne detection as a relational measurement

In each case of study in this section, balanced homodyne
detection provides a relational measurement of a parameter
related to relative phase or quadrature. Since balanced

homodyne detection projects to total photon number j and
a higher photon number offers more possible outcomes
m, large coherent states are better suited to this type of
measurement than phase eigenstates. Although the mapping
between m/j and relative phase is not linear, it becomes
infinitely well resolved as the size of phase eigenstates or
coherent states goes to infinity. However, only the relative
phase modulo π is measured. A final remark on the viability of
balanced homodyne detection for use in the change of quantum
reference frame procedure is that the homodyne detection
destroys the state by absorbing the photons, so we would
not be able to continue with the remainder of the change of
reference frame procedure. Perhaps an extended optical setup
could be utilized to produce an output state, similar to the
balanced homodyne coherent-state amplification scheme by
Josse et al. [53].
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