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Weak quantum measurement (WM) is unique in measuring noncommuting operators and other peculiar,
otherwise-undetectable phenomena predicted by the two-state-vector-formalism (TSVF). The aim of this article
is threefold: (i) introducing the foundations of WM and TSVF, (ii) studying temporal peculiarities predicted by
TSVF and manifested by WM, and (iii) presenting applications of WM to single particles.
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I. INTRODUCTION

Superposition is the most intrinsic concept of quantum
mechanics, an emblem of its uniqueness. The state of an
unmeasured particle is not only unknown but indeterminate,
co-sustaining mutually exclusive states. Equally crucial and
ill-understood is “measurement” or “collapse” upon which one
of these states is realized, inflicting uncertainty on conjugate
variables. In view of these limitations, can there be any reason
to make quantum measurement less precise?

It is, surprisingly, weak measurement (WM) [1–16] that
overcomes these limitations as well as many others [2–5,7].
Moreover, the two-state-vector formalism (TSVF), within
which WM has been conceived, predicts several peculiar
phenomena occurring between measurements, which only
WM can reveal. Consider the question “What is the state of the
particle between two measurements?” Obviously, measuring
such a state would change it into a state upon measurement,
rendering the question meaningless. Not so with WM: The
state, almost without being disturbed, can be made known
with great accuracy, moreover manifesting a host of new
peculiarities [5].

Naturally, the TSVF claims are not unanimously accepted.
Critics (e.g., [17]), while acknowledging its novelty, urge
restating it in a simpler manner compatible with standard
quantum theory. This article aims at meeting this challenge
before proceeding to present some applications. Throughout
this paper we will employ three methods for critical evaluation
of WM’s strength:

(1) Slicing. Meticulously recording individual (single-
shot) WM outcomes, rather than a collective effect of many
particles’ interaction with one device, enables grouping
and summing up the outcomes according to later ordinary
(“strong”) measurement outcomes, revealing an unequivocal
weak-strong agreement.

(2) Specific superposition. WM of a random ensemble of
particles gives a normal distribution, which a skeptic may
regard as a mere blend of strong measurement outcomes. We
therefore employ a simple method of showing that WM is
indeed performing the following feat: With an ensemble of
particles sharing a very specific state, e.g., all split by a beam-
splitter with some arbitrary transmission coefficient, WM can
reveal this precise value (even unknown to the experimenter!)
while leaving nearly all particles superposed [6].

(3) Skeptical counterhypotheses. No discussion of TSVF,
WM, and their far-reaching bearings can be complete without
considering more prudent alternatives. Only after these are
shown to be deficient is further exploration worthwhile. We
will therefore give due hearing to such a generic alternative
against every advance of our work.

The outline of the article is as follows: Section II introduces
the basics of TSVF and WM in a visualized manner. Section III,
with a set of gedanken experiments, offers evidence for the
most striking predictions derived from TSVF, namely the
measurability of noncommuting variables during the same
time interval, and the existence of two time-symmetric state
vectors. Section IV presents an extension of WM for a
single-particle case.

II. FOUNDATIONS

As WM challenges our very concepts of quantum state and
measurement, briefly revisiting the relevant formalism is in
order.

A. Formalism

First let measurement be put in formal terms. Then, weak
measurement is attained by (i) loosening the coupling between
measured and measuring objects (compared to the uncertainty
of the measuring device), and (ii) summing up over many such
measurements.

1. Loose coupling

Using von Neumann interaction Hamiltonian as in Ref. [5],
a quantum measurement of the observable A is defined by the
interaction

Hint(t) = εg(t)APd, (1)

where the momentum Pd is canonically conjugated to Qd ,
representing the position of the pointer on the measuring
device. The coupling g(t) differs from zero only at 0 � t � T

and normalized according to∫ T

0
g(t)dt = 1, (2)

i.e., the measurement lasts no longer than T .
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In weak measurement, the coupling Hamiltonian of Eq. (1)
is small in comparison to the standard deviation of the pointer,
i.e., the measuring device is prepared in a symmetric quantum
state with standard deviation σ � ε and zero expectation.
Without loss of generality we can refer to state |�〉 in the
spatial representation (which serves as our measuring base)
described by a Gaussian function

�(x) = exp(−x2/2σ 2). (3)

The pointer movement in that case is connected to the weak
value of the operator A defined by [1]:

Aw = 〈ϕ|A|ψ〉
〈ϕ |ψ〉 , (4)

where |ψ〉 is the initial (preparation) state of the measured
system, and 〈ϕ| is the final state into which it is projected.

For a pre- and postselected ensemble described by the two-
state 〈ϕ||ψ〉, the time evolution of the total system (measured
plus measuring system) is [5]

〈ϕ| exp

(
−i

∫
Hintdt

)
|ψ〉|�〉 ≈ 〈ϕ |ψ〉(1 − iεAwPd )|�〉

(5)

to first order in εAW , using � = 1.
This time evolution of Eq. (5) results in

exp(−iεAwp)�(x) = �(x − εAw), (6)

i.e., a shift proportional to the weak value.
For example, when weakly measuring the spin z (described

by the Pauli matrix σ z) of an ensemble of spin-1/2 particles
prepared in the |σx = +1〉 (“x-up”) direction, with coupling
strength ε = λ/

√
N , the time evolution is determined by

W = exp

(
−i

∫
Hintdt

)
= exp

(
iλ

N∑
n=1

σ z
nPd/

√
N

)
, (7)

hence for a single measurement, the evolution of the spin state
becomes entangled with the pointer of Eq. (3) (when σ = 1):

1

FN

[|σz = +1〉e−(x−λ/
√

N )2/2 + |σz = −1〉e−(x+λ/
√

N)2/2]

≈ 1

FN

[(
1 − x2 − λ2

N

)
|σx = +1〉 + 2xλ√

N
|σx = −1〉

]
,

(8)

using the Taylor expansion of the exponent, where FN is a
normalization factor. To complete the weak measurement, the
pointer itself must be strongly measured. Then, the initial
state of the particle |σx = +1〉 changes to |σx = −1〉 by
only a small fraction ∼λ2/N inversely proportional to the
ensemble size. Statistically, this means that only ∼λ2 out of N

states have changed. When λ is small enough, this number of
“flipped” spins (changed from the initial “x-up” to “x-down”)
is negligibly small compared to the size of the ensemble [18].

Moreover, if the coupling strength is ε = λ/N rather than
ε = λ/

√
N , the weak measurement process will most likely

end without a single flip.

FIG. 1. Basic interferometers.

2. Multiple outcomes

It is on the ensemble level that weak measurement gains
the desired precision, overcoming its inherent inaccuracy to
the extent of even surpassing the limits of ordinary quantum
measurement. By the large numbers law, if xi (the differ-
ent measurement outcomes) are independent and identically
distributed random variables with a finite second moment,
their average goes to their expectation value: x̄n

a.s→ μ (that is,
the average of the random variables tends almost surely to
their expectation value). Furthermore, since the total variance
(noise) is proportional to N , the relative error diminishes.

It follows that N weak measurements, carried on an
ensemble of particles that share the same value measured,
amount to N strong measurements of that ensemble, while
almost never giving rise to collapse. Hence, should the weak
measurement be followed or preceded by a strong one, the
latter would always confirm the result of the former result on
the subensemble level.

B. Interferometry and the position-momentum tradeoff

Next let us put the above formulations in a physical context.
For this purpose we briefly revisit the foundations of ordinary
measurement before proceeding to WM.

Consider the Mach-Zehnder Interferometer (MZI)
[Fig. 1(a)]. It can be further simplified into its ancestor, the
Michelson interferometer [19]. Let the two solid mirrors reflect
the two split rays back to the beam-splitter (BS) [Fig. 1(b)].
As long as no measurement is made to find out which path
the photon took after hitting the BS, then (provided that the
difference between the half rays’ paths is an odd multiplication
of half their wavelength) the photon always returns back to
the source. Conversely, a “which path” measurement, even
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of the interaction-free type [26] which does not absorb the
photon, takes its toll: It indicates whether the photon was
transmitted or reflected, but now, upon returning to the BS, it
has a 50% probability to escape through the right-lower path
[Fig. 1(d)]. Interference and “which-path” are thus related by
the position-momentum uncertainty relation

�x�p � �

2
(9)

and similarly for other pairs of noncommuting operators. In
spin measurements, the BS is a Stern-Gerlach (SG) magnet. If
no which-path measurement is carried out before the mirrors
return the split wave function to the BS, the initial spin remains
undisturbed. Here too, the two spin directions are related by an
uncertainty relation analogous to Eq. (9). It is this uncertainty
tradeoff, apparently insurmountable, that WM challenges.

C. Measurement: None, ordinary, and weak

Based on the above setting, quantum measurement can
be introduced at the fundamental level, its weak version
following with equal simplicity. The position-momentum
tradeoffs underlying quantum interference measurement are
not trivial [21], so a few comments are in order.

The simplest measurement can be performed by the reflect-
ing mirrors. The splitting performed by the BS (preparation) is
reversible. The reflecting mirrors, which instead of being fixed
are attached to appropriate devices, complete the measuring
process: One of them is pushed by the photon, thereby
irreversibly recording its path.1

When, then, can measurement be considered weak? We can
compromise either the separation or the recording stage. Most
techniques take the former option, i.e., an incomplete separa-
tion between the two halves of the wave function [22,23]. In
what follows, for measuring interference, we prefer modifying
the second, recording stage. We therefore increase the momen-
tum uncertainty of the mirror in comparison to the momentum
exchanged with the photon, thereby making it harder to detect
the photon.

For such weakening, we must acknowledge a fact seldom
mentioned in textbooks: Quantum uncertainty relations hold
also for the measuring apparatus (see also [20]). Hence, with
each mirror attached to appropriate detectors, the following
holds.

1. No measurement

When the mirror has a well-defined position, its momentum
becomes proportionately uncertain. With a very heavy mirror,
observing its motion due to the photon’s push is impossible.
Hence no photon-mirror momentum transfer can be measured,
nor can “which-path” information be gained [21]. Because its
position is certain, the mirror does not change the optical path
of the photon, giving rise to interference.

1Notice the potential confusion to be avoided: we measure the
photon’s position (right or left) by the momentum it conveys to the
mirror.

2. Measurement

Conversely, the mirror can be extremely light, such that its
momentum is made 0 with high certainty. Any photon reflected
by it imparts to it some of its momentum, disclosing its right or
left position. However, in return for this momentum certainty
of the mirror, its position becomes uncertain, thereby creating
a difference between the two optical paths and ruining the
interference [Fig. 1(d)].

3. Weak measurement

Defining WM is now easy. Simply, give the mirror some
intermediate mass: Large enough to blur photon-mirror mo-
mentum exchanges and allow interference, yet small enough
for measuring some momentum transfer.

This measurement outcome is, of course, very unreliable,
as the momentum gain of the mirror is mainly a result of noise.
Summing over many outcomes (Sec. II A 2), however, enables
extracting the pure signal from the noise.

D. Technical issues

Two technical questions remain to be addressed, as follows.

1. One or two path measurements?

In an ordinary which-path measurement, it does not matter
whether we place one detector on one of the MZI paths or
two on both. As the reading of one detector suffices, the other
detector merely confirms it. Not so with WM: Placing two
detectors amounts to performing two WMs, which may agree
or disagree and thereby enhance or cancel one another. For this
reason and for the next technical issue, we opt for one detector.

2. “Single shot” or collective outcomes?

The sufficiently-many N weak measurement outcomes
can be obtained either (i) by the device interacting with all
particles, accumulating their additive effects into the final
outcome; or (ii) by the device being calibrated anew after each
measurement, each outcome then individually recorded, to be
summed up later under any desired grouping. In what follows
we employ (ii). First, the former method inflicts an artifact
in the form of slight entanglement between the collectively
measured particles. Second, the “single shot” is vital for the
slicing method, described next.

E. Validation: Slicing reveals agreement between weak and
strong measurements

To what extent, then, is WM reliable? The test is straight-
forward. Let a sufficiently large number of individual particles
undergo, one by one, a strong measurement followed by a weak
one of the same variable. In our case this would be a which-path
measurement of the photons within the interferometer. We thus
obtain two lists of R (right) and L (left) outcomes, written
precisely in parallel, to enable comparing the strong and weak
outcomes of each individual particle (Fig. 2). Each single weak
outcome is highly unreliable in itself, i.e., showing near 0
correlation with its strong counterpart. But now let us go to the
list of strong values and draw a tortuous binary line that divides
them, all Rs below the line and all Ls above. Next shift this
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FIG. 2. Weak measurements (gray detectors) followed or pre-
ceded by strong ones (black). The slicing procedure reveals the
agreement between weak and strong measurements.

line to the parallel list of weak values. This list is thereby also
divided. We now have two sublists of weak outcomes which,
upon being separately summed up, give robust agreement with
the corresponding sublists of strong R and L values:

nR ≈ nL ≈ N/2 → n↑above ≈ n↓above + λ2/2,n↓below

≈ n↑below + λ2/2, (10)

where nR / nL are respectively the number of right and left
strong outcomes, and n↓above/n↓below are the numbers of weak
“left” outcomes above and below the binary line. Similarly,
n↑above/n↑below are the numbers of weak outcomes denoting
“right,” above and below the binary line in Fig. 2. Here too, λ2

denotes the number of “flips” in each ensemble. Equalities in
Eq. (10) are reached with larger and larger ensembles.

How reliable is this result for each individual particle?
Very much: Suppose you see only the list of weak values,
and then obtain only the binary line which splits the unknown
list of strong values. This line contains a large amount of
information: “All outcomes above have one spin value and all
others have the other.” But this is not enough. Once this line
slices the weak list, and each sublist is separately summed
over, you know with certainty the spin value of each individual
particle. Upon being shown the strong list, your prediction is
affirmed.

F. Mixture counterhypothesis: Perhaps weak measurement is
only an ensemble of measured and unmeasured states

As stated in the Introduction, skeptical alternatives must
be considered against every unusual claim of TSVF. We
therefore conclude this section with close consideration of
such a rival account, fairly representative for its kind: Could
WM be merely the combined effect of a few fully measured
particles mixed within numerous others which remain totally
unmeasured? Apparently, this counterhypothesis relies on

sound reasoning. In terms of Eq. (8) above,
(1) the interference following weak position measurement

is not complete: λ2/2 photons still go to the right-hand “dark”
side;

(2) the slight deviation in the WM outcomes which later
agrees with the strong outcomes distribution also differs from
the expected random result by a mere λ2 particles;

(3) perhaps, then, it is only those λ2 individual “flipped”
photons that are responsible for the success of the weak
measurement.

It is the single shot method (Sec. II D) that enables a
clear-cut falsification for this alternative: Simply remove the
individual λ2 collapsed ones from the final summation. In
practice this can be done for half of the collapses, where
the photons escape through the right-hand side of the BS
[Fig. 1(d)], while the other half return to the source like
uncollapsed photons. We then expect a 50% reduction of the
weak-strong agreement. This, however, is never observed.

This proof will be presented also in Secs. III and IV
within the relevant settings, but the conclusion is already
straightforward: It is not the few collapsed photons traversing
the MZI which give the observed positions while all others
display interference. Rather, each photon undergoes a minute
change so as to perform the overall feat.

G. Gains and surprises: Measuring the “immeasurable”

So far, nothing seems to be surprising. The reliability of
WM, as confirmed by strong measurement, is ensured by the
large numbers law. A major surprise, however, is entailed by
the fact that WM is equally affirmed by an earlier or a later
strong measurement. This time symmetry brings the following
three characteristics.

1. A state between two measurements

Consider a photon undergoing two measurements of
noncommuting operators, e.g., polarization along the co-
planar directions α and β at t1 and t2 respectively. By the
uncertainty relations, repeating the α measurement at t3 is
no more bound to repeat the t1 outcome. Now consider the
intermediate time interval t1 < t < t2. What is the state of
the particle during this interval? It is obviously pointless to
perform a measurement, because it would yield a state upon
measurement! WM, however, enables turning the question into
a physical one. Figure 3 gives the temporal order of the result:
The intermediate state is equally affected by the past and future
measurements. A detailed example of this feat is given in
Sec. III.

2. Noncommuting variables of the same particle

The above effect entails an even more intriguing result:
When the two strong measurements are made on noncom-
muting operators, then, for the intermediate states, these two
operators can coexist with arbitrary precision. This will be
shown in detail in Sec. III.

3. Exotic mass and momentum

With the uncertainty principle thus subtly outsmarted and
ordinary temporal order strained, it is perhaps not surprising
that these between-measurements states revealed by WM
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FIG. 3. A particle undergoes three strong measurements (denoted
by s) of noncommuting spin operators σα and σβ . WM (denoted by
w) shows that during the intervals t2 > t > t1 and t3 > t > t2 the state
equally agrees, at the ensemble level, with the outcomes of the past
and future strong measurements.

display other physical oddities. Particles with odd mass or
momentum, at times being even negative, are predicted by
TSVF and amenable to isolation and measurement by appro-
priate slicing. Such effects are demonstrated elsewhere [30].

H. Efficiency: Revealing specific superposition

As stated in the Introduction, the strength of WM strength
can be demonstrated where the superposed state is a specific
one. Let the BS transmission coefficient arbitrarily differ from
the ordinary 0.5, say, 0.5 + η, where η is some small constant.
We thus have N photons sharing a unique state: The position
of each photon is superposed yet very precise, namely |ψ〉 =√

0.5 + η|R〉 + √
0.5 − η|L〉. Suppose further that we do not

know the value of η. Can we detect it?
WM, over time, can. With N = 106, λ = 3, for example,

the error in estimating η would be only 10−5 which is very
low. Apparently, this is merely the statistical distribution of
the flips of the N photons to either side. Not so: Upon the
photons’ returning to the BS, nearly all of them (N − λ2)
continue back to their source, indicating interference.

We can, conversely, remove the BS just after the upper
mirror has performed WM and prior to the return of the photon
to the BS [Fig. 4(b)]. With the slicing procedure (Sec. II E),
we can show that the two lower detectors indeed confirm the
weak “which path” measurement.

I. Summary: A deeper quantum realm

Standard quantum experiments rely on the basic premise of
statistics: For an ensemble of particles sharing a certain value,
measuring this value on the entire ensemble gives an expec-
tation value that reflects the value of each individual particle.
Quantum interference, for example, is always demonstrated
on a multitude of particles, yet it proves that each individual
particle has somehow passed through both slits. Similarly for
the Bell-inequality violation: Once proved on an ensemble of
pairs, it follows that each pair has been correlated due to a
nonlocal effect.

FIG. 4. (Color online) WM with a delayed-choice option. The
transmission coefficient of the BS arbitrarily differrs from 50%.
(a) Interference upon the split photon’s return to the BS proves that
the photon has remained superposed despite the weak which-path
measurement. (b) BS removed before the photon returns. The two
lower detectors confirm the weak measurement outcome.

WM extends this reasoning to states inaccessible to stan-
dard quantum measurement. Hence its results, no matter how
peculiar, are equally sound.

III. PAST AND FUTURE EXERTING EQUAL EFFECTS

We proceed to the central assumption of TSVF: The
physical values of a particle are equally determined by two
state vectors, proceeding in both directions of time.

The foundations of time-symmetric QM were laid in
Ref. [24]. The probability for measuring the eigenvalue cj of
an observable C, given the initial and final states |ψ(t ′)〉 and
〈�(t ′′)|, respectively, can be described by the time-symmetric
formula

P (cj ) = |〈�(t ′′)|cj 〉〈cj |ψ(t ′)〉|2∑
i |〈�(t ′′)|ci〉〈ci|ψ(t ′)〉|2 . (11)

A. Double MZI: Past and future effects crossing over

From the Michelson and MZ interferometers we proceed
to the double MZI (Fig. 5). An analogous experiment [4]
has recently demonstrated both “which-path” and interference
measurements within the double-slit experiment. A compre-
hensive discussion of this setting has been made in Ref. [16].

FIG. 5. (Color online) A double MZI. The photon goes through
the system unmeasured or measured while traversing MZI1 or MZI2,
respectively.
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FIG. 6. (Color online) Performing a sequence of strong-weak-
weak-strong measurements along a double MZI enables obtaining
which-path information as well as interference. Photons detected at
Lf or Rf belong to the subensembles passing through R1 or L1

respectively.

Let a photon pass through a system of two consecutive
MZIs (Fig. 5). It traverses MZI1 superposed over L1 and R1.
Next it goes through MZI2 only on R2 (the interference exit of
MZI1), finally exiting from MZI2 towards either Lf or Rf .

If, however, the photon is measured along MZI1, it takes
either L1 or R1. Consequently, it traverses MZI2 superposed
on both sides. Finally, while interference has been disturbed
upon the photon’s leaving MZI1, it re-emerges in the two final
measurements, whose Lf/Rf outcomes precisely match the
earlier R1/L1 ones. In other words, refraining from which-path
measurement on MZI2 gives again the path traversed in MZI1.

These familiar uncertainty tradeoffs [Eq. (9)] take a new
twist when the measurements are weak.

B. Validation by slicing

Let photons go one by one through the double MZI (Fig. 6),
undergoing weak and strong measurements, underlined and
boldfaced, respectively.

A strong measurement is initially performed by the very
emission of the photon from the bottom-left corner: It has
definite momentum. Second comes a weak measurement (gray
detector) of the photon’s path through MZI1, followed by
another weak measurement through MZI2. Finally, a strong
measurement is performed by the last two detectors on Lf

and Rf .
Have all measurements been strong, the uncertainty price

would be as described above. Being weak, however, the
measurement of MZI1 gives 50% L1:50% R1. Again, this
does not indicate that each particle has taken either path:
The next weak measurement, in MZI2, gives �0% L2:�100%
R2, preserving the initial strong “right-up” momentum!
Interference thus indicates that each photon has traversed
both L1 and R1, superposed.

The next surprise is brought by the final measurements.
Having obtained and recorded each weak outcome separately,
we now have the freedom to slice these outcomes into any
subensembles as we choose. So, upon obtaining the N final
Lf and Rf outcomes, we divide the earlier MZI1 outcomes
accordingly. Separately summing each subensemble, the total
50% L1:50% R1 now gives its place to a slight but significant
bias: #(L1) > #(R1) and #(L1) < #(R1) for each N/2. The initial
and final measurements’ outcomes match with P → 1 as the
ensemble grows.

Indeed, the weak values of the projection operators πL1 ≡
|L1〉〈L1| and πR1 ≡ |R1〉〈R1| can be found according to
Eq. (4):

〈πL1〉w = 〈Rf |πL1|L0〉
〈Rf |L0〉 = 0.5

0.5
= 1,

(12)

〈πR1〉w = 〈Rf |πR1|L0〉
〈Rf |L0〉 = 0

0.5
= 0,

in the case of perfect weak measurement. The affinity between
conditional probability and time-symmetric interpretations
was explained in Ref. [24] and indeed, these results can be
achieved using basic probabilistic rules.

The oddity of this result is obvious. The interference ob-
served in MZI2 is supposed to amount to quantum erasure [25],
namely, “forgetting” the which-path information of MZI1. Yet
the final measurement resurrects it.

In TSVF terms, however, this result is very natural once
we adopt its time-symmetric view: Just take the final measure-
ment Lf/Rf outcome (postselection) as the initial condition
(preselection) of the experiment and follow the consequences
backwards.

C. WM revealing an unknown transmission coefficient

This is the time for the second critical method mentioned
in the Introduction, namely using WM to reveal a specific
superposition unknown to the experimenter.

Let the three BSs of our double MZI have transmission
coefficients other than the ordinary 50%, and furthermore
different from one another. Of many interesting combinations
with potential technological applications [6], we take a simple
one (Fig. 7). Let BS1 be α% transparent, BS2 β%, and BS3

the latter’s inverse. This choice enables undoing the second
beam splitting, resurrecting the “which path” of MZI1. In
other words, both “which path” and interference are equally
available. Finally, suppose that the experimenter is oblivious
to all the BS coefficients. With WMs performed within MZI1

and MZI2, plus strong measurement performed after BS3, she
can reveal all coefficients with any desired accuracy, while
leaving nearly all photons superposed. Notice that this time
the confirmation of the WM’s results is more obvious than
slicing: the outcomes give straightforward correlation!

D. Mixture counterhypothesis reconsidered

As in Sec. II, this is the time to consider again the skeptical
account, to gain confidence in the results.

Here too, the mixture counterhypothesis (Sec. II F) appears
to be tempting by the interference being imperfect. Had the
MZI1 which-path measurement been strong, L2 would have
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FIG. 7. (Color online) The double-MZI with two arbitrary trans-
mission coefficients of its BSs. With the two weak and one final strong
measurement it is possible to reconstruct all the unknown coefficients,
even before slicing, demonstrating the method’s rigor.

been traversed by 50% photons. But it is weak, hence by
Eq. (8) approximately λ2/2 photons traverse L2. These are the
few photons that have been flipped by WM to this side. Indeed
Tollaksen et al. [16] showed that, in order for WM to work, the
L2 path must remain open. Blocking it (black square in Fig. 6)
would ruin the expected resurrection. Is it possible, then, that
these few flipped photons are responsible for the entire trick?

To rule out this account, our slicing method derives from it
the following prediction: Slicing the L2 outcomes according
to accurate (AC) and inaccurate (IN) outcomes, i.e., L1 − Rf
and R1 − Lf matches and mismatches, should give

P (R1|Lf ,AC) = λ2

2N
, (13)

P (R1|Lf ,IN ) = N − λ2

2N
, (14)

which can be straightforwardly predicted to fail. Suppose we
use only 1/10 of the outcomes. Since λ can be small, e.g., 2 or
3, it is quite likely that the N/10 particles do not include these
λ2 flipped photons. However, N/10 being still very large, we
expect the same resurrection of the L1/R1 outcomes within
these subensembles too.

E. Summary

TSVF presents two sets of results whose combination
seems to be prohibited by orthodox quantum theory, namely
observing interference while resurrecting the earlier which-
path information. This feat can be applied to any other pair
of noncommuting operators. Not surprisingly, the soundest
explanation for these effects is offered by the progenitor of
WM, TSVF: A state between two consecutive measurements
carries both their traces, past and future.

FIG. 8. A cyclic WM.

IV. WM OF A SINGLE PARTICLE

We now turn to an extension of WM which sounds
impossible by the very definition of this method: Can WM
be performed on a single particle?

A. Cyclic weak measurement

The strength of WM stems from the large numbers law:
Over a sufficient multitude of particles, it enables obtaining
almost full information about their quantum states without
flipping almost any of them. Does this require measuring
many particles or perhaps will many states of one particle
do? Following (Fig. 8) is a variant which shows the answer to
be in the affirmative.

Let a source emit a photon to a Michelson interferometer
and immediately be replaced by a bottom-left mirror detector.
Next allow the photon to bounce back and forth between the
lower and the upper mirror detectors, N times during period
2T, assuming negligible energy losses.

Denoting WM as in Eq. (1),

Hint = g(t)Pd |R〉〈R|/N, (15)

where |R〉〈R|, the measured operator, projects the state on the
right side, and Pd is canonically conjugated to Qd , representing
the pointer position on the measuring device. The coupling g(t)
is nonzero only for 0 � t � τ  T and normalized according
to ∫ τ

0
g(t)dt = 1. (16)

The measurement device is described by the Gaussian wave
function mentioned above.

According to the Ehrenfest theorem,

〈Q̇d〉 = 1

i�
〈[Qd,H ]〉 +

〈
∂Qd

∂t

〉
= g(t)〈|R〉〈R|〉

N
. (17)

Integrating for every integer 1 � m � N yields

Qd =
∫ (2m−1)T +τ/2

(2m−1)T −τ/2

g(t)〈|R〉〈R|〉
N

dt = 1

2N
. (18)

Hence, after N steps we get Qd = 1
2 , the expected value.

Thus, when N → ∞, the single-photon effect on the mirror
at every interaction goes to zero, but the overall effect is
measurable: A 1/2 unit of movement is transferred to each
of the upper mirrors. The position of the photon is thereby
measured, yet its superposition and resulting interference
effect remain intact.

Turning from the familiar WM performed on an ensemble
to the present one performed on a single particle, the success
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FIG. 9. Cyclic strong-plus-weak measurements, represented by
black and gray detectors, respectively, of unequal rays. Alice tries to
find the different intensities of the split beams without “collapsing”
her single photon.

probability (for a single particle) calculated in terms of
fidelity [18],

P (1) ≡ F = 1 − λ2

N2
, (19)

becomes crucial. The reason is that after N WMs, we are left
with a very high success probability:

P (N ) = (1 − λ2/N2)N −−−−→
N→∞

1. (20)

Taking into account practical considerations, namely, prevalent
reflection coefficient such as 1 − 10−7in dielectric mirror with
the appropriate optical coating, we find that N can reach
106 cycles with probability of 80%. Total success probability
would be ≈0.8e10−6λ2

.

B. Making the challenge harder: A single photon revealing
an unknown superposition without collapsing it

As with the double-MZI (Sec. II L), following is a case
where WM has a clear practical advantage over all other
measurements.

1. Measuring n coefficients with one photon

Alice has a beam-splitter that splits the beam into more
than two parts, n  N where N is the sufficient number of
weak measurement outcomes needed to be summed up for
WM (Fig. 9). The n parts, summing up to 100%, have unequal
intensities. Alice now asks Bob to measure all these varying
intensities of her BS with maximal precision. Bob has only
one photon, which, for sentimental reasons, he does not want
to waste or even ruin its superposition. Can he do that? Four
methods come into account:

(A) Classical. Out of the question. You can measure the
transmission coefficients of the beam splitters only with a
macroscopic light beam of known initial intensity, which you
later compare with those of the outgoing beams. All photons,
in order to be counted, must be absorbed or impart some of
their energy to the detector, changing their wavelength.

(B) Quantum mechanical. Impossible again. You can use
your photons one by one and count the number of those
detected in each outgoing beam, but even if you use mirror
detectors and the photons are not absorbed, their initial
superposition is lost.

(C) Weak measurement. Almost there. You can use photons
such that they remain superposed even after the measurement,
but they must be as many as possible.

FIG. 10. Making the strong measurement an interaction-free one
ensures the recalibration of the initial position, preventing an additive
“drift” of the wave function after each cycle.

(D) Cyclic weak measurement. Yes you can! For your
single photon use the setting in Fig. 9, i.e., make the process
cyclic: Place weak mirror detectors on the outgoing paths.
Then release your photon from its source and immediately
replace the source with another mirror detector. Now let your
photon bounce back and forth within the system. This way,
with strong and weak measurements cyclically alternating,
you may find all transmission coefficients with any desired
accuracy at a nonzero probability [see Eq. (16)].

2. Measuring the wave function of a single particle

Making this measurement approximately continuous, i.e.,
performed on a wave function spread over space, amounts to
measuring the entire wave function. A similar result, involving
protective measurement of a single particle, has been presented
by Aharonov and Vaidman [9]. They have used a process which
resembles the one we described in Sec. II O, where instead of
measuring weakly in the position representation, an adiabatic
measurement has been performed in the energy representation.

C. IFM comes for perfection

Single-particle WM is extremely vulnerable to collapse. As
discussed in Refs. [8,18], the rate of interference disturbance
after each measurement is λ2/N , leading to the success
probability of Eq. (16).

It is possible however to minimize this risk by turning the
strong measurement into an interaction-free type [26]. Within
this setting, IFM performs in fact a quantum Zeno effect [27]:
At each cycle it absorbs the small undesired part of the
wave function “leaking” to the right-hand detector (Fig. 10),
preventing the accumulation of such leaks.

D. A single-particle double MZI

Finally we apply the single-photon version to the double-
MZI (Sec. II J). Let our single photon bounce back and forth
through that system (Fig. 11). Let the bottom solid mirror
act also as an ordinary detector in the sense of Sec. II C. In
contrast, let the two top solid mirrors perform WMs.

Here again, let the two BSs have arbitrary transmission
coefficients as in Sec. L (Fig. 7). The rigor and reliability of all
the WMs along this setting is immediately revealed by their
correspondence with these BS coefficients.

And here again, these pairs of measurements, manifesting
interference due to momentum left undisturbed, do not disturb
the position measurement taking place at the end of each cycle.

052105-8



FOUNDATIONS AND APPLICATIONS OF WEAK QUANTUM . . . PHYSICAL REVIEW A 89, 052105 (2014)

FIG. 11. (Color online) A single-photon version of the double
MZI experiment.

E. Mixture counterhypothesis reexamined

This time, dismissing the mixture counterhypothesis is
even more straightforward: This hypothesis explains away
the correlations as spontaneous flips. In the present case,
should our single particle flip even once during the cyclic
measurements, it has a 50% chance of failing to return to
its original position. However, according to Eq. (16), success
probability goes to 100%, i.e., no flips expected.

No-cloning [28,29] and causality are not violated either,
because of the limited precision of the weak measurement and
the its long duration. See also [9].

F. Summary: Probing the nature of the wave function

Is the wave function a mere mathematical construct or
a unique physical entity with objective existence? So far
the wavelike properties of quantum phenomena have been
demonstrated only post hoc, such as interference effects
that only leave traces but can never be observed in real
time. With WM, it seems that even this barrier is no longer
insurmountable.

V. CONCLUSIONS

In this paper we reviewed the foundations of WM and TSVF
and presented applications of both theory and technique.

In practice, WM involves highly delicate technical issues.
At the conceptual level, however, it should first be studied
with the simplest settings possible, even gedanken, in order to
fully appreciate its rigor and applicability. On this level, WM
is easily shown to accurately indicate the state of a particle
without paying the price normally exacted by the uncertainty
principle, by measuring a particle during the time interval
between two measurements.

This method can be broadened so as to hold even for a single
particle, thereby enabling measurements of states considered
unreachable even for weak measurement as used so far.

In all these cases the particle is shown to be equally affected
by the past and the future measurements. This effect is bound
to produce even more intriguing phenomena, to be presented
in consecutive articles [30,31].
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