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Pointer-based simultaneous measurements of conjugate observables in a thermal environment
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We combine traditional pointer-based simultaneous measurements of conjugate observables with the concept
of quantum Brownian motion of multipartite systems to phenomenologically model simultaneous measurements
of conjugate observables in a thermal environment. This approach provides us with a formal solution of the
complete measurement dynamics for quadratic Hamiltonians and we can therefore discuss the measurement
uncertainty and optimal measurement times. As a main result, we obtain a lower bound for the uncertainty of a
noisy measurement, which is an extension of a previously known uncertainty relation and in which the squeezing
of the system state to be measured plays an important role. This also allows us to classify minimal uncertainty
states in more detail.
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I. INTRODUCTION

The history of quantum mechanics has always been
closely related to the quest for a suitable description of
quantum measurements. Be it the early works [1–3] or the
more recent summaries [4–6], quantum measurements always
build the framework for any further considerations. Modern
measurement theories mainly concentrate on open quantum
systems, decoherence, and the transition from quantum to
classical [7].

A well-known measurement theory for simultaneous mea-
surements of conjugate observables is the theory of pointer-
based measurements [8,9]. It is based on von Neumann’s
idea [10] of treating the measurement apparatus as a quantum
mechanical system called pointer from which information
about a system to be measured can be inferred. So far, pointer-
based simultaneous measurements have always assumed iso-
lated quantum mechanical systems without any connection to
a possible environment. We present an extension of this mea-
surement model which can be derived from basic principles
and allows exploration of a measurement configuration in a
thermal environment from a phenomenological perspective.
In order to achieve this goal, we combine traditional pointer-
based measurements with the concept of quantum Brownian
motion of multipartite systems [11].

This approach allows us to include thermal noise into
the measurement uncertainty, which is reasonable for any
truly macroscopic measurement apparatus. In particular, it
becomes apparent that the squeezing of the system state to
be measured [16] plays a crucial role in this uncertainty and
simply choosing a minimal uncertainty state is no longer
sufficient for an optimal measurement. Our lower bound for
the uncertainty of a noisy measurement thus shows that the
class of minimal uncertainty states can be understood in more
detail depending on how the states react to measurement noise.

Moreover, there is recent work [17,18], in which the authors
derive a very general and state-independent uncertainty rela-
tion, which is based on the original error-disturbance concept
of Heisenberg [2]. In the context of this general framework,
our model can be understood as a specific realization of
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a noisy measurement device, which dynamically generates
disturbance.

To begin with, we briefly review the concept of pointer-
based simultaneous measurements in Sec. II to set the stage
for Sec. III, where we introduce our model from an operational
point of view and solve the arising equations of motion. This
preparatory work allows us to derive the uncertainty of the
measurement procedure and its lower limit, an extension of a
previously known uncertainty relation, in Sec. IV. In Sec. V,
we conclude with a brief summary and outlook.

II. A SHORT REVIEW OF POINTER-BASED
SIMULTANEOUS MEASUREMENTS

To introduce the conceptual idea of pointer-based simulta-
neous measurements, we recall a classic model [8–10] which
describes the indirect measurement of position and momentum
of a free particle. Specifically, this measurement model is
based on an interaction of three quantum mechanical systems
with continuous variables: one system to be measured and two
pointers which represent the measurement devices (see Fig. 1).

The system to be measured is coupled to the pointers by a
bilinear interaction Hamiltonian

Ĥint ≡ κ1X̂SP̂1 + κ2P̂SP̂2, (1)

where X̂S and P̂S denote the system’s position and momentum,
respectively. The operators P̂1 and P̂2 represent the momenta of
either one of the two pointers and κ1 and κ2 are corresponding
coupling strengths. Apart from their mutual coupling all three
systems behave as free particles in this classic model.

Equation (1) is in fact just a sum of the exponents of two
displacement operators and therefore the dynamical behavior
of the model is straightforward: the position of the system to
be measured displaces the position of the first pointer and its
corresponding momentum displaces the position of the second
pointer. As a consequence, projectively measuring the pointer
positions after the coupling interaction allows one to infer the
position and the momentum of the system to be measured.
Since both pointers are assumed to be independent systems,
they can be measured independently. The accuracy of this
measurement is influenced by the measurement devices and
the coupling strengths and can for example be quantified by
variances [8,9,19–24] or information entropy [25,26].
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Ĥint

〈X̂1〉(t)
〈X̂2〉(t)

⇒

〈X̂S〉(0)
〈P̂S〉(0)

0 t

FIG. 1. Schematic representation of a pointer-based measure-
ment. The system to be measured, described by the state |ψ〉, and the
pointers, described by the states |φ〉1 and |φ〉2, respectively, interact
with each other by means of an interaction Hamiltonian Ĥint, Eq. (1),
which couples the position of the system to be measured, X̂S , to the
first pointer’s momentum P̂1 with the coupling strength κ1 and the
momentum of the system to be measured, P̂S , to the second pointer’s
momentum P̂2 with the coupling strength κ2. After the interaction
process at time t , a projective measurement of the pointer positions
X̂1(t) and X̂2(t) is performed. The system’s initial position X̂S(0)
and momentum P̂S(0) can then be inferred from those measurement
results.

However, Eq. (1) represents just one possible choice of
interaction for realizing a pointer-based measurement. An
alternative coupling could also be chosen in such a way that
the system displaces the momenta of the pointers instead of
their positions and allows measurement of these momenta to
infer the system position and momentum. Moreover, different
noncommuting continuous variables like, for example, quadra-
tures [27,28] of the quantized electromagnetic field, could
be used instead of position and momentum. The coupling
strengths between system and pointers can also be time
dependent [23,24].

Nevertheless, the model outlined here describes only the
measurement of a system with measurement devices totally
isolated from their environment. However, for a more complete
and more realistic treatment of a measurement process it is nec-
essary to include environmental effects. In other words, each
pointer has to experience its environment since it represents a
macroscopic apparatus. The corresponding environmental ef-
fects are naturally expected to cause noise on the measurement
result, but furthermore may also introduce decoherence [29]
and are possibly a first step in eliminating the need for a
final projective “ideal single variable measurement” [19] of
the pointer observables, which is a crucial point of criticism
in any theory of quantum measurements [30]. In the following
sections, we present an approach towards a theory for such
open pointer-based measurements as a generalization of closed
pointer-based measurements.

III. AN OPERATIONAL VIEW ON OPEN POINTER-BASED
SIMULTANEOUS MEASUREMENTS

There are several ways to model an environment, e. g.,
specialized quantization procedures [31], the concept of
stochastic Schrödinger equations [32] or system-plus-reservoir
approaches [33], which are exhaustively described in, e. g.,
Refs. [34,35] and references therein. Inspired by Refs. [13,14],
it turned out that a system-plus-reservoir approach,

implemented by a bilinearly coupled bosonic heat bath of a
collection of harmonic oscillators, is most suitable for our
purposes. Briefly put, we utilize the well-known Caldeira-
Leggett model [36].

In this section, we first present a model for open pointer-
based simultaneous measurements and then introduce a suit-
able rescaling, which allows us to express the equations of
motion in dimensionless quantities. We subsequently argue
that a renormalization of these equations of motion is necessary
to eliminate unphysical terms. Finally, we present a solution
of the renormalized equations of motion.

A. Model

In accordance with the closed pointer-based simultaneous
measurement in Sec. II, we consider two pointer particles of
identical mass M , which are coupled to the system particle
to be measured of mass MS via the classic interaction
Hamiltonian, Eq. (1). Their positions and momenta read
X̂T ≡ (X̂S,X̂1,X̂2) and P̂T ≡ (P̂S,P̂1,P̂2), respectively. As
already mentioned above, our environment consists of N

harmonic oscillators, i. e., N particles of mass m with positions
q̂T ≡ (q̂1, . . . ,q̂N ) and momenta k̂T ≡ (k̂1, . . . ,k̂N ), which
are bilinearly coupled to each other by means of the bath
Hamiltonian

Ĥbath ≡ 1

2m
k̂T k̂ + 1

2
q̂T cq̂ (2)

with the bath-internal coupling matrix c.
By definition, system and pointers couple to the envi-

ronment bilinearly via their positions, so we introduce an
environmental Hamiltonian

Ĥenv ≡ q̂T gX̂ (3)

with the environmental coupling matrix g. Although the form
of Eq. (3) is typical for system-plus-reservoir approaches, it
would also be a valid assumption to let system and pointers
couple to the environment via their momenta [33]. Yet we
do not further pursue these considerations here, in favor of a
simple model.

So far, the coupling matrices c and g can be chosen
completely freely and determine the structure of the bath
and its influence on both system and pointers. However, for
reasons of clarity, we do not specify them before we perform
the transition to continuous bath modes in Sec. III C.

Summarized, the complete Hamiltonian Ĥ of our model
for open pointer-based simultaneous measurements consists
of the free-particle Hamiltonian of system and pointers

Ĥfree ≡ P̂ 2
S

2MS

+ P̂ 2
1

2M
+ P̂ 2

2

2M
, (4)

the classic interaction Hamiltonian Ĥint, Eq. (1), the bath
Hamiltonian Ĥbath, Eq. (2), and the environmental Hamiltonian
Ĥenv, Eq. (3), and therefore reads

Ĥ ≡ Ĥfree + Ĥint + Ĥbath + Ĥenv. (5)

To understand the dynamics of our model, our main interest
lies in the system and pointer positions X̂(t) and momenta
P̂(t), respectively, in the Heisenberg picture. Their operational
behavior sets the framework for our discussion in Sec. IV,
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where we mainly deal with their first and second moments
in order to infer measurement results with an associated
uncertainty. Therefore, we also need knowledge about the
initial quantum mechanical state of the measurement setup.

It is physically reasonable to assume that the system to be
measured, represented by the state |ψ〉, and the two pointers,
represented by the states |φ〉1 and |φ〉2, respectively, are
initially uncorrelated; cf. Fig. 1. Apart from this limitation,
|ψ〉, |φ〉1, and |φ〉2 can be chosen completely freely. In
addition, we assume that our bath is initially in a thermal
state

�̂bath(0) ≡ 1

Z
exp[−βĤbath] (6)

of thermal energy β−1 ≡ kBϑ with the Boltzmann constant
kB and the temperature ϑ . Here we use the bath Hamiltonian
Ĥbath, Eq. (2), and the normalizing partition function Z. As
a consequence, the bath is also initially uncorrelated with the
system or the pointers [37].

In short, the initial state �̂(0) of the measurement configu-
ration can be summarized as

�̂(0) ≡ |ψ〉 〈ψ | ⊗ |φ〉1 1〈φ| ⊗ |φ〉2 2〈φ| ⊗ �̂bath(0). (7)

The complete Hamiltonian, Eq. (5), and the complete initial
state, Eq. (7), set the framework for all further considerations.

B. Rescaling

In order to reduce our equations to their most fundamental
ingredients and to eliminate all units from our variables, we
pursue a rescaling approach similar to that of Ref. [23]. For
this purpose, we identify a characteristic time scale

T ≡ �XS(0)MS

�PS(0)
, (8)

with the initial variances of system position

�X2
S(0) ≡ 〈X̂S(0)2〉 − 〈X̂S(0)〉2

(9a)

and momentum

�P 2
S (0) ≡ 〈P̂S(0)2〉 − 〈P̂S(0)〉2

, (9b)

respectively, which corresponds to the typical spreading time
scale of the system’s initial wave function if the system were
isolated from the pointers and the bath. In other words, T

describes the time scale during which a free test particle can
be considered localized inside our measurement apparatus. We
define our rescaled time t ′ in units of this measurement time
scale, so that t ′ ≡ t/T . The associated energy �/T stands for
the interaction energy scale of this measurement process and
leads us to the rescaled Hamiltonian H ′ ≡ H T/�, Eq. (5).
We deal with the rescaled thermal energy of the bath β ′−1 ≡
β−1T/�, Eq. (6), in the same way.

Furthermore, we make use of a corresponding characteristic
length

λ ≡
√

T �

MS

, (10)

which represents the typical spreading length scale of the sys-
tem’s initial wave function if it were isolated from the pointers

and the bath in the same way as for the characteristic time
scale T , Eq. (8). Specifically, we rewrite the system, pointer,
and bath coordinates as X̂′ ≡ X̂/λ, P̂′ ≡ P̂λ/�, q̂′ ≡ q̂/λ,
and k̂′ ≡ k̂λ/� and define the rescaled bath-internal coupling
matrix c, Eq. (2), as c′ ≡ cT 2/MS , the rescaled position-based
coupling to the environment g, Eq. (3), as g′ ≡ gT 2/MS ,
and the rescaled system-pointer coupling strengths κ1 and κ2,
Eq. (1), as κ ′

1 ≡ κ1T M/MS and κ ′
2 ≡ κ2M , respectively.

As a consequence, the rescaled Hamiltonian reads

Ĥ ′ = P̂ ′
S

2

2
+ P̂ ′

1
2

2M0
+ P̂ ′

2
2

2M0
+ κ ′

1

M0
X̂′

SP̂
′
1 + κ ′

2

M0
P̂ ′

SP̂
′
2

+ 1

2m0
k̂′T k̂′ + 1

2
q̂′T c′q̂′ + q̂′T g′X̂′. (11)

with the pointer-system mass ratio

M0 ≡ M

MS

(12)

and the bath-system mass ratio

m0 ≡ m

MS

. (13)

In particular, Eq. (11) leads to the rescaled Heisenberg
equations

∂

∂t ′
Â′(t ′) = i[Ĥ ′,Â′(t ′)] (14)

for any rescaled observable Â′(t ′). In the following, our aim
is to solve Eq. (14) for both X̂′(t ′) and P̂′(t ′). So far, all
rescaled quantities have been marked with a prime. To simplify
the further notation, we drop this prime and limit ourselves
exclusively to rescaled variables.

C. Equations of motion

In the spirit of Ref. [33], we first solve the Heisen-
berg equation for the bath oscillator observables q̂T (t) ≡
(q̂1(t), . . . ,q̂N (t)) and k̂T (t) ≡ (k̂1(t), . . . ,k̂N (t)), Eq. (14), and
then use the results to rewrite the Heisenberg equations for the
system and pointer observables X̂(t) and P̂(t), Eq. (14), as
systems of generalized Langevin equations [12,39,40]⎛

⎜⎜⎝
−a ¨̂XS(t)

M0
¨̂X1(t)

−aM0
¨̂X2(t)

⎞
⎟⎟⎠ + aκ2

⎛
⎜⎜⎝

¨̂X2(t)

0
¨̂XS(t)

⎞
⎟⎟⎠ + κ1

⎛
⎜⎜⎝

˙̂X1(t)

− ˙̂XS(t)

0

⎞
⎟⎟⎠

− κ2
1

M0

⎛
⎜⎝

X̂S(t)

0

0

⎞
⎟⎠ −

∫ t

0
dsμ(t − s)

⎛
⎜⎝

X̂S(s)

X̂1(s)

X̂2(s)

⎞
⎟⎠

= ξ̂ (t) (15a)

with momenta⎛
⎜⎝

P̂S(t)

P̂1(t)

P̂2(t)

⎞
⎟⎠ =

⎛
⎜⎜⎝

−a ˙̂XS(t) + aκ2
˙̂X2(t)

M0
˙̂X1(t) − κ1X̂S(t)

−aM0
˙̂X2(t) + aκ2

˙̂XS(t)

⎞
⎟⎟⎠ (15b)
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and the abbreviation

a ≡ M0

κ2
2 − M0

. (16)

To keep our notation simple, we limit ourselves to interaction
times t � 0 and consider all time-dependent quantities as
confined to this regime.

The environmental influence on the equations of motion for
system and pointers is therefore governed by two expressions,
namely, the dissipation kernel [14]

μ(t) ≡ 1

m0
gT sin(ωt)

ω
g, (17)

which results from the retarded propagator of the inhomo-
geneous bath dynamics [33] and determines the damping
influence of the environment, and the stochastic force [35]

ξ̂ (t) ≡ −gT

[
cos(ωt)q̂(0) + sin(ωt)

m0ω
k̂(0)

]
, (18)

which results from the free bath dynamics and determines
the noisy influence of the environment. Since the coupling
matrix c is by definition symmetric and real, the bath frequency
matrix [14]

ω ≡
√

c
m0

(19)

can always be diagonalized to describe the bath dynamics in
terms of normal modes.

We remark that the first moment of the stochastic force,
Eq. (18), obeys

〈ξ̂ (t)〉 = 0. (20)

Moreover, the well-known fluctuation-dissipation theo-
rem [35] connects the dissipation kernel, Eq. (17), with the
symmetric autocorrelation function [14]

ν(t1 − t2) ≡ 1

2
〈ξ̂ (t1)ξ̂T (t2) + ξ̂ (t2)ξ̂T (t1)〉

= 1

2m0
gT coth

(
βω

2

)
cos[ω(t1 − t2)]

ω
g (21)

of the stochastic force.
It is a common approach to switch from a bath of N discrete

oscillators to a continuous bath with N → ∞. In this limit,
Eqs. (17) and (21) can be written as integrals over the bath
frequencies ω, so that

μ(t) =
∫ ∞

0
dω sin(ωt)I(ω) (22)

and

ν(t) = 1

2

∫ ∞

0
dω coth

(
βω

2

)
cos(ωt)I(ω) (23)

with the spectral density

I(ω) ≡ 1

m0
gT ω−1δ(ω1 − ω)g. (24)

Here δ(ω1 − ω) represents the Dirac delta distribution and
1 stands for the identity matrix. Since the yet undetermined
coupling matrix c, Eq. (2), which determines ω, Eq. (19),
and the also so far undetermined coupling matrix g, Eq. (3),
have infinite degrees of freedom in a continuous bath, we
can in principle specify them so as to design the spectral
density I(ω), Eq. (24), as a smooth function of ω. This
function then describes how the bath modes affect system
and pointers without the need for a detailed consideration of
the bath properties. Consequently, taking the continuum limit
allows us to change our point of view from a microscopic to a
phenomenological perspective.

For our model of open pointer-based simultaneous measure-
ments, we choose two identical but separate Ohmic baths with
an algebraic cutoff with cutoff frequency ωc and frequency-
independent viscosity η [35], which are each equally coupled
to either one of the pointers, whereas the system to be measured
itself is not directly influenced by the environment, i.e.,
we use

I(ω) ≡ 2η

π

ω

ω2

ω2
c
+ 1

⎛
⎜⎝

0 0 0

0 1 0

0 0 1

⎞
⎟⎠. (25)

As a consequence, Eqs. (22) and (23) can be written as

μ(t) = ηω2
ce

−ωct

⎛
⎜⎝

0 0 0

0 1 0

0 0 1

⎞
⎟⎠ (26)

and

ν(t) =
∫ ∞

0
dω

ω coth
(

βω

2

)
cos(ωt)

ω2 + ω2
c

ηω2
c

π

⎛
⎜⎝

0 0 0

0 1 0

0 0 1

⎞
⎟⎠, (27)

respectively. Thus, the phenomenological equations of motion
for our system and pointer observables are given by Eq. (15)
with the dissipation kernel chosen in Eq. (26) and a stochastic
force, Eq. (18), which obeys Eqs. (20) and (27).

D. Renormalization

System-plus-reservoir models have the tendency to bear
subtle but well-known complications, which have to be
treated with special care; see, e. g., Refs. [12,13,35] and
references therein for a detailed discussion. The reasons for
this are mainly the unphysical starting conditions of our
model, more specifically the sudden interaction of the initially
uncorrelated bath with the system and pointer states. From
a phenomenological point of view, it is therefore reasonable
to adjust our original model in such a way that its equations
of motion, Eq. (15), are free from any unphysical artifacts.
There are various attempts to achieve this goal (see, e. g.,
Refs. [12,13,35] and references therein), and we present only
one straightforward strategy here without discussing all of the
possible alternatives.

Specifically, our equations of motion include two obvious
unphysical artifacts, namely, the so-called potential shift and
the so-called slip term, both of which are contained within the
second and third components of the integral term in Eq. (15a).
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By inserting Eq. (26) into Eq. (15a), we can express these
integral components as

−ηω2
c

∫ t

0
dse−(t−s)ωc

(
X̂1(s)

X̂2(s)

)

= −ηωc

(
X̂1(t)

X̂2(t)

)
+ ηωce

−tωc

(
X̂1(0)

X̂2(0)

)

+ ηωc

∫ t

0
dse−(t−s)ωc

( ˙̂X1(s)
˙̂X2(s)

)
(28)

to identify the two crucial expressions: The first term on
the right-hand side of Eq. (28) represents the potential shift.
This term has the same influence on our equations of motion
as an external potential which is quadratic in position and
proportional to the cutoff frequency ωc. The potential shift
is therefore cutoff sensitive and even becomes divergent in
the limit ωc → ∞. As a consequence, it must be considered
unphysical.

The second term on the right-hand side of Eq. (28) is the
slip term, which effectively represents an additional external
force with a strength proportional to the cutoff frequency ωc

occurring on the time scale ω−1
c . Since this external force leads

to an effective stochastic force with different properties from
those of our original stochastic force, Eq. (18), we consider it
an unphysical artifact. In the high-cutoff limit

ωcτ 	 1, (29)

where τ represents the typical measurement time scale of our
measurement device, i.e., the largest relevant interaction time,
we can approximately write

ωce
−tωc ≈ 2δ(t) (30)

with the Dirac delta distribution δ(t). In other words, in the
high-cutoff limit the slip term becomes a mere initial kick.

Thus, the two unphysical terms on the right-hand side of
Eq. (28) can be written as

−ηωc

(
X̂1(t)

X̂2(t)

)
+ ηωce

−tωc

(
X̂1(0)

X̂2(0)

)

≈ η(2δ(t) − ωc)

(
X̂1(t)

X̂2(t)

)
(31)

in the regime given by Eq. (29). By performing the renormal-
ization [13]

H −→ H + η

[
ωc

2
− δ(t)

](
X̂2

1 + X̂2
2

)
(32)

of the Hamiltonian H , Eq. (11), we can straightforwardly
eliminate Eq. (31) from our equations of motion. This behavior
is also related to a translation-symmetric environmental
coupling [41].

As a consequence, only the third term on the right-hand
side of Eq. (28) remains and thus Eq. (15a) reads⎛

⎜⎜⎝
−a ¨̂XS(t)

M0
¨̂X1(t)

−aM0
¨̂X2(t)

⎞
⎟⎟⎠ + aκ2

⎛
⎜⎜⎝

¨̂X2(t)

0
¨̂XS(t)

⎞
⎟⎟⎠ + κ1

⎛
⎜⎜⎝

˙̂X1(t)

− ˙̂XS(t)

0

⎞
⎟⎟⎠

− κ2
1

M0

⎛
⎜⎝

X̂S(t)

0

0

⎞
⎟⎠ + ηωc

∫ t

0
dse−(t−s)ωc

⎛
⎜⎜⎝

0
˙̂X1(s)
˙̂X2(s)

⎞
⎟⎟⎠

= ξ̂ (t) (33)

while Eq. (15b) remains unchanged. In the following, we use
these renormalized equations of motion.

Note, however, that additional unphysical artifacts may also
occur which are more difficult to spot and cannot be eliminated
by a simple renormalization [13,38], like a sudden initial jolt
in physical quantities on a time scale ω−1

c [42] or a “spurious”
logarithmic cutoff-sensitivity of system correlators [38,43].
Some of these effects could be eliminated by a smooth
switch-on of the interaction with the bath [13]. We believe
that such an approach leads to more complicated expressions
but does not change our final results. Since we also do not
expect that additional artifacts play an important role in our
phenomenological model, we do not apply further strategies
to suppress them.

E. Formal solution

It is well known that by transforming to Laplace space,
the renormalized equations of motion, Eqs. (33) and (15b),
become purely algebraic equations which can then be solved
and transformed back to the time domain. As a result, we get

X̂(t) = K(t)X̂(0) + G(t)P̂(0) + �̂(t) (34a)

and

P̂(t) = [MK̇(t) − DK(t)]X̂(0)

+ [MĠ(t) − DG(t)]P̂(0)

+ M ˙̂�(t) − D�̂(t), (34b)

respectively. Here, we have introduced the noise

�̂(t) ≡

⎛
⎜⎝

�̂S(t)

�̂1(t)

�̂2(t)

⎞
⎟⎠ ≡

∫ t

0
ds G(t − s)ξ̂ (s) (35)

and the propagators

G(t) ≡ L−1

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎝

−u(s) κ1s aκ2s
2

−κ1s b(1,s) 0

aκ2s
2 0 b(−a,s)

⎞
⎟⎠

−1
⎫⎪⎪⎬
⎪⎪⎭ (t) (36a)

and

K(t) ≡ Ġ(t)M + G(t)DT , (36b)

respectively, where L−1{f (s)}(t) denotes the inverse Laplace
transform of a function f (s) in the frequency domain. The
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abbreviations a, Eq. (16), and u(s) ≡ as2 + M−1
0 κ2

1 simplify
our notation, and the function

b(w,s) ≡ ws

s + ωc

(
M0s

2 + M0sωc + ηωc

w

)
(37)

represents the bath-dependent parts of the propagators. Fur-
thermore, we make use of the coupling matrices

M ≡

⎛
⎜⎝

−a 0 aκ2

0 M0 0

aκ2 0 −aM0

⎞
⎟⎠ (38a)

and

D ≡

⎛
⎜⎝

0 0 0

κ1 0 0

0 0 0

⎞
⎟⎠, (38b)

respectively.
Explicitly performing the inverse Laplace transform in

Eq. (36a) technically corresponds to finding the nontrivial
zeros of polynomials of up to sixth order. Therefore, we
limit ourselves to a formal notation. Note that by turning
off the influence of the bath (i.e., η = 0), Eq. (34) represents
the solution of the closed pointer-based measurement [23].
Furthermore note that Eq. (36a) is defined only for 1/a �= 0,
i.e., κ2 �= ±√

M0, Eq. (16), which is the condition under which
a nonsingular Lagrangian [44] exists for our model.

In brief, the dynamics of the system and pointer observables
X̂(t), Eq. (34a), and P̂(t), Eq. (34b), respectively, can be
expressed in terms of propagators acting on their initial values
under the noisy influence of the bath, which forces them into
a quantum Brownian motion. However, for a pointer-based
measurement as described in Sec. II, the dynamics of the
system to be measured and the pointer momentum dynamics
are not of central interest and it is therefore sufficient to
concentrate on the pointer position dynamics X̂1(t) and X̂2(t).

F. Pointer position dynamics

In order to get the pure pointer position dynamics, Eq. (34a)
can be reduced to(

X̂1(t)

X̂2(t)

)
= A(t)

(
X̂S(0)

P̂S(0)

)
+ B(t)Ĵ +

(
�̂1(t)

�̂2(t)

)
(39)

with the coefficients

A(t) ≡
(

K21 G21

K31 G31

)
, (40a)

the inhomogeneity

B(t) ≡
(

K22 K23 G22 G23

K32 K33 G32 G33

)
, (40b)

the initial value vector

Ĵ ≡ (X̂1(0),X̂2(0),P̂1(0),P̂2(0))T , (40c)

and the noises �̂1(t) and �̂2(t), respectively, from Eq. (35). In
Eqs. (40a) and (40b), Gkl(t) and Kkl(t) represent the elements
in the kth row and lth column of the respective propagator

matrices G(t) and K(t), Eq. (36). To simplify our notation,
recurring time dependencies of these matrix elements have
been omitted.

In particular, Eq. (39) highlights the key aspect of pointer-
based simultaneous measurements: the pointer positions X̂1(t)
and X̂2(t) contain information on the initial system observables
X̂S(0) and P̂S(0). This structural behavior builds the framework
for the following section, where we present an appropriate
way to retrieve the information about the initial system
observables from the independent pointer positions and discuss
the associated measurement uncertainty and its boundaries.

IV. UNCERTAINTY OF OPEN POINTER-BASED
SIMULTANEOUS MEASUREMENTS

Our previous considerations have revealed the intimate
connection between the pointer positions and the initial system
observables. In this section, we now focus on the first and
second moments of the so-called inferred observables, which
represent a suitable linear combination of the pointer positions
in such a way that the expectation values of the inferred
observables correspond to the expectation values of the initial
system observables. As a consequence, reading out the inferred
observables corresponds to a measurement of the initial system
observables with an uncertainty given by the variance of
the inferred observables. From a closer inspection of this
uncertainty follows a lower bound, which can be viewed as
the lowest possible uncertainty of a noisy measurement [45].

A. Inferred observables

To retrieve the initial system observables from the pointer
positions, one can rewrite Eq. (39) in the form(

X̂S(0)

P̂S(0)

)
=

(
X̂ (t)

P̂(t)

)
− A−1(t)B(t)Ĵ − A−1(t)

(
�̂1(t)

�̂2(t)

)
,

(41)

where we have introduced a new pair of observables, namely,
the so-called inferred position observable X̂ (t) and the inferred
momentum observable P̂(t) with the rescaling(

X̂ (t)

P̂(t)

)
≡ A−1(t)

(
X̂1(t)

X̂2(t)

)
. (42)

Since the pointer’s initial positions X̂1(0) and X̂2(0) commute
by definition, the inferred observables X̂ (t) and P̂(t) also
commute for later times [46]. Moreover, the expectation value
of Eq. (41) reads〈(

X̂ (t)

P̂(t)

)〉
=

〈(
X̂S(0)

P̂S(0)

)〉
+ A−1(t)B(t) 〈Ĵ〉 (43)

with

〈�̂(t)〉 = 0 (44)

due to Eq. (20). Here, the key feature of the inferred
observables assumes shape: Their expectation values represent
the corresponding initial expectation values of the system
observables, shifted by the initial expectation values of the

052111-6



POINTER-BASED SIMULTANEOUS MEASUREMENTS OF . . . PHYSICAL REVIEW A 89, 052111 (2014)

pointers. However, by choosing appropriate initial pointer
states which lead to

〈Ĵ〉 = 0 (45)

for the initial values, Eq. (40c), this shift can be avoided. To
simplify our notation, we assume such pointer states in the
following.

In conclusion, the inferred observables, Eq. (42), can be
understood as the effectively measured observables from
which the system observables can be directly read out [47].
Therefore, also the uncertainty of the measurement has to be
based on these observables.

B. Variances

In the spirit of the previous considerations, we define the
inferred position variance

�X 2(t) ≡ 〈X̂ 2(t)〉 − 〈X̂ (t)〉2
(46a)

and, analogously, the inferred momentum variance

�P2(t) ≡ 〈P̂2(t)〉 − 〈P̂(t)〉2
. (46b)

Specifically, Eq. (46) describes the uncertainty of measuring
the initial position and momentum of the system, respectively,
by means of a pointer-based simultaneous measurement. Using
the variance as an uncertainty measure is a common approach
but can nevertheless be considered a controversial subject [48].
However, it works perfectly well as long as we deal with
localized probability distributions and we therefore stick to
this method in the course of this paper.

A straightforward calculation using Eqs. (41) and (46)
shows that the inferred variances

�X 2(t) = �X2
S(0) + σ 2

1 (t) + �2
1(t) (47a)

and

�P2(t) = �P 2
S (0) + σ 2

2 (t) + �2
2(t) (47b)

consist of three parts: First, the initial system variances
�X2

S(0), Eq. (9a), and �P 2
S (0), Eq. (9b), second, the two

pointer-based contributions

σ 2
k (t) ≡ vk(t)〈ĴĴT 〉vT

k (t) (48)

with k ∈ {1,2} and the abbreviation(
v1(t)

v2(t)

)
≡ A−1(t)B(t), (49)

and third, the covariance matrix of the noise

�2(t) ≡ A−1(t)

〈(
�̂1�̂1 �̂1�̂2

�̂2�̂1 �̂2�̂2

)〉
A−T (t). (50)

To simplify our notation, we omit recurring time dependencies
of the noises �̂1(t) and �̂2(t), Eq. (35), in Eq. (50). Further-
more, we make use of Eqs. (44) and (45). In Eq. (47), �2

k(t)
represents the element in the kth row and kth column of the
covariance matrix of the noise �2(t), Eq. (50).

In particular, Eq. (47) allows us to directly recognize
the separation of the “intrinsic” or “preparation uncertainty,”

namely, �X2
S(0) and �P 2

S (0), from the “extrinsic” or “mea-
surement uncertainty,” which can be further diversified into
the uncertainty from the (damped) measurement instruments,
Eq. (48), and the uncertainty from the environmental noise,
Eq. (50). For a closed pointer-based simultaneous measure-
ment, this separation is well known; cf., e.g., Ref. [49] and
references therein. In our model, we can naturally incorporate
the environmental noise as a supplementary extrinsic uncer-
tainty component into the known descriptions.

C. Uncertainty

The collective uncertainty

U2(t) ≡ �X 2(t)�P2(t) (51)

is based on the variances of the inferred variables, Eq. (47), and
describes the uncertainty of measuring the system’s position
and the system’s momentum by means of a pointer-based
simultaneous measurement. Since the collective uncertainty,
Eq. (51), is time dependent, there exists at least one optimal
measurement time. It is, however, very difficult to analytically
optimize U2(t) with respect to the measurement time t and
we therefore do not further pursue this approach. Instead,
we will focus on a formal lower bound which brings out
the basic physics of this product of uncertainties and delay
the discussion of time dependencies to Sec. IV D, where we
perform a numerical evaluation.

In the case of a closed pointer-based measurement (i.e.,
η = 0), there exists a constant lower bound of the collective
uncertainty, Eq. (51), which reads

U2(t) � 1 (52)

and represents the combined intrinsic and measurement un-
certainty of system and pointers. This result is well known
and has been derived with various approaches; see, e.g.,
Refs. [8,19–23]. Moreover, it fits within the more general
framework of the recently found error-disturbance relation [17]
for which it serves as a specific example [18].

At this point one might ask: Does a similar lower un-
certainty bound also exist in case of an open pointer-based
measurement? In order to answer this question, we first use
Eq. (47) to rewrite Eq. (51) as

U2(t) = [�XS(0)σ2(t) − �PS(0)σ1(t)]2

+ �2
2(t)

2
{[�XS(0) + σ1(t)]2 + [�XS(0) − σ1(t)]2}

+�2
1(t)�2

2(t) + [�XS(0)�PS(0) + σ1(t)σ2(t)]2

+ �2
1(t)

2
{[�PS(0) + σ2(t)]2 + [�PS(0) − σ2(t)]2}.

(53)

In particular, all terms on the right-hand side of Eq. (53) are
non-negative and we can therefore estimate a lower bound by
minimizing the individual terms.

The first term, the second part of the second term, and the
second part of the fifth term on the right-hand side of Eq. (53)
vanish if

σ1(t)
!= �XS(0) (54a)
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and

σ2(t)
!= �PS(0) (54b)

hold true. Additionally, we can utilize Heisenberg’s uncer-
tainty relation, which reads

�XS(0)�PS(0) � 1
2 (55a)

for the initial system variances, Eq. (9), and [50]

σ1(t)σ2(t) � 1
2 (55b)

for the pointer-based contributions, Eq. (48). As a result, we
find the lower bound

U2(t) � 1 + �2
1(t)�2

2(t)

+ �2
2(t)

2
[�XS(0) + σ1(t)]2

+ �2
1(t)

2
[�PS(0) + σ2(t)]2 (56)

of the collective uncertainty, Eq. (51). It contains the
intrinsic and measurement uncertainty from Eq. (52) as
well as additional environmental noises. More specifically,
the second term represents the pure background noise of
the bath, Eq. (50), whereas the third and fourth terms can
be understood as amplified noises, which are controlled by
the initial system variances, Eq. (9), and the pointer-based
variance contributions, Eq. (48).

We emphasize that the initial system variances are com-
pletely independent of the pointer-based variance contribu-
tions and the noises, respectively. Thus, the specific structure
of this lower bound allows us to determine a distinction within
the class of intrinsic minimal uncertainty states. Depending
on the values of the pointer-based variance contributions,
either coherent states [16] with �XS(0) = �PS(0) or squeezed
states [16] with �XS(0) > �PS(0) or �XS(0) < �PS(0) will
lead to a smaller noise amplification. Hence, depending on
the values of the noises, the squeezing of the initial system
state determines the minimal collective uncertainty of the
measurement. This cannot be seen by looking at the original
Heisenberg relation for intrinsic uncertainties nor is it covered
by the collective uncertainty relation of a closed simultaneous
measurement, Eq. (52).

Since the right-hand side of Eq. (56) is in contrast to the
right-hand side of Eq. (52) state dependent and therefore
strictly speaking not a fundamental bound, it might not be
appropriate to call it an uncertainty relation in the sense
of Ref. [17]. Nevertheless, as a state-dependent disturbance
measure [51], Eq. (56) can be considered an extension of the
uncertainty relation, Eq. (52), which additionally incorporates
the dynamically generated disturbance from a noisy measure-
ment device.

It is clear that the collective uncertainty reaches the value
on the right-hand side of Eq. (56) only if Eqs. (54a) and (54b)
are fulfilled and equality in Eqs. (55a) and (55b) holds true.
However, it is not obvious if one can always find pointer
states which fulfill these conditions. Nevertheless, the lower
bound, Eq. (56), sets a basic lower limit for the uncertainty in
simultaneous measurements and can therefore be considered
as the lowest possible uncertainty of a noisy measurement.

We furthermore note that in Ref. [20] one can find a lower
bound for the uncertainty of a pointer-based measurement
which resembles Eq. (56) and is therefore worthwhile to
discuss. The author assumes an unspecified measurement
device with n degrees of freedom in thermal equilibrium with
thermal energy β−1 and postulates

U2 � 1
4 [1 + f (n,β)]2 (57)

with the unspecified function f (n,β), “which depends on
the statistical properties of the measurement device.” A
comparison of Eqs. (56) and (57) reveals the explicit form

f (n,β) = −1 ± 2
√
U2

min, (58)

where U2
min represents the right-hand side of Eq. (56). As sug-

gested, Eq. (58) indeed depends on the number of oscillators
N ∼ n, which we declared as an infinite continuum in Sec. III,
and the thermal energy β−1, Eqs. (27), (35), and (50). Thus,
Eq. (56) allows us to clarify the hypothesis (up to this point
unproven), Eq. (57).

D. Evaluation of the uncertainty of a specific
measurement configuration

Exemplarily, the collective uncertainties, Eq. (51), of two
specific measurement configurations and their lower bounds,
Eq. (56), are shown in Fig. 2 as the result of numerical
calculations [52]. For system and pointers we use initially
uncorrelated squeezed states [16] with unity position variance,

0.6 0.8 1 1.2 1.4
1

2

3

4

5

t

U2

1/β1 = 1
1/β2 = 2
β1 bound
β2 bound
closed

FIG. 2. (Color online) Collective uncertainy U2, Eq. (51), of the
measurement configuration discussed in Sec. III and its lower bound,
Eq. (56), for two different baths of thermal energies β−1

1 = 1 and
β−1

2 = 2 as a function of the interaction time t . We use initially
uncorrelated Gaussian states for both system and pointers as given by
Eq. (59) and the parameters κ1 = κ2 = 2, Eq. (11), M0 = 1, Eq. (12),
ωc = 20 and η = 0.25, Eq. (25). At t ≈ 1, the lower bound of the
collective uncertainty is closest to the collective uncertainty, while
for earlier or later times the distance increases. Markers indicate the
optimal measurement time topt with minU2(t) = U2(topt). For higher
thermal energies topt becomes smaller; cf. Fig. 3. For the sake of
completeness, the collective uncertainty of a closed measurement
without any environment (i.e., η = 0) is also shown. Note that this
collective uncertainty obeys the constant lower bound given by
Eq. (52).
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which can be written as

〈x|ψ〉 = 〈x|φ〉1 = 〈x|φ〉2 =
(

e−x2

2π

)1/4

(59)

in position space and fulfill equality in Eq. (55a). All other
parameters of the measurement configuration are given in the
caption of Fig. 2.

From a qualitative point of view, it takes some time for
the pointers to accumulate information about the system to
be measured, so the collective uncertainty should start high
and should begin to shrink over time. On the other hand, if
the interaction is too long, the pointer’s influence on each
other and the bath disturb the measurement results, thus the
collective uncertainty should rise again. Therefore, the time-
dependent collective uncertainty is expected to have a single
minimum value. These considerations are validated by our
numerics shown in Fig. 2.

The interaction time at which the collective uncertainty
attains its lowest value represents the optimal measurement
time topt at which the pointers can be read out. In particular,
the optimal measurement time topt can be treated as the typical
measurement time scale of our measurement device τ ≈ topt ≈
1, Eq. (29), so that ωcτ 	 1 holds true and the high-cutoff-
limit approximation, Eq. (30), is justified.

Our results show that at such “intermediate” interaction
times t ≈ 1, the lower bound of the collective uncertainty,
Eq. (56), is closest to the collective uncertainty, while for
earlier or later times the distance increases. Furthermore, a
higher thermal energy β−1 leads to a smaller optimal measure-
ment time topt. This is a physically reasonable behavior since
the noisy influence of the bath is stronger for higher thermal
energies and will increasingly disturb the measurement the
longer the interaction between bath and pointers takes place.

We strengthen this assumption with our results from
Fig. 3, where we depict the optimal measurement times and
their associated minimal collective uncertainty for different

0.5 1 1.5 2 2.5 3

2.1

2.2

2.3

2.4

2.5

1/β

m
in
U2

(t
)

0.78

0.80

0.82

0.84

0.86

0.88

t o
p
t

minU2(t)
topt

FIG. 3. (Color online) Minimal collective uncertainty
minU2(t) = U2(topt), Eq. (51), and optimal measurement times topt

for different thermal energies β−1. The same configuration as in
Fig. 2 is being used. Vertical lines highlight the thermal energies
β−1

1 = 1 and β−1
2 = 2 of Fig. 2. The optimal measurement time

becomes smaller for higher thermal energies, while its associated
minimal collective uncertainty becomes larger. Both the optimal
measurement time and its associated minimal collective uncertainty
are roughly proportional to the thermal energy for higher thermal
energies and slowly converging for lower thermal energies.

thermal energies. As one can see, the optimal measurement
time becomes smaller for higher thermal energies, while
its associated minimal collective uncertainty becomes larger.
Both the optimal measurement time and its associated minimal
collective uncertainty are roughly proportional to the thermal
energy for higher thermal energies and slowly converging for
lower thermal energies.

Summarized, the collective uncertainty, Eq. (51), which
describes the variance-based uncertainty of a simultane-
ous pointer-based measurement, is bounded from below by
Eq. (56). We can connect this lower bound to the familiar
bound of closed pointer-based measurements, Eq. (52), and a
bound from Ref. [20], Eq. (57). In particular, Eq. (56) is one of
the main results of this paper. Its numerical evaluation reveals
that it is best suited for intermediate measurement times; cf.
Fig. 2.

V. CONCLUSION

Our model describes a pointer-based simultaneous mea-
surement under the influence of an Ohmic environment with
bilinear coupling between all participating particles. The
associated equations of motion can be solved formally and
reveal a close connection between the pointer positions and the
initial system observables. From these solutions, the inferred
observables, whose expectation values correspond to the
expectation values of the initial system observables and which
therefore represent effectively measurable observables arise
naturally. Their combined variances determine the collective
uncertainty of the simultaneous measurement procedure.
Starting from this collective uncertainty, we establish a lower
bound for the uncertainty of the so defined noisy measurement.
This lower bound is an extension of a previously known uncer-
tainty relation for closed pointer-based measurements and it
includes the classic Heisenberg inequality for purely intrinsic
uncertainties. Finally, our exemplary evaluation shows that
there are optimal measurement times at which the collective
uncertainty is minimal.

The most restrictive assumption of our model is our postu-
lated Hamiltonian, which includes only terms of quadratic
order. Terms of higher order would lead to nonlinear dif-
ferential equations for which our considerations might not
be strictly valid anymore. However, we assume that in a
realistic modeling, such terms of higher order will lead only
to correction terms of smaller magnitude than the quadratic
terms. Therefore, we expect that our model is able to describe
the key features of a noisy simultaneous measurement process.

Despite the fact that we limited our discussion to the
measurement of pointer positions, our model can in principle
also be extended to describe the measurement of pointer
momenta or any other pair of continuous pointer observables as
long as the commutator of these observables does not depend
on these observables. Otherwise, nonlinear equations emerge
which might lead to different results.

Furthermore, we could use our model as a point of
origin to discuss different measures of uncertainty for the
inferred variables; see, e.g., Ref. [18] and references therein.
In particular, using information entropy as an uncertainty
measure allows a comparison with previous results for closed
pointer-based measurements [26]. Additionally, we could
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analyze the optimality of different pointer configurations
with respect to the measurement uncertainty while taking
into account their preparation energy and entanglement [24].
Another promising research approach in this context, which
we have not yet examined in more detail, is a comparison
of the different time scales of our model for decoherence,

noise, and system-to-pointer information transfer. Finally, the
role of non-Markovian effects in the dynamics has not been
explored yet and it might be possible to considerably simplify
the equations of motion in certain regimes with the help of
a Markovian approximation; cf. Refs. [13,53] and references
therein.
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