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Remote tomography and entanglement swapping via von Neumann–Arthurs–Kelly interaction
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We propose an interaction-based method for remote tomography and entanglement swapping. Alice arranges
a von Neumann-Arthurs-Kelly interaction between a system particle P and two apparatus particles A1,A2, and
then transports the latter to Bob. Bob can reconstruct the unknown initial state of particle P not received by him
by quadrature measurements on A1,A2. Further, if another particle P ′ in Alice’s hands is EPR entangled with P ,
it will be EPR entangled with the distant pair A1,A2. This method will be contrasted with the usual teleportation
protocols.
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I. INTRODUCTION

The idea of “quantum tracking” of a single system
observable by an apparatus observable first occurred in the
measurement theory of Von Neumann [1], and generalized
to two canonically conjugate observables by Arthurs and
Kelly, Jr. [2]. Suppose the initial state of the system-apparatus
combine is factorized. If after interaction, the apparatus
observable X has the same expectation value in the final
state as the system observable A in the initial state, for an
arbitrary initial state of the system, then X is said to track
A. This nomenclature was probably used first by Arthurs and
Goodman [3] who, as well as, Gudder et al. [3] proved the
joint measurement uncertainty relation. The Arthurs-Kelly
interaction can also enable exact measurements of some
quantum correlations between position and momentum [4].

We shall be concerned here not with joint measurements but
with the completely different ideas of “remote quantum tomog-
raphy” and “entanglement swapping” for continuous variables.
These are akin to “quantum teleportation” or the replication
of an unknown quantum state of a particle at a distant location
without physically transporting that particle. Teleportation, as
first proposed by Bennett et al. [5] and generalized to contin-
uous variables by Vaidman [6], usually involves four different
technologies. (i) An EPR-pair E1,E2 is shared by observers
A (Alice) and B (Bob) at distant locations. (ii) The system
particle P with an unknown state is received by A who makes
a Bell-state measurement on the joint state of that particle and
E1 and (iii) communicates the result via a classical channel to
B, and (iv) B then makes a unitary transformation depending
on the classical information on E2 to replicate the unknown
system state. Teleportation has been experimentally realized,
e.g., by Bouwmeester et al. [7], and the methods and uses
extensively reviewed, e.g., by Braunstein et al. [8]. In particular
the density matrix of the system particle can be constructed by
quadrature measurements on E2 (remote tomography).

II. INTERACTION-BASED REMOTE TOMOGRAPHY AND
TELEPORTATION OF EPR ENTANGLEMENT

We report here a method which replaces the above four
technologies by a two-step process: (i) interaction between
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the system particle and two apparatus particles followed by
(ii) quantum communication of the two apparatus particles. At
Alice’s location A, a system particle P with unknown state
interacts via an Arthurs-Kelly interaction with two apparatus
particles A1,A2 in a known state. When the particles are
photons, the interaction can easily be generated (see, e.g.,
Stenholm [2]). The particles A1,A2 are then sent to a distant ob-
server Bob (B). B makes quantum tomographic measurements
on them (quadrature measurements in the case of photons)
and reconstructs the exact initial density matrix of the system
particle without ever having received that particle. Further, if
another particle P ′ in Alice’s hands is EPR entangled with P , it
will be EPR entangled with the distant pair A1,A2. (See Fig. 1.)
Practical implementation will require a quantum channel to
send the two apparatus particles from location A to the distant
location of B followed by tomographic measurements by
B: for photons, a generalization of single photon optical
homodyne tomography (see, e.g., [9], [10], and [11]) to two
photons, which seems feasible and worthwhile.

From the “application point of view” why is it practically
useful to transport the apparatus particles with the system state
imprinted on it? Why can’t Alice directly send the system
particle to Bob? There can be several reasons. E.g., the system
particle might be unstable; or in the case of a photon, it might
have a frequency unsuitable for optical fiber transmission. The
apparatus photons can be chosen to have a frequency in the
telecom windows around 1300 or 1550 nm where optical fibers
have very low absorption facilitating long distance transmis-
sion. The scheme we propose exploits the entanglement be-
tween the system photon and the apparatus photons generated
by the three-particle Arthurs-Kelly interaction. Multiparticle
interactions to generate entanglement have previously been
exploited for quantum enhanced metrology [12]. We proceed
now to put our method on a rigorous footing.

III. A SYMMETRY PROPERTY

We shall use the Arthurs-Kelly system-apparatus inter-
action Hamiltonian, which is invariant under a class of
simultaneous transformations on the system and apparatus
specified below,

H = K(q̂p̂1 + p̂p̂2) = K(q̂θ p̂1,θ + p̂θ p̂2,θ ), (1)

where K is a coupling constant, q̂,p̂ are position and
momentum operators of the system, respectively, and x̂1,x̂2 are
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FIG. 1. Remote tomography and entanglement swapping via a
Von Neumann-Arthurs-Kelly interaction between system photon P

and tracker photons. If the photon P ′ is EPR entangled with P , the
tracker photons become entangled with P ′.

two commuting position operators of the apparatus (e.g., two
photons), with conjugate momenta p̂1,p̂2 which are coupled
to q̂ and p̂, respectively. The rotated quadrature operators with
subscript θ are defined using the rotation matrix R,(

q̂θ

p̂θ

)
= R

(
q̂

p̂

)
,

(
p̂1,θ

p̂2,θ

)
= R

(
p̂1

p̂2

)
,

(2)

R =
(

cos θ sin θ

− sin θ cos θ

)
.

The operators p̂j,θ are seen to be just the commuting
momentum operators of the apparatus particles correspond-
ing to rotated coordinates xj,θ , for j = 1,2, x1,θ + ix2,θ =
exp(−iθ )(x1 + ix2),p̂j,θ = −i∂/∂xj,θ . We also define, x̂1,θ +
ix̂2,θ = exp(−iθ )(x̂1 + ix̂2). Then, in the case of the apparatus
being two photons with annihilation operators ai ,i = 1,2,
x̂i,θ = ai exp (−iθ )/

√
2 + H.c., p̂i,θ = x̂i,θ+π/2.

IV. EXACT SOLUTION OF THE SCHRÖDINGER
EQUATION WITH GENERALIZED INITIAL CONDITIONS

We assume the constant K to be so large that the free
Hamiltonians of the system and the apparatus are negligible
compared to H during interaction time T . We start from an
initial factorized state,

〈q|〈x1,x2|ψ(t = 0)〉 = 〈q|φ〉χ (x1,x2), (3)

where 〈q|φ〉 is the unknown system wave function, and the
apparatus wave function is chosen to be a product of two
Gaussians, χ (x1,x2) = χ1(x1)χ2(x2),

χ1(x1) = π−1/4b
−1/2
1 exp

[−x2
1

/(
2b2

1

)]
,

(4)
χ2(x2) = π−1/4(2b2)1/2 exp

[−2b2
2x

2
2

]
.

Arthurs and Kelly chose b2 = b1 = b. We solve the
Schrödinger equation with arbitrary b1,b2; we need b1 �= b2 to
utilize the symmetry of the Hamiltonian.

The commutator of the two terms in H , in fact, commutes
with each of the terms. Hence,

exp (−iH t) = exp (−iKtq̂p̂1) exp (−iKtp̂p̂2)

× exp (iK2t2p̂1p̂2/2). (5)

If we work in the q,x1,p2 representation, the three exponentials
on the right-hand side successively translate x1,q,x1 acting
on the initial wave function. Hence the exact solution of the
Schrödinger equation is

〈q,x1,p2|t〉 = χ1[x1 − qKt + (1/2)p2K
2t2]

× χ̃2(p2)φ(q − p2Kt), (6)

where χ̃2 denotes a Fourier transform of χ2. The coordinate
space wave function is given by a Fourier transform. Choosing
KT = 1 we obtain,

ψ(q,x1,x2) =
∫

ψ(q,x1,x2,ξ )dξ, (7)

where

ψ(q,x1,x2,ξ )= φ(ξ ) exp [i(q − ξ )x2]/(2π
√

b1b2)

×exp

(
− (2x1 − q − ξ )2

8b2
1

− (q − ξ )2

8b2
2

)
. (8)

Tracing the system-apparatus density matrix over the system
coordinate we obtain the apparatus density matrix at time T ,

〈x1,x2|ρAPP (T )|x ′
1x

′
2〉 =

∫
ψ(q,x1,x2,ξ )

×ψ∗(q,x ′
1,x

′
2,ξ

′)dqdξdξ ′ . (9)

The probability densities P1(x1) and P2(x2) for x1 and x2 are
obtained by integrating the diagonal elements of this density
operator over x2 and x1, respectively. In fact P1(x1) and
P2(x2) can be obtained from the Arthurs-Kelly expressions
by b2 → (b2

1 + b2
2)/2 and b−2 → (b−2

1 + b−2
2 )/2, respectively.

The resulting expectation values of x1,x2 equal those of
q,p, respectively, but the dispersions are higher, (
x1)2 =
(
q)2 + (b2

1 + b2
2)/2, (
x2)2 = (
p)2 + (b2

1 + b2
2)/(8b2

1b
2
2).

Our key results require b1 �= b2. First, integrating the off-
diagonal elements of the apparatus density matrix over x2,x

′
2,∫

〈x1,x2|ρAPP (T )|x ′
1x

′
2〉dx2dx ′

2

= 1

b1b2

∫
|φ(q)|2 exp

(
− (x1 − q)2 + (x ′

1 − q)2

2b2
1

)
dq .

(10)

This shows that we can extract the exact initial system position
probability density from the final apparatus density matrix as
the expectation value of an apparatus observable:

|〈q =x1|φ〉|2 = lim
b1→0

b2√
π

∫
dx2dx ′

2〈x1,x2|ρAPP (T )|x1x
′
2〉

= lim
b1→0

TrρAPP (T )Y (x1), (11)

where Y (x1) is the apparatus observable,

Y (x1) = b2√
π

|x1〉〈x1|
∫

|x ′
2〉〈x ′′

2 |dx ′
2dx ′′

2

= 2b2
√

π (|x1〉〈x1|)(|p̂2 = 0〉〈p̂2 = 0|). (12)

Similarly, the exact initial system momentum probability
density is an expectation value of an apparatus observable
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in the final apparatus density matrix,

|〈p = x2|φ〉|2 = lim
b2→∞

1

2b1
√

π

∫
dx1dx ′

1

×〈x1,x2|ρAPP (T )|x ′
1x2〉

= lim
b2→∞

TrρAPP (T )Z(x2), (13)

where Z(x2) is the apparatus observable, Z(x2) =
(
√

π/b1)(|x2〉〈x2|)(|p̂1 = 0〉〈p̂1 = 0|). In the limit, b1 →
0, b2 → ∞, we have faithful tracking of both system position
and system momentum, since Y (x1) tracks the position
projectors |q̂ = x1〉〈q̂ = x1| for all x1 and Z(x2) tracks the
system momentum projectors |p̂ = x2〉〈p̂ = x2| for all x2.

Further, the Wigner function of the initial system state can
be calculated exactly from the final apparatus density matrix,

W (x1,x2) = lim
b1→0,b2→∞

b2

2πb1

×
∫

dx ′
1dx ′

2〈x1,x2|ρAPP (T )|x ′
1x

′
2〉. (14)

We now show that we can indeed measure a continuous infinity
of apparatus observables on the final state to obtain the initial
Wigner function of the system particle.

V. ROTATED QUADRATURES AND QUANTUM
TOMOGRAPHY

In order to harness the symmetry property mentioned above,
we need a corresponding symmetry property of the initial
apparatus state, χ (x1,x2) = χ (x1,θ ,x2,θ ). Therefore we are
forced to use initial apparatus states very different from Arthurs
and Kelly. We need

2b1b2 = 1; χ (x1,x2) = χ (x1,θ ,x2,θ )

= π−1/2b−1
1 exp

[ − (
x2

1 + x2
2

)/(
2b2

1

)]
. (15)

For this choice, the system-apparatus initial state can be
rewritten for arbitrary θ as

〈q̂θ = qθ |〈x̂1,θ = x1,θ ,x̂2,θ = x2,θ |ψ(t = 0)〉
= 〈q̂θ = qθ | φ〉χ (x1,θ ,x2,θ ), (16)

with the obvious notation (q̂θ − qθ )|q̂θ = qθ 〉 = 0. Since the
Hamiltonian H and the initial apparatus states have exactly
the same form in terms of the rotated variables as in terms of
the original variables, we can repeat the previous calculations
with q̂θ ,p̂θ ,qθ ,pθ ,x1,θ ,x2,θ replacing q̂,p̂,q,p,x1,x2, respec-
tively. Hence the matrix elements of ρAPP. are obtained by
replacing in the previously obtained expressions

q,p,x1,x2,x
′
1,x

′
2 → qθ ,pθ ,x1,θ ,x2,θ ,x

′
1,θ ,x

′
2,θ .

Thus, we obtain for arbitrary θ ,

|〈q̂θ = u|φ〉|2 = lim
b1→0

TrρAPP (T )Yθ (u), (17)

Yθ (u) ≡
√

π

b1
|x̂1,θ = u〉〈x̂1,θ = u||p̂2,θ = 0〉〈p̂2,θ = 0|. (18)

Since p̂θ = q̂θ+π/2, the initial system probability densities for
it are obtained from above just by replacing θ → θ + π/2.

Conceptually, b1 → 0,b2 = 1/(2b1) → ∞ is the limit of
the initial apparatus state having arbitrarily narrow spread in x1

and x2. We have proved that in this limit we can recover exactly
the initial system probability densities of arbitrary Hermitian
linear combinations q̂θ ,

〈q̂θ = u| ρS |q̂θ = u〉 = |〈q̂θ = u|φ〉|2 (19)

and hence the initial Wigner function, by measuring expecta-
tion values of Hermitian operators in the same final state of
the apparatus after interaction.

VI. RECONSTRUCTION OF THE INITIAL DENSITY
MATRIX OF THE SYSTEM FROM THE FINAL

APPARATUS DENSITY MATRIX

Quantum tomography is completed by calculating the
Wigner function W (q,p) as an inverse Radon transform,

W (q,p) = (2π )−2
∫ ∞

0
ηdη

∫ 2π

0
dθ

∫ ∞

−∞
du

× exp {iη[u − (q cos θ + p sin θ )]}
× 〈q̂θ = u| ρS |q̂θ = u〉, (20)

and from that the density operator,

〈q|ρS |q ′〉 = (2π )−1
∫ π

0
|q − q ′|dθ (sin θ )−2

× exp {[−i(q2 − q ′2) cot θ ]/2}
∫ ∞

−∞
du

× exp [iu(q − q ′)/ sin θ ]〈q̂θ = u| ρS |q̂θ = u〉.
(21)

VII. ACCOUNTING FOR TIME EVOLUTION OF THE
APPARATUS PHOTONS DURING TRANSIT TIME τ TO

DISTANT LOCATION B

Note that

TrρAPP (T )Yθ (u) = TrρAPP (T + τ )

× exp(−iH0τ )Yθ (u) exp(iH0τ ), (22)

where the Hamiltonian H0 = ω(a1†a1 + a2†a2 + 1), if the
photons have the same frequency ω. Hence the 〈q̂θ =
u| ρS |q̂θ = u〉 are equivalently given by replacing

ρAPP (T ),x̂1,θ ,p̂2,θ → ρAPP (T + τ ),

cos(ωτ )x̂1,θ − sin(ωτ )p̂1,θ ,cos(ωτ )p̂2,θ + sin(ωτ )x̂2,θ ,

respectively. We just have to measure different quadratures for
the apparatus photons depending on the transit time τ .

VIII. QUANTITATIVE COMPARISONS FOR THE THIRD
EXCITED STATE OF THE OSCILLATOR

We estimate here how small b1 has to be for reasonably
accurate reconstruction of the initial state which, in this
example, is chosen to be the highly nonclassical third excited
state of the oscillator. The Wigner function is

W (q,p) = [4(q2 + p2)3 − 18(q2 + p2)2 + 18(q2 + p2) − 3]

×exp −(q2 + p2)

3π
. (23)
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FIG. 2. (Color online) Joint distributions in (q,p) for the third
excited state of the oscillator as a function of

√
q2 + p2. (a) Wigner

function. (b) Reconstructed Wigner function with b1 = 0.1. (c)
Difference between curves (a) and (b). (d) Reconstructed Wigner
function with b1 = 0.3. (e) Arthurs-Kelly probability distribution.

It is a function of q2 + p2 ≡ d only, and hence we may write

W (d) = exp(−d)[4d3 − 18d2 + 18d − 3]/(3π ). (24)

The reconstructed Wigner function in this case is

Wb1 (d) =
(
2b2

1 + 1
)−7

3π
exp

(
− d(

2b2
1 + 1

)
)

× [
4d3 + 18d2

(
4b4

1 − 1
)

+ 18d
(
4b4

1 − 1
)2 + 3

(
4b4

1 − 1
)3]

, (25)

and the Arthurs-Kelly probability distribution, with b1 = b2 =
1√
2
, is

PAK (d) = d3

96π
exp

(
−d

2

)
. (26)

In Fig. 2 we make quantitative comparisons between
the Wigner function, our reconstructed Wigner function
with 2b1b2 = 1 (for b1 = {0.1,0.3}), and the Arthurs-Kelly
probability distribution. In Fig. 3 we compare the position
probabilities derived from the reconstructed Wigner function

(a)

(b)

(c)

(d)

(e)

4 2 2 4
q

0.1

0.2

0.3

0.4
Position Probability Density

FIG. 3. (Color online) Position probability densities for the third
excited state. (a) Quantum probability density of the state. (b)
Obtained from reconstructed Wigner function with b1 = 0.1. (c) Dif-
ference between curves (a) and (b). (d) Obtained from reconstructed
Wigner function with b1 = 0.3. (e) Obtained from Arthurs-Kelly
probability distribution.
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FIG. 4. (Color online) Plots for the Kolmogorov-Smirnov (K-S)
distance between (a) the Wigner function and the reconstructed
Wigner function and (b) the position probability density and the
reconstructed density versus b1. Even when b1 is as large as 0.2, the
K-S distance in case (a) reaches a value of only 0.072. The agreement
is even better in case (b) (the small discontinuity in the K-S distance
at b1 = 0.16 is due to the shifting of the position where the maximum
K-S distance is reached).

with the true quantum probability density and with that
obtained from the Arthurs-Kelly probability distribution. A
well-known measure of the distance between two probability
distributions is given by the Kolmogorov-Smirnov distance,
D(K-S) = maxx |F1(x) − F2(x)|, where Fi(x) is the cumula-
tive probability for the variable X � x for the ith probability
distribution. This distance between the pseudoprobabilities
given by the Wigner function and the reconstructed Wigner
function, as well as for the corresponding position probabilities
derived from them, are plotted in Fig. 4. The distance
(especially for the position probability) is very small even
up to b1 = 0.2 though the theorem of exact equality is only in
the limit b1 → 0.

IX. TELEPORTATION OF ENTANGLEMENT

If the photon P with coordinate q is EPR entangled with
another photon P ′ with coordinate q ′ with initial wave function
φ(q,q ′), the density matrix for particles 1,2,P ′ after interaction
can be shown to obey [13] analogues of Eqs. (11), (12) with
〈q = x1|φ〉 replaced by 〈q = x1,q

′|φ〉, and Y (x1) replaced by
Y (x1)|q ′〉〈q ′|; i.e.,

|〈q = x1,q
′|φ〉|2 = lim

b1→0

b2√
π

∫
dx2dx ′

2

×〈x1,x2|ρAPP (T )|x1x
′
2〉

= lim
b1→0

TrρAPP (T )Y (x1)|q ′〉〈q ′|, (27)

where

Y (x1) = 2b2
√

π (|x1〉〈x1|)(|p̂2 = 0〉〈p̂2 = 0|). (28)

Thus the apparatus photons after interaction with P become
entangled with P ′ achieving interaction-based teleportation of
EPR entanglement. The exact initial probability densities for
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q,q ′ (and similarly for p,p′), i.e., the exact EPR correlations,
can be retrieved from this final entangled state.

X. CONCLUSIONS AND OUTLOOK

(i) We have shown that the Arthurs-Kelly interaction
between an unknown state of a photon P and chosen initial
state of two apparatus photons, followed by quantum com-
munication of the two apparatus photons, enables a two-step
remote tomographic reconstruction of the unknown initial
state of P , as well as teleportation of its entanglement with
another photon P ′, instead of the usual four step process. It
is practically feasible because apparatus photon frequencies
can be chosen in the telecom windows, and the technology of
generating the Arthurs-Kelly interaction quantum optically is
well established (see, e.g., Stenholm in [2]).

(ii) Remote tomography requires the measurement of the
two photon observable Yθ (u) which is just a product of two
commuting quadrature operators for the apparatus photons,
each of the kind usually measured for a single photon. This
generalization of optical homodyning to the two teleported
photons will by itself be a stimulating development.

(iii) The Arthurs-Goodman result on impossibility of
simultaneous accurate tracking of position and momentum by

commuting observables of the apparatus is not violated. The
secret is that the apparatus observables tracking position and
momentum do not commute, [Y (x1),Z(x2)] �= 0. This is not
a problem since we are interested in tomography, not in the
simultaneous measurement of position and momentum.

(iv) The final density operator of the system can also
be exactly calculated, and it can be seen that 〈q〉T = 〈q〉0,

q2

T = 
q2
0 + 2b2

2; since the final system state is different
from the initial state, and depends on the initial states of
both the system and the apparatus, the no-cloning [14] and
no-hiding theorems [15] are respected.
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