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A two-parameter fractional statistics is proposed, which can be used to model a weakly interacting Bose
system. It is shown that the parameters of the introduced weakly nonadditive Polychronakos statistics can be
linked to the effects of interactions as well as to finite-size corrections. Calculations are made of the specific heat
and condensate fraction of the model system corresponding to harmonically trapped Rb-87 atoms. The behavior
of the specific heat of three-dimensional isotropic harmonic oscillators with respect tothe statistics parameters is
studied in the temperature domain including the BEC-like phase-transition point.
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I. INTRODUCTION

In recent decades, a number of modifications of the
conventional Bose–Einstein and Fermi–Dirac statistics have
been proposed. Quantum-mechanical generalizations include
anyons [1–3] as well as so-called q-deformed algebras [4,5].
Approaches rooted more in the statistical mechanics are repre-
sented by Refs. [6–8]. A special subbranch is the nonextensive
statistical mechanics based on the Tsallis entropy [9] and its
generalizations [10–13].

Methods involving fractional statistics concepts proved to
be successful in the studies of the fractional quantum Hall
effect, high-temperature superconductivity [14], interacting
systems in low dimensions [15,16], cold atomic gases [17],
in the analysis of nuclear matter [18], and even in models
of dark matter [19]. Nonextensive generalizations for Bose–
Einstein and Fermi–Dirac statistics were also developed
[20–23]. Note the long-existing terminological confusion
between nonextensivity and nonadditivity, which is discussed
in detail in Ref. [24]. When the former is sporadically referred
to in this work, the nonadditive nature of entropy and arising
in this context Tsallis q exponentials are generally meant.
The terms nonextensive statistics and nonadditive statistics,
however, continue to be used interchangeably in the scientific
literature (cf. Ref. [25]).

The idea of this paper is to suggest a fractional-statistical
model with parameters being linked to interactions and
finite-size effects. To be more specific, a bosonic system is
considered and thus the modifications of statistics proceed
from a reference Bose distribution. This primary attention to
weakly interacting Bose systems is reasoned by an ongoing
interest in this issue. It can be demonstrated by recent studies of
trapped two-dimensional systems [26], finite systems [27–29],
bosonic mixtures [30], and some other approaches to analyze
the influence of interactions [31–33].

The proposed model is based on the Polychronakos statis-
tics [34,35] with the Tsallis q exponential standing instead
of the conventional one in the expressions for occupation
numbers. The functional form of the distribution function is
thus introduced phenomenologically with the following phys-
ical motivation: While the nonextensivity can be explained by
long-range interactions [36] and the Polychronakos statistics
parameter is related to the number-of-states counting, one
should not expect that influences of interactions and finite-size
effects can be easily attributed to separate modifications

of statistics. For instance, the very Polychronakos statistics
parameter with a small imaginary part allows us to model a
weak dissipative branch of the excitation spectrum of a Bose
system [37,38]. The phenomenological introduction of the
Tsallis statistics is known in various aspects [39–41] as well.

The paper is organized as follows: The statistics is defined
and calculations are outlined in Sec. II. Series expansions of
occupation numbers as well as energy with respect to small
parameters are presented in Sec. III. Equations for the statistics
parameters of the three-dimensional (3D) system of isotropic
harmonic oscillators are obtained in Sec. IV. Analysis of
the critical temperature of a weakly interacting finite Bose
system and respective calculations of the specific heat in
Sec. V are followed by calculations for model systems obeying
the weakly nonadditive Polychronakos statistics in Sec. VI.
Conclusions are given in Sec. VII.

II. STATISTICS DEFINITION

Define the occupation number of the j th level of a system
with the elementary excitation spectrum εj as

nj = 1

z−1e
εj /T
q − α

, (1)

where T is the temperature and z is the fugacity. The Tsallis q

exponential is given by

ex
q = [1 + (1 − q)x]1/(1−q) for 1 + (1 − q)x > 0. (2)

Properties of this and other related functions are well described
in Refs. [22,42,43].

Further in this work small deviations from the Bose
distribution are considered, so the parameters q and α are
represented in the form

q = 1 − b, α = 1 + a, (3)

with a and b being small corrections.
Since the q exponential originating from the nonextensive

or nonadditive statistical mechanics are used, the statistics with
the occupation numbers defined by Eqs. (1)–(3) will hereafter
be referred to as the weakly nonadditive Polychronakos
statistics (WNAPS).

While it might seem more natural to introduce the expo-
nential deformation as e

(εj −μ)/T
q instead of z−1e

εj /T
q , which

uses the chemical potential μ (cf. Refs. [20,21]), expressions
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with fugacity z appear to be mathematically simpler for further
analysis. In the weakly nonadditive limit q → 1,

e
(εj −μ)/T
q = e

εj /T
q e−μ/T

q

(
1 + (1 − q)

εjμ

T 2

)
, (4)

because no simple factorization of the Tsallis q exponentials
exists [42]. The fugacity introduced in Eq. (1) can thus be
approximately related to the chemical potential as follows:

z−1 � e−μ/T
q

(
1 + (1 − q)

〈ε〉μ
T 2

)
, (5)

where the j dependence on the right-hand side is suppressed
by substituting εj with the energy of the reference system (cf.
below) per particle 〈ε〉 = E/N.

Let the reference Bose system be an ideal gas with spectrum
εj and degeneracy gj ; the fugacity zB = eμB/T , where μB is
the chemical potential, is defined by

N =
∑

j

gj

z−1
B eεj /T − 1

, (6)

which is understood in the thermodynamic limit. The condition
defining the thermodynamic limit itself depends on the system
under consideration and will be specified later.

Calculation of thermodynamic functions is made by a
simple procedure. First, the fugacity is defined as a function
of T and N from

N =
∑

j

gjnj , (7)

and then it is inserted into the definition of energy

E =
∑

j

εjgjnj , (8)

from which the heat capacity is calculated as the temperature
derivative:

C = dE

dT
. (9)

III. SERIES EXPANSIONS

Since small deviations from the reference Bose system are
considered, the fugacities also must be expanded around zB.

Let

z = zB + �z1 (10)

for the weakly nonadditive statistics and

z = zB + �z (11)

for a weakly interacting finite Bose system.
In the approximation linear with respect to small correc-

tions, the occupation numbers in the WNAPS read

nj = 1

(zB + �z1)−1e
εj /T

1−b − (1 + a)

= 1

z−1
B eεj /T − 1

+ a
1[

z−1
B eεj /T − 1

]2

+ bε2
j

2T 2

z−1
B eεj /T

[
z−1

B eεj /T − 1
]2 + �z1

zB

z−1
B eεj /T

[
z−1

B eεj /T − 1
]2 . (12)

This can be compared to the occupation number of the
interacting Bose system:

nj = 1

(zB + �z)−1e(εj +�εj )/T − 1

= 1

z−1
B eεj /T − 1

− �εj

T

z−1
B eεj /T

[
z−1

B eεj /T − 1
]2

+ �z

zB

z−1
B eεj /T

[
z−1

B eεj /T − 1
]2 . (13)

Comparing the summands with b in Eq. (12) and with �εj

in Eq. (13) one can suggest that the nonadditivity parameter
b is (chiefly) responsible for effective accounting of the
interaction.

The above expansions can be written in a “macroscopic”
form by using

N =
∑

j

gjnj =
∑

j

gj

z−1
B eεj /T − 1

, (14)

with an auxiliary notation

Q =
∑

j

gj[
z−1

B eεj /T − 1
]2 (15)

as follows:

N = N + aQ + �z1

zB
(N + Q)

+ b

2T 2

∑
j

gj ε
2
j

z−1
B eεj /T

[
z−1

B eεj /T − 1
]2 (16)

and

N = N + �z

zB
(N + Q) − 1

T

∑
j

gj�εj

z−1
B eεj /T

[
z−1

B eεj /T − 1
]2 .

(17)

On the other hand, for the energy of a weakly interacting
Bose system one has

E =
∑

j

(εj + �εj )gjnj

= EB + �z

zB
(EB + DB)

+
∑

j

gj�εj

z−1
B eεj /T (1 − εj /T ) − 1[

z−1
B eεj /T − 1

]2 , (18)

where

EB =
∑

j

εjgjnj =
∑

j

gj εj

z−1
B eεj /T − 1

, (19)

DB =
∑

j

gj εj[
z−1

B eεj /T − 1
]2 . (20)
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The energy of the WNAPS system is given by

E =
∑

j

εjgjnj

= EB + aDB + �z1

zB
(EB + DB)

+ b

2T 2

∑
j

gj ε
3
j

z−1
B eεj /T

[
z−1

B eεj /T − 1
]2 . (21)

In order to link the parameters a and b to the quanti-
ties which characterize the weakly interacting finite system
(namely, the spectrum correction �εj and the fugacity correc-
tion �z), one can use the following set of equations:

(i)

0 = aQ + �z1

zB
(N + Q) + b

2

∑
j

gj

(εj

T

)2 z−1
B eεj /T

[
z−1

B eεj /T − 1
]2 ,

(22)

(ii)

0 = �z

zB
(N + Q) − 1

T

∑
j

gj�εj

z−1
B eεj /T

[
z−1

B eεj /T − 1
]2 ,

(iii)

aDB + �z1

zB
(EB + DB) + b

2

∑
j

gj εj

(εj

T

)2 z−1
B eεj /T

[
z−1

B eεj /T − 1
]2

= �z

zB
(EB + DB) +

∑
j

gj�εj

z−1
B eεj /T (1 − εj /T ) − 1[

z−1
B eεj /T − 1

]2 .

Equation (22)(ii) just allows expressing the �z correction
directly via �εj in the linear approximation. A third equation
is thus required because the WNAPS correction to fugacity
�z1 is in fact the third parameter.

Before proceeding to the calculations of thermodynamic
functions of the WNAPS system, it is worth estimating the
values of a and b for some model or real physical systems.

IV. THREE-DIMENSIONAL HARMONIC OSCILLATORS

Further in this work, the calculations are performed for
isotropic three-dimensional (3D) harmonic oscillators with
frequency ω. Such a model describes a system of particles
trapped in an isotropic harmonic potential. For convenience,
the summation is substituted by an integration according to the
following rule:

∑
j

gj · · · =
∫ ∞

0
dεg(ε) · · · , (23)

where the density of states is

g(ε) = 1

(�ω)3

ε2

2
. (24)

Since g(0) = 0, the contribution of the ground state j = 0
must be written explicitly for temperatures corresponding to
the Bose–Einstein condensation (BEC) phase.

Equation (14) becomes

N = n0 + 1

(�ω)3

∫ ∞

0
dε

ε2/2

z−1
B eε/T − 1

= n0 +
(

T

�ω

)3

Li3 zB, (25)

where the polylogarithm function

Lis z =
∞∑

k=1

zk

ks
. (26)

Energy (19) equals

EB = �ω

(
T

�ω

)4

Li4 zB. (27)

The condition defining the thermodynamic limit of a 3D
harmonic oscillator system reads [44]

ωN1/3 = const. (28)

The correction to the spectrum from the interaction in the
case of a δ-like interatomic potential �(r) = λδ(r), where λ =
4π�

2as/m is a coupling constant and m is the mass of an atom,
can be majorized by the following expression (cf. Ref. [45]):

�εj = �ωN
γ

j + 1
, (29)

with

γ = 4√
2π

as

aho
. (30)

In the above equations, as is the s-wave scattering length and
aho = √

�/(mω) is the harmonic oscillator length.
Performing integrations in Eqs. (22) one can reduce the

equations to

0 = a (Li2 zB − Li3 zB) + �z1

zB
Li2 zB + 6b Li4 zB,

a (Li3 zB − Li4 zB) + �z1

zB
Li3 zB + 10b Li5 zB

= �z

zB
Li3 zB +

∫ ∞

0
dξξ 2 �ε(ξ )

T

z−1
B eξ (1 − ξ ) − 1[

z−1
B eξ − 1

]2 ,

with

�z

zB
= 1

Li2 zB

∫ ∞

0
dξξ 2 �ε(ξ )

T

z−1
B eξ

[
z−1

B eξ − 1
]2 . (31)

This yields

aA(zB,T ) + bB(zB,T )

=
(

�ω

T

)2

N
γ

2
[X(zB,T ) + Y (zB,T )], (32)

where

A(zB,T ) = Li3 zB

Li2 zB
− Li4 zB

Li3 zB
, (33)

B(zB,T ) = 10
Li5 zB

Li3 zB
− 6

Li4 zB

Li2 zB
, (34)
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X(zB,T ) = 1

Li2 zB

∫ ∞

0
dξ

ξ 2

ξ + �ω/T

z−1
B eξ

[
z−1

B eξ − 1
]2 , (35)

Y (zB,T ) = 1

Li3 zB

∫ ∞

0
dξ

ξ 2

ξ + �ω/T

z−1
B eξ (1 − ξ ) − 1[

z−1
B eξ − 1

]2 .

(36)

The parameters a and b appear thus to be temperature
dependent. However, the coefficient functions in Eq. (32) are
smooth enough, so for calculations in a specific temperature
domain the value of T can be fixed, as shown in the next
section.

On the other hand, it is straightforward to show that, in the
limit of T → ∞, the fugacity tends to zero as

zB|T →∞ = N

(
�ω

T

)3

. (37)

Coefficient functions A(zB,T ) and B(zB,T ) in this limit are

A(zB,T ) = − 1
16zB, B(zB,T ) = 4, (38)

and for X(zB,T ) and Y (zB,T ) one has

X(zB,T ), Y (zB,T ) → const. (39)

From Eq. (32) it is thus clear that

− 1

16
aN

(
�ω

T

)3

+ 4b ∝ 1

T 2
, (40)

which means the high-temperature limiting behavior of the
parameters a and b is as follows:

a ∝ T ν with ν � 0, b ∝ 1

T 2
, (41)

and thus classical results are expected without any influence
of the statistics deformation as T → ∞.

V. CRITICAL TEMPERATURE IN
THREE-DIMENSIONAL CASE

An equation to complement Eq. (32) can be found, for
instance, from the definition of the critical temperature of a
finite weakly interacting Bose system.

In the thermodynamic limit, the critical temperature Tc of
the WNAPS system corresponding to a BEC-like transition is
defined by the condition which, in the 3D case, reads

N =
(

Tc

�ω

)3 ∫ ∞

0

ξ 2/2

(1 + a)eξ

1−b − (1 + a)
dξ, (42)

where the critical value of the fugacity is given by z−1
c = 1 + a.

With linear corrections only, Eq. (42) becomes

N =
(

Tc

�ω

)3

ζ (3)

[
1 − a + b

6ζ (4)

ζ (3)

]
, (43)

where ζ (s) is the Riemann ζ function, ζ (s) = Lis 1. The
critical temperature of the reference Bose system is

T B
c = �ω

(
N

ζ (3)

)1/3

, (44)

and for Tc one easily obtains

Tc = T B
c

[
1 + a

3
− b

2ζ (4)

ζ (3)

]
. (45)

The shift of the critical temperature in a finite Bose system
of N particles is given by [46,47]

�T fin
c

T B
c

= −1

2

ζ (2)

[ζ (3)]2/3
N−1/3, (46)

and the shift due to interaction effects is [46]

�T int
c

T B
c

= −1.33
as

aho
N1/6, (47)

where, as above, the harmonic oscillator length aho =√
�/(mω) and as is the s-wave scattering length. Note that,

in the thermodynamic limit,
as

aho
N1/6 ∝ (ωN1/3)1/2 = const. (48)

does not depend on the number N of particles.
Comparing Eqs. (45)–(47), the relation linking a and b with

the system parameters is obtained:

a

3
− b

2ζ (4)

ζ (3)
= −1

2

ζ (2)

[ζ (3)]2/3
N−1/3 − 1.33

as

aho
N1/6. (49)

For a system of 5000 Rb-87 atoms [46], the ratio as/aho �
2.6 × 10−3. Assuming that the a parameter is entirely due to
the finite-size correction and that the b parameter is entirely
due to interactions, the following numbers are obtained from
Eq. (49):

a = −0.13, b = 0.022. (50)

On the other hand, if Eqs. (32) and (49) are solved
simultaneously, the above numbers change slightly:

a = −0.16, b = 0.0027. (51)
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0  0.2  0.4  0.6  0.8 1  1.2  1.4  1.6  1.8

T / Tc
B

C / N

FIG. 1. (Color online) Specific heat of the ideal Bose system of
3D harmonic oscillators (black solid line is thermodynamic limit,
black dotted line is for N = 5000) compared to the WNAPS system
(red dashed-dotted line) in the thermodynamic limit with parameters
given by Eq. (51). The discontinuity of the C/N curves is observed in
the thermodynamic limit at the critical temperatures but continuous
lines are drawn for easier visualization.
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T / Tc
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n0 / N

FIG. 2. (Color online) Condensate fraction n0/N of an ideal
Bose system of 3D harmonic oscillators (black solid line is ther-
modynamic limit, black dotted line is for N = 5000) compared to the
WNAPS system (red dashed-dotted line) in the thermodynamic limit
with parameters given by Eq. (51).

The results of calculations of the specific heat C/N for a
system with parameters corresponding to the above values are
shown in Fig. 1.

Note that a smooth behavior of the specific heat in the
vicinity of the critical temperature for a finite Bose system
cannot be modeled correctly by the proposed model. A possible
solution is to consider a finite WNAPS system as well, which
would ensure such a dependence.

The fraction of particles in the ground state n0, which for
the WNAPS system is an analog of a Bose condensate, can be
calculated quite easily as

n0

N
= 1 − 1

N

1

1 + a

(
T

�ω

)3 ∫ ∞

0

ξ 2/2

e
ξ

1−b − 1
dξ. (52)

By using the parameters from Eq. (51), the following temper-
ature dependence is obtained for N = 5000:

n0

N
= 1 − 1.45

N

(
T

�ω

)3

. (53)

The comparison of the above result with reference Bose
systems is shown in Fig. 2. The shapes of these dependencies
are very similar to those reported in Refs. [46,48].

VI. SPECIFIC HEAT OF MODEL WNAPS SYSTEMS

Having estimated the values of the statistics parameters a

and b, it is possible to present some results illustrating the
behavior of thermodynamic functions (namely, the specific
heat) of model systems obeying the weakly nonadditive Poly-
chronakos statistics. Below, the calculations are made for two
modifications of the statistics. In the first one, the parameters
a and b are kept constant with respect to temperature. In the
second one, the parameter a remains constant but the parameter
b = 2ηT /(�ω), so that the summands with b in Eq. (12) and
with �εj in Eq. (13) become similar.

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

 0  0.5  1  1.5  2

T / Tc
B

C/N

FIG. 3. (Color online) Specific heat of a model WNAPS system
with b = const. in the thermodynamic limit for different values of the
statistics parameters. Dashed-dotted lines are for b = 0.1, solid lines
are for b = 0.05, and dashed lines are for b = 0.01. Red lines are
for a = −0.1, green lines are for a = +0.05, and blue lines are for
a = +0.1. Black solid line corresponds to the reference Bose system.

Indeed, as we assume the second of the above-mentioned
statistics modifications, the spectrum shift is

�εj = −bε2
j

2T
= −η

ε2
j

�ω
= −η�ωj 2. (54)

Curiously, such a dependence of the excitation spectrum
appears in the problems within deformed Heisenberg algebras.
Namely, for the harmonic oscillator with the commutation
relation for the coordinate and momentum operators given by

[x̂,p̂] = i�(1 + βp̂2), (55)

the spectrum is [49,50]

εj = �ω̄j + β

2
j 2, (56)

where ω̄ denotes some constant. Due to an extremely small
estimated value of β, however, its effect on the thermodynamic
properties is unobservable.

The results of calculations of the specific heat are shown
in Figs. 3 and 4 in comparison to a reference Bose system.
The choice of the values of the statistics parameters is made
according to the estimates from the previous section. Note that
the b ∝ T model is valid only in a limited temperature domain
since the system ceases to be weakly nonadditive as T → ∞.

In the model with b = const., the asymptotic value of the
specific heat at T → ∞ can be estimated as follows: The
fugacity tends to zero as T → ∞, so Eq. (25) in the case of
the harmonic oscillator problem under consideration simplifies
to

N =
(

T

�ω

)3
z

2

∫ ∞

0
dξ

ξ 2

e
ξ

1−b

. (57)

Applying the relation [42]

[
ef (x)
q

]p = e
pf (x)
1−(1−q)/p, (58)
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FIG. 4. (Color online) Specific heat of a model WNAPS system
with b = 2ηT/(�ω) in the thermodynamic limit for different values
of the statistics parameters. Red dashed-dotted line is for a =
0,η = 0.0005; green dotted line is for a = −0.05,η = 0.001; and
blue dashed line is for a = −0.01,η = 0.0025. Black solid line
corresponds to the reference Bose system.

this integral can be calculated by using∫ ∞

0
dξξk−1e

−ξ

1+b = b−k�(1/b − k)�(k)

�(1/b)
. (59)

In the same limit, the energy equals

E = �ω

(
T

�ω

)4
z

2

∫ ∞

0
dξ

ξ 3

e
ξ

1−b

. (60)

After simple transformations, one obtains for z

z = N

(
�ω

T

)3 (1 − 6b + 11b2 − 6b3)

2
, (61)

and the heat capacity is given by

C

N

∣∣∣∣
T →∞

= 3

1 − 4b
, (62)

showing no dependence on the value of the a parameter.

VII. CONCLUSIONS

In summary, a two-parameter modification of statistics was
proposed, which can be used in particular to model a weakly
interacting Bose system. It was shown that the parameters of
the introduced weakly nonadditive Polychronakos statistics
can be linked to effects of interactions as well as to finite-size
corrections.

A simplified WNAPS model was used to describe a system
of 5000 harmonically trapped Rb-87 atoms. The calculations
of the specific heat C/N of the 3D isotropic harmonic
oscillators were also made for several sets of values of the
statistics parameters a and b to demonstrate the temperature
behavior of C/N in the domain including the BEC-like
phase-transition point.

It is expected that WNAPS can provide an alternative
mathematical model for Bose systems with weak interatomic
interactions and/or a finite number of particles. Its application
to correctly reproduce the critical behavior in the vicinity
of the transition point requires additional tests based on
experimental observations. With minor modifications, the
model can be employed for other related systems, in partic-
ular lower-dimensional oscillators corresponding to trapped
bosons.

Some other physical objects, for which the proposed two-
parameter statistics can be used, include anyons and particles
in spaces with minimal length. While the latter correspond
to the deformed Heisenberg algebra discussed in Sec. VI,
the application to the anyonic statistics is elucidated by the
possibility of establishing an approximate correspondence
with the nonadditive Polychronakos statistics from expressions
for virial coefficients. An effective description of long-range
interactions and other complex behavior can be expected from
this statistics and these issues are the subjects of further studies.
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[26] Z. Hadzibabic, P. Krüger, M. Cheneau, S. P. Rath, and J.
Dalibard, New J. Phys. 10, 045006 (2008).

[27] J. Wang and Y. Ma, Chin. Phys. B 19, 050502 (2010).
[28] J. Wang, Y. Ma, and J. He, J. Low Temp. Phys. 162, 23 (2011).
[29] K. M. Daily, X. Y. Yin, and D. Blume, Phys. Rev. A 85, 053614

(2012).
[30] B. Van Schaeybroeck, Phys. A (Amsterdam, Neth.) 392, 3806

(2013).
[31] B. Chakrabarti, A. Biswas, V. K. B. Kota, K. Roy, and S. K.

Haldar, Phys. Rev. A 86, 013637 (2012).
[32] S. A. Sofianos, T. K. Das, B. Chakrabarti, M. L. Lekala, R. M.

Adam, and G. J. Rampho, Phys. Rev. A 87, 013608 (2013).
[33] S. Watabe and Y. Ohashi, Phys. Rev. A 88, 053633 (2013).
[34] A. P. Polychronakos, Phys. Lett. B 365, 202 (1996).
[35] B. Mirza and H. Mohammadzadeh, Phys. Rev. E 82, 031137

(2010).

[36] Nonextensive Statistical Mechanics and Its Applications, edited
by S. Abe and Y. Okamoto (Springer, Berlin, 2001).

[37] A. Rovenchak, Fiz. Nizk. Temp. 39, 1141 (2013) [Low Temp.
Phys. 39, 888 (2013)].

[38] A. Rovenchak, Phys. Lett. A 378, 100 (2014).
[39] A. Lavagno and D. Pigato, Phys. A (Amsterdam, Neth.) 392,

5164 (2013).
[40] G. B. Bagci and T. Oikonomou, Phys. Rev. E 88, 042126 (2013).
[41] C.-Y. Wong and G. Wilk, Phys. Rev. D 87, 114007 (2013).
[42] T. Yamano, Phys. A (Amsterdam, Neth.) 305, 486 (2002).
[43] R. K. Niven and H. Suyari, Phys. A (Amsterdam, Neth.) 388,

4045 (2009).
[44] K. Damle, T. Senthil, S. N. Majumdar, and S. Sachdev,

Europhys. Lett. 36, 7 (1996).
[45] A. Rovenchak, J. Low Temp. Phys. 148, 411 (2007).
[46] S. Giorgini, L. P. Pitaevskii, and S. Stringari, Phys. Rev. A 54,

R4633 (1996).
[47] M. Li, L. Chen, J. Chen, Z. Yan, and C. Chen, Phys. Rev. A 60,

4168 (1999).
[48] J. R. Ensher, D. S. Jin, M. R. Matthews, C. E. Wieman, and

E. A. Cornell, Phys. Rev. Lett. 77, 4984 (1996).
[49] A. Kempf, G. Mangano, and R. B. Mann, Phys. Rev. D 52, 1108

(1995).
[50] C. Quesne and V. M. Tkachuk, J. Phys. A: Math. Gen. 36, 10373

(2003).

052116-7

http://dx.doi.org/10.1016/S0375-9601(02)00781-8
http://dx.doi.org/10.1016/S0375-9601(02)00781-8
http://dx.doi.org/10.1016/S0375-9601(02)00781-8
http://dx.doi.org/10.1016/S0375-9601(02)00781-8
http://dx.doi.org/10.1016/S0378-4371(02)01330-4
http://dx.doi.org/10.1016/S0378-4371(02)01330-4
http://dx.doi.org/10.1016/S0378-4371(02)01330-4
http://dx.doi.org/10.1016/S0378-4371(02)01330-4
http://dx.doi.org/10.1016/j.physa.2009.11.033
http://dx.doi.org/10.1016/j.physa.2009.11.033
http://dx.doi.org/10.1016/j.physa.2009.11.033
http://dx.doi.org/10.1016/j.physa.2009.11.033
http://dx.doi.org/10.1088/1367-2630/10/4/045006
http://dx.doi.org/10.1088/1367-2630/10/4/045006
http://dx.doi.org/10.1088/1367-2630/10/4/045006
http://dx.doi.org/10.1088/1367-2630/10/4/045006
http://dx.doi.org/10.1088/1674-1056/19/5/050502
http://dx.doi.org/10.1088/1674-1056/19/5/050502
http://dx.doi.org/10.1088/1674-1056/19/5/050502
http://dx.doi.org/10.1088/1674-1056/19/5/050502
http://dx.doi.org/10.1007/s10909-010-0232-1
http://dx.doi.org/10.1007/s10909-010-0232-1
http://dx.doi.org/10.1007/s10909-010-0232-1
http://dx.doi.org/10.1007/s10909-010-0232-1
http://dx.doi.org/10.1103/PhysRevA.85.053614
http://dx.doi.org/10.1103/PhysRevA.85.053614
http://dx.doi.org/10.1103/PhysRevA.85.053614
http://dx.doi.org/10.1103/PhysRevA.85.053614
http://dx.doi.org/10.1016/j.physa.2013.04.026
http://dx.doi.org/10.1016/j.physa.2013.04.026
http://dx.doi.org/10.1016/j.physa.2013.04.026
http://dx.doi.org/10.1016/j.physa.2013.04.026
http://dx.doi.org/10.1103/PhysRevA.86.013637
http://dx.doi.org/10.1103/PhysRevA.86.013637
http://dx.doi.org/10.1103/PhysRevA.86.013637
http://dx.doi.org/10.1103/PhysRevA.86.013637
http://dx.doi.org/10.1103/PhysRevA.87.013608
http://dx.doi.org/10.1103/PhysRevA.87.013608
http://dx.doi.org/10.1103/PhysRevA.87.013608
http://dx.doi.org/10.1103/PhysRevA.87.013608
http://dx.doi.org/10.1103/PhysRevA.88.053633
http://dx.doi.org/10.1103/PhysRevA.88.053633
http://dx.doi.org/10.1103/PhysRevA.88.053633
http://dx.doi.org/10.1103/PhysRevA.88.053633
http://dx.doi.org/10.1016/0370-2693(95)01302-4
http://dx.doi.org/10.1016/0370-2693(95)01302-4
http://dx.doi.org/10.1016/0370-2693(95)01302-4
http://dx.doi.org/10.1016/0370-2693(95)01302-4
http://dx.doi.org/10.1103/PhysRevE.82.031137
http://dx.doi.org/10.1103/PhysRevE.82.031137
http://dx.doi.org/10.1103/PhysRevE.82.031137
http://dx.doi.org/10.1103/PhysRevE.82.031137
http://dx.doi.org/10.1063/1.4823491
http://dx.doi.org/10.1063/1.4823491
http://dx.doi.org/10.1063/1.4823491
http://dx.doi.org/10.1063/1.4823491
http://dx.doi.org/10.1016/j.physleta.2013.11.011
http://dx.doi.org/10.1016/j.physleta.2013.11.011
http://dx.doi.org/10.1016/j.physleta.2013.11.011
http://dx.doi.org/10.1016/j.physleta.2013.11.011
http://dx.doi.org/10.1016/j.physa.2013.06.048
http://dx.doi.org/10.1016/j.physa.2013.06.048
http://dx.doi.org/10.1016/j.physa.2013.06.048
http://dx.doi.org/10.1016/j.physa.2013.06.048
http://dx.doi.org/10.1103/PhysRevE.88.042126
http://dx.doi.org/10.1103/PhysRevE.88.042126
http://dx.doi.org/10.1103/PhysRevE.88.042126
http://dx.doi.org/10.1103/PhysRevE.88.042126
http://dx.doi.org/10.1103/PhysRevD.87.114007
http://dx.doi.org/10.1103/PhysRevD.87.114007
http://dx.doi.org/10.1103/PhysRevD.87.114007
http://dx.doi.org/10.1103/PhysRevD.87.114007
http://dx.doi.org/10.1016/S0378-4371(01)00567-2
http://dx.doi.org/10.1016/S0378-4371(01)00567-2
http://dx.doi.org/10.1016/S0378-4371(01)00567-2
http://dx.doi.org/10.1016/S0378-4371(01)00567-2
http://dx.doi.org/10.1016/j.physa.2009.06.018
http://dx.doi.org/10.1016/j.physa.2009.06.018
http://dx.doi.org/10.1016/j.physa.2009.06.018
http://dx.doi.org/10.1016/j.physa.2009.06.018
http://dx.doi.org/10.1209/epl/i1996-00179-4
http://dx.doi.org/10.1209/epl/i1996-00179-4
http://dx.doi.org/10.1209/epl/i1996-00179-4
http://dx.doi.org/10.1209/epl/i1996-00179-4
http://dx.doi.org/10.1007/s10909-007-9406-x
http://dx.doi.org/10.1007/s10909-007-9406-x
http://dx.doi.org/10.1007/s10909-007-9406-x
http://dx.doi.org/10.1007/s10909-007-9406-x
http://dx.doi.org/10.1103/PhysRevA.54.R4633
http://dx.doi.org/10.1103/PhysRevA.54.R4633
http://dx.doi.org/10.1103/PhysRevA.54.R4633
http://dx.doi.org/10.1103/PhysRevA.54.R4633
http://dx.doi.org/10.1103/PhysRevA.60.4168
http://dx.doi.org/10.1103/PhysRevA.60.4168
http://dx.doi.org/10.1103/PhysRevA.60.4168
http://dx.doi.org/10.1103/PhysRevA.60.4168
http://dx.doi.org/10.1103/PhysRevLett.77.4984
http://dx.doi.org/10.1103/PhysRevLett.77.4984
http://dx.doi.org/10.1103/PhysRevLett.77.4984
http://dx.doi.org/10.1103/PhysRevLett.77.4984
http://dx.doi.org/10.1103/PhysRevD.52.1108
http://dx.doi.org/10.1103/PhysRevD.52.1108
http://dx.doi.org/10.1103/PhysRevD.52.1108
http://dx.doi.org/10.1103/PhysRevD.52.1108
http://dx.doi.org/10.1088/0305-4470/36/41/009
http://dx.doi.org/10.1088/0305-4470/36/41/009
http://dx.doi.org/10.1088/0305-4470/36/41/009
http://dx.doi.org/10.1088/0305-4470/36/41/009



