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Interdimensional effects in systems with quasirelativistic dispersion relations
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We examine Green’s functions and densities of states for bosons which move in materials with interfaces.
Motivated by the interest in materials with quasirelativistic dispersion relations, we demonstrate that modification
of Klein-Gordon-type contributions to the Hamiltonian in an interface yields Green’s functions and densities
of states which exhibit two-dimensional behavior at high energies. Three-dimensional behavior in a low-energy
range is recovered if the shift of the mass parameter in the interface is small.
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I. INTRODUCTION

Low-dimensional models of quantum mechanics or electro-
dynamics are commonly employed to describe the behavior of
electrons, photons, or quasiparticles like phonons and magnons
in layers or wires with confining properties. Low-dimensional
densities of states are also frequently used to estimate, e.g.,
the availability of carriers for charge or heat transport in
these structures. This begs the question for analytic models
which describe the transition from low-dimensional to three-
dimensional behavior for (quasi-)particles in the presence of
low-dimensional substructures.

Substructures can induce low-dimensional propagation or
transport properties through the generation of potential wells,
and it is easy to derive, e.g., the density of states in the energy
scale for particles in a thin quantum well with binding energy
B = �

2κ2/2m and penetration depth κ−1 of the bound states
into the substrate,

H = p2

2m
− �

2κ

m
δ(z − z0). (1)

The density of states in this system is a superposition of the
two-dimensional and three-dimensional density of states [1],

�(E,z0) = �(2mE + �
2κ2)κ

m

2π�2
+ �(E)

m

2π2�3

×
[√

2mE − �κ arctan

(√
2mE

�κ

)]

= κ�d=2(E + (�2κ2/2m)) + �d=3(E)

×
[

1 − �κ√
2mE

arctan

(√
2mE

�κ

)]
. (2)

Here

�d (E) = �(E)

√
m

2π

d √
E

d−2

�(d/2)�d
(3)

is the density of states (per spin or helicity state) for
nonrelativistic particles of mass m in d space dimensions,
and the correction factor 1 − (�κ/

√
2mE) arctan(

√
2mE/�κ)

smoothly turns on the three-dimensional contribution to the
density of states. The analytic result (2) confirms the intuitive
assumption that bound states which can move along a quantum
well contribute to a two-dimensional density of states, which
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is made dimensionally correct in three dimensions through
scaling with the inverse penetration depth κ . Note that E +
(�2κ2/2m) = �

2k2
‖/2m is the kinetic energy of the particles

moving along the well with momentum �k‖.
On the other hand, low-dimensional structures in materials

can also modify the propagation properties of particles through
differences in effective mass for motion in a layer and in the
surrounding substrate, and it is not as intuitively clear as for
quantum wells how this should affect the density of states.
This problem has been analyzed in [2] under the assumption
of parabolic band approximations for motion in a layer and
in the surrounding substrate or bulk material. The assumption
of parabolic band approximations leads to interdimensional
Schrödinger-type Hamiltonians of the form

H =
∫

d3x
�

2

2m
∇ψ†(x) · ∇ψ(x)

+
∫

d2x‖
�

2

2μ
∇‖ψ†(x‖,z0) · ∇‖ψ(x‖,z0). (4)

Here x = (x‖,z) splits vectors into components parallel and
perpendicular to an interface at z = z0. The parameter μ has
the dimension of mass per length, and the coefficient �

2/2μ

parametrizes the change in effective mass due to motion in
the interface or layer at z = z0. Equation (4) would describe
the Hamiltonian of the particles in second quantization. The
corresponding first quantized Hamiltonian is

H = p2

2m
+ |z0〉〈z0|

p2
‖

2μ
. (5)

These operators yield analytic results for Green’s functions and
densities of states which interpolate between two-dimensional
behavior at small distances or high energies and three-
dimensional behavior for large distances or small energies
even without attractive potential wells [2].

Motivated by the recent interest in systems with
quasirelativistic dispersion relations, we would like to
generalize the study of Hamiltonians with linear combinations
of two-dimensional and three-dimensional kinetic terms to the
case of interdimensional Klein-Gordon or Dirac-type terms.
Materials with quasirelativistic properties which are under
intense scrutiny include graphene [3,4], topological insulators
from time-reversal invariance [5] or crystal symmetry [6],
and topological Dirac semimetals [7,8]. However, photons
and low-energy acoustic phonons also provide systems with
relativistic or approximately quasirelativistic dispersion
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relations in materials. In the present study we will focus on
the combination of two-dimensional and three-dimensional
Klein-Gordon terms. Our findings generalize the results
from the earlier studies of interdimensional Schrödinger-type
Hamiltonians (4) and reproduce those results in the
“nonrelativistic” limit.

The layout of the paper is as follows. We derive the
relativistic generalization of the well-known relation

�(E,x) = − 1

π
Im〈x|G(E)|x〉 = 2m

π�2
Im〈x|G(E)|x〉 (6)

between the local density of states �(E,x) and the energy-
dependent Green’s operator

G(E) = 1

E − H + iε
= −2m

�2
G(E)

in Sec. II. The interdimensional Klein-Gordon system is
introduced in Sec. III. We calculate in particular the Green’s
functions and the density of states in the interface and
analyze under which circumstances we find two-dimensional
or three-dimensional behavior in the system. Our conclusions
are summarized in Sec. IV. The technical details of the
calculation of the Green’s function in the presence of a layer
with Klein-Gordon-type contributions to the Hamiltonian are
described in the Appendix.

II. GREEN’S FUNCTIONS AND DENSITIES OF STATES IN
RELATIVISTIC SYSTEMS

We wish to generalize the derivation of relation (6) to the
relativistic case. The relativistic scalar Green’s operator is, with
the convention η00 = −1 for the Minkowski metric, given by

G = �
2

p2 + m2c2 − iε
. (7)

This yields in plane wave states with wave vectors k = (k0,k)
the momentum space Green’s function

〈k|G|k′〉 = δ(k − k′)
k2 + (mc/�)2 − iε

.

We can write the relativistic Green’s operator G (7) with the
relativistic Hamiltonian H = c

√
p2 + (mc)2 in the form

G = − �
2c2

E2 − H 2 + iε

= −�
2c2

2E

(
1

E − H + iε
+ 1

E + H − iε

)
. (8)

Here E = cp0 is still an operator, but we can make the
transition to the energy-dependent Green’s operator G(E) with
classical variable E = �ck0 through |k〉 = |k〉 ⊗ |k0〉 and

〈k0|G|k′0〉 = G(E)δ(k0 − k′0). (9)

Use of the Sokhotsky-Plemelj relation then yields

ImG(E) = π�
2c2

2E
[δ(E − H ) − δ(E + H )]

= π�
2c2

2E

∑∫
n,ν

[δ(E − En) − δ(E + En)]|n,ν〉〈n,ν|,

(10)

where
∑∫

refers to integration or summation over continuous
or discrete quantum numbers, respectively.

Equation (10) yields the sought-after relation between
relativistic scalar Green’s functions and densities of states,

Im〈x|G(E)|x〉 = π�
2c2

2E
[�(E) − �(E)]. (11)

Here �(E) and �(E) denote the densities of states of particles
of energy E and of antiparticles (or holes) of energy E = −E,
respectively.

We can test our result in the free (anti-)particle case where
the density of states per helicity state in d space dimensions is

�̂(E) = �(E) + �(E)

= 2�(E2 − m2c4)

(2
√

π�c)d�(d/2)
|E|

√
E2 − m2c4

d−2
. (12)

The x representation 〈x|G(E)|x′〉 = G(x − x′,ω) of the
energy-dependent relativistic scalar Green’s function in d

space dimensions can be found, e.g., in Appendix I of Ref. [1],

G(x,ω) = �(mc2 − �|ω|)
√

2π
d

(√
m2c4 − �2ω2

�cr

) d−2
2

×Kd−2
2

(√
m2c4 − �2ω2

r

�c

)

+ i
π

2

�(�|ω| − mc2)
√

2π
d

(√
�2ω2 − m2c4

�cr

) d−2
2

×H
(1)
d−2

2

(√
�2ω2 − m2c4

r

�c

)
. (13)

The functions Kν(z) and H (1)
ν (z) are modified Bessel functions

and Hankel functions of the first kind, respectively, and we
follow the definitions and conventions from [9].

The modified Bessel function Kν(z) with the real argument
is real, and the Hankel function satisfies [9]

lim
z→0

ReH (1)
ν (z) = (z/2)ν

�(ν + 1)
.

Substitution into (13) for r = |x − x′| → 0 yields

Im〈x|G(E)|x〉 = π�
2c2�(E2 − m2c4)

(2
√

π�c)d�(d/2)

√
E2 − m2c4

d−2
,

in agreement with Eqs. (11) and (12).

III. INTERDIMENSIONAL EFFECTS WITH
QUASIRELATIVISTIC BOSONS

Relativistic wave equations imply a dispersion relation

E2 = c2p2 + m2c4. (14)

In the band structure for electrons, photons or phonons
in materials this can be realized through the emergence
of Dirac cones E2 = c2p2 with group velocity or sound
velocity c. Indeed, E = ±cp is the case of interest for
Dirac semimetals. However, we will see that models with
Klein-Gordon-type mass terms (14) in interfaces or in the
substrate are also solvable, and inclusion of mass terms allows
us to connect to the results with parabolic band approximations
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(i.e., Schrödinger-type models) through the “nonrelativistic
limit” p 	 mc. Furthermore it is known that the topolog-
ical insulator Bi1−xSbx has massive Dirac fermions in the
bulk [10,11], and the existence of massive Dirac hyper-
boloids in the bulk of the topological crystalline insulator
Pb1−xSnxSe [12] has also recently been confirmed [13].
Similar results are expected for Pb1−xSnxTe.

The mass term could also arise through lifting the degener-
acy at p = 0 such that E2 = c2p2 near p = 0 becomes

E2 = c2p2 + 2
g, (15)

where 2g parametrizes the energy gap between the resulting
Dirac hyperboloids after distortion of the discrete symmetry
and c is the group velocity for cp 
 g . Dirac points in
materials are usually protected by discrete symmetries [5–7],
and breaking the discrete symmetries while preserving the
continuous symmetries of the Dirac cones should yield Dirac
hyperboloids. We recover the mass from expansion of E near
p = 0,

E � ±
(

g + c2p2

2g

)
, (16)

which confirms that m = g/c
2 is the effective mass parame-

ter for the Dirac hyperboloids (15). The direct proportionality
between effective mass and energy gap for perturbed Dirac
cones might not appear intuitive from a physical point of view,
but it is a simple consequence of basic geometry: Perturbing a
Dirac cone for given asymptotic velocity parameter c � E/p

requires higher band curvature and therefore smaller effective
mass for smaller energy gap.

We emphasize that this model can only be used in an energy
and momentum range around Dirac points in semimetals or on
the surface of topological insulators or around approximate
Dirac points in narrow-gap semiconductors. For example, in
Pb1−xSnxTe with x � 0.3 the results in [12,14] indicate that
(perturbed) Dirac cones can be used in the momentum range up

to k = 0.1 Å
−1

and in the energy range E = ±400 meV
above and below the Fermi level. The gap parameter in the
bulk is g � 95 meV at 4.2 K, and the velocity parameter is
c � 2 × 10−3c0 = 600 km/s, where c0 is the vacuum speed
of light. These parameters correspond to a mass parameter
m = 24 keV/c2

0 in the quasirelativistic dispersion relation (14).
We are concerned in the following with the simplest possible
quantum-mechanical representation of coexistence of Dirac
cones or hyperboloids of different dimensionality which
neglects spin. As such, the results directly apply to systems
with scalar quasirelativistic excitations (e.g., acoustic phonons
in symmetric compounds) or systems where spin-orbit ef-
fects are negligible. However, Dirac operators are roots of
Klein-Gordon operators, and therefore quasirelativistic spin
states also satisfy Klein-Gordon equations. This implies that
our observations about transitions from three-dimensional
behavior in an interface at low energies to two-dimensional
behavior at high energies will also persist for systems with
quasirelativistic fermions. We will use the parameters from
Pb1−xSnxTe for illustrations of the transition from three-
dimensional to two-dimensional behavior.

The simplest quantum-mechanical model for particles
with dispersion relation (14) is a Klein-Gordon field with

Hamiltonian density

H = �φ̇†φ̇ + �c2∇φ† · ∇φ + m2c4

�
φ†φ. (17)

The normalization is chosen for convenience with second
quantization. The Lagrange density corresponding to (17)
yields canonical commutation relations in x space,

[φ(x,t),φ̇†(x′,t)] = iδ(x − x′),
(18)

[φ†(x,t),φ̇(x′,t)] = iδ(x − x′),

and the decomposition in terms of k-space annihilation and
creation operators is

φ(x,t) = 1
√

2π
3

∫
d3k√
2ωk

{a(k) exp [i(k · x − ωkt)]

+ b†(k) exp [−i(k · x − ωkt)]}, (19)

[a(k),a†(k′)] = δ(k − k′), [b(k),b†(k′)] = δ(k − k′).

The frequency in Eq. (19) is

ωk = c
√

k2 + (m2c2/�2).

From Eq. (17) we can infer that an interdimensional
Hamiltonian for quasirelativistic bosons has the form

H = 1

�

∫
d2x‖

∫
dz[�2φ̇†(x‖,z,t)φ̇(x‖,z,t)

+ �
2c2∇φ†(x‖,z,t) · ∇φ(x‖,z,t)

+m2c4φ†(x‖,z,t)φ(x‖,z,t)]

+ �

�

∫
d2x‖[�2c2∇‖φ†(x‖,z0,t) · ∇‖φ(x‖,z0,t)

+m2c4φ†(x‖,z0,t)φ(x‖,z0,t)], (20)

where �m2 ≡ �(m2) parametrizes the product of interface
thickness and change of the bulk gap parameter m2 due to
motion in the interface at z0. In models with quasirelativistic
dispersion relations, the length scale � also parametrizes the
change in kinetic energy from different wave-function curva-
tures in the interface. This is different from models like (1)
where an infinitely thin attractive quantum well generates
bound states with a penetration depth κ−1 into the surrounding
substrate. In nonrelativistic models the contributions from
change in mass and wave-function curvature are always
combined in a single term.

The interface contribution in (20) only affects mass and
spatial gradient terms, and therefore the x-space commutation
relations (18) are unchanged. Substitution of the Hamilto-
nian (20) into the iterated Heisenberg equation

∂2

∂t2
φ(x,t) = − 1

�2
[H,[H,φ(x,t)]] (21)

therefore yields an equation of motion [∂2 = ∇2 − (∂t/c)2]

∂2φ − m2c2

�2
φ + �δ(z − z0)

(
∇2

‖φ − m2c2

�2
φ

)
= 0.
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The corresponding interdimensional Green’s function has to
satisfy

�δ(z − z0)

(
∇2

‖ − m2c2

�2

)
〈x|G|x ′〉

+
(

∂2 − m2c2

�2

)
〈x|G|x ′〉 = −δ(x − x ′). (22)

The Green’s function 〈x|G|x ′〉 is related to the energy-
dependent Green’s function 〈x|G(E)|x′〉 through [see (9)]

〈k0,x|G|k′0,x′〉 = 〈x|G(E)|x′〉δ(k0 − k′0)|E=�ck0 (23)

and

〈x|G|x ′〉 = 1

2π

∫
dk0

∫
dk′0 〈k0,x|G|k′0,x′〉

× exp[i(k′0x ′0 − k0x0)]. (24)

The equivalent equation to (22) for 〈x|G(E)|x′〉 is therefore

�δ(z − z0)

(
∇2

‖ − m2c2

�2

)
〈x|G(E)|x′〉

+
(

∇2 + E2

�2c2
− m2c2

�2

)
〈x|G(E)|x′〉

= −δ(x − x′). (25)

Equations (22) and (25) can be solved analytically for z = z0

and E � mc2. The energy-dependent Green’s function in x
representation is found in the Appendix in the form of a Hankel
transform,

〈x|G(E)|x′〉 = 1

2π

∫ ∞

0
dk‖ k‖J0(k‖|x‖ − x′

‖|)

×〈z|G(k0,k‖)|z′〉|E=�ck0 , (26)

where

〈z|G(k0,k‖)|z′〉 = i
�[(k0)2 − k2

‖ − (mc/�)2]

2
√

(k0)2 − k2
‖ − (mc/�)2

{
exp[i

√
(k0)2 − k2

‖ − (mc/�)2|z − z′|]

− i�[k2
‖ + m2(c/�)2]

2
√

(k0)2 − k2
‖ − (mc/�)2 + i�[k2

‖ + m2(c/�)2]
exp[i

√
(k0)2 − k2

‖ − (mc/�)2(|z − z0| + |z′ − z0|)]
}

+ �[k2
‖ + (mc/�)2 − (k0)2]

2
√

k2
‖ + (mc/�)2 − (k0)2

{
exp[−

√
k2
‖ + (mc/�)2 − (k0)2|z − z′|]

− �[k2
‖ + m2(c/�)2]

2
√

k2
‖ + (mc/�)2 − (k0)2 + �[k2

‖ + m2(c/�)2]
exp[−

√
k2
‖ + (mc/�)2 − (k0)2(|z − z0| + |z′ − z0|)]

}
.

The Green’s function in the interface is

〈z0|G(k0,k‖)|z0〉 = �[(k0)2 − k2
‖ − (mc/�)2]

1

�[k2
‖ + m2(c/�)2] − 2i

√
(k0)2 − k2

‖ − (mc/�)2

+ �[k2
‖ + (mc/�)2 − (k0)2]

�[k2
‖ + m2(c/�)2] + 2

√
k2
‖ + (mc/�)2 − (k0)2

.

This yields with (11) the following expression for the density of states in the interface (with E = −E = �ck0):

�(E,z0) − �(E,z0) = E�(E2 − m2c4)

2(π�c)2�

[
arctan

(
�
√

E2 − m2c4 +
√

g(E,�,m,m2)

�c

)

+ arctan

(
�
√

E2 − m2c4 −
√

g(E,�,m,m2)

�c

)]
+ E�(E2 − m2c4)

4π2�c�
√

g(E,�,m,m2)
ln

f−(E,�,m,m2)

f+(E,�,m,m2)
(27)

with

g(E,�,m,m2) = �2(E2 − m2c4 + m2c4) − �
2c2

and

f±(E,�,m,m2) = 2�(E2 − m2c4) + �m2c4

± 2
√

E2 − m2c4
√

g(E,�,m,m2).

From this result and Eq. (27) we can infer the particle
density of states for E > mc2 and the antiparticle or hole
density of states in the interface for E = −E < −mc2. The
result does not imply that the bulk energy gap of 2mc2 between
the particle and hole states is preserved in the interface because
the Green’s function 〈x|G(E)|x〉 only tells us the difference
between the particle and hole densities of states.
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The right-hand side of Eq. (27) remains real also for
g(E,�,m,m2) < 0. If we wish to express �(E) − �(E)
explicitly in terms of real functions in this case we can use
that for x � 0,y � 0,

1

i
ln

(
x + iy

x − iy

)
= 2 arctan(y/x), (28)

and

arctan(x + iy) + arctan(x − iy)

= arctan

(
x

1 + y

)
+ arctan

(
x

1 − y

)
. (29)

This yields the representation

�(E,z0) − �(E,z0) = E�(E2 − m2c4)

2(π�c)2�

[
arctan

(
�
√

E2 − m2c4

�c +
√

−g(E,�,m,m2)

)
+ arctan

(
�
√

E2 − m2c4

�c −
√

−g(E,�,m,m2)

)]

+ E�(E2 − m2c4)

2π2�c�
√

−g(E,�,m,m2)

[
arctan

(
�
√

E2 − m2c4

�c +
√

−g(E,�,m,m2)

)
−arctan

(
�
√

E2 − m2c4

�c −
√

−g(E,�,m,m2)

)]
.

(30)

Equations (27)–(30) use 0 � arctan(x) < π . Otherwise,
we would have to add π to every inverse tangent function
with negative argument, arctan(x) → arctan(x) + π�(−x), to
properly reflect the continuity and smoothness properties of the
Green’s function from which �(E,z0) − �(E,z0) was derived.

Equation (30) also applies in the limit � → 0 and yields

[�(E,z0) − �(E,z0)]�→0 = �(E2 − m2c4)
E

√
E2 − m2c4

2π2(�c)3

= [�(E) − �(E)]d=3, (31)

as expected. The three-dimensional limit (31) can also be
derived for low energies

|m2c4| 	 E2 − m2c4 	 �
2c2/�2 (32)

if the magnitude of the shift parameter for the gap in the
interface is small.

On the other hand, the density of states in the interface
shows two-dimensional behavior up to logarithmic corrections
if

E2 − m2c4 
 (�c/�)2 − m2c4. (33)

This yields for the particle density of states (E > mc2)

�(E,z0)|(33)

� E

4π (�c)2|�| − E√
E2 − m2c4

ln(2|�|√E2 − m2c4/�c)

2π2�c�2

= �d=2(E)

2|�| − E√
E2 − m2c4

ln(2|�|√E2 − m2c4/�c)

2π2�c�2
.

(34)

The resulting density of states for length parameter � = 3
nm, bulk gap parameter g = 95 meV, and m2c4 = 0 along
with the limiting three-dimensional and two-dimensional
asymptotic cases is illustrated in Figs. 1 and 2, respectively.
Note that the interface can also affect the density of states
without a change in effective mass due to a change in wave
function curvature contributions to the energy density of
particles in the interface.

Figure 3 illustrates the result for gap shift m2c4 < −2
g .

Negative gap shift m2c4 in the interface generates a finite
offset

�(g,z0)|m2<0 = g

2π�2c2�

(
1 − �c√

�2c2 − �2m2c4

)

due to the generation of gap states.
The Green’s function 〈x|G(E)|x′〉 and the results ensuing

from it reproduce the results for interdimensional Schrödinger
systems in the nonrelativistic limit 0 < K = E − mc2 	 mc2

and for m2 = 0 (our � here corresponds to 2� in [2], and the
densities of states there include an extra spin factor of 2 because
the discussion explicitly referred to electrons). However,
the nonrelativistic limit of the Hamiltonian (20) is richer
because parabolic band approximation in the bulk does not

FIG. 1. (Color online) The density of states in the interface for
� = 3 nm, g = 95 meV, and m2c4 = 0. The three-dimensional
density of states is included in blue (upper line) for comparison.
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FIG. 2. (Color online) The density of states in the interface for
� = 3 nm, g = 95 meV, and m2c4 = 0. The corresponding two-
dimensional limit plus logarithmic correction (34) is included in blue
(upper line) for comparison.

constrain the low-dimensional m2 term from quasirelativistic
dispersion in the interface.

The nonrelativistic approximation for the complex scalar
field is [1]

φ(x,t) �
√

�

2mc2
ψ(x,t) exp

(
−i

mc2

�
t

)
. (35)

This approximation is also relevant for the present investiga-
tion since the particles are nonrelativistic from the point of
view of bulk motion if 0 < E − g 	 g .

FIG. 3. The density of states in the interface for � = 3 nm,
E > g = 95 meV, and gap shift m2c4 = −2

g .

Substitution of (35) into (20) and neglect of the usual
subleading terms for nonrelativistic bulk motion yields a
Hamiltonian,

H =
∫

d2x‖
∫

dz

[
�

2

2m
∇ψ+(x‖,z) · ∇ψ(x‖,z)

+mc2ψ+(x‖,z)ψ(x‖,z)

]

+ �

∫
d2x‖

[
�

2

2m
∇‖ψ+(x‖,z0) · ∇‖ψ(x‖,z0)

+ m2c2

2m
ψ+(x‖,z0)ψ(x‖,z0)

]
, (36)

where we reduced to Schrödinger picture operators.
Note that the m2 term in the nonrelativistic approximation

for bulk motion does not reduce to a parabolic band approx-
imation with effective mass m∗ = m∗(m,m2) for motion in
the interface. Removal of the bulk rest energy term can be
accomplished in the standard way at the expense of removal
of the phase factor exp(−imc2t/�) from the wave function
or Heisenberg picture operator ψ(x,t). However, using a
two-dimensional Schrödinger Hamiltonian for the interface
term requires that the magnitude of the contribution from
the quasirelativistic m2 term is small compared to the
Schrödinger term involving the gradients of the operators.
In terms of the kinetic energy K = E − mc2 	 mc2, inter-
ference of the m2 term with a parabolic approximation for
both the interface and the bulk manifests itself in the fact that
the speed c remains in all expressions for the densities of
states in the form 2mK + m2c2, while all the other powers
of c cancel. In terms of the kinetic energy, the requirement of
simultaneous parabolic approximation in the bulk and in the
interface is

|m2|c2

m
	 K 	 mc2, (37)

i.e., a nonrelativistic kinetic-energy domain (37) exists if the
modification of the energy gap in the interface is much smaller
than the bulk gap parameter, |m2| 	 m2.

IV. CONCLUSIONS

We have calculated the Green’s function and the density
of states for quasirelativistic bosons which are moving in the
presence of a thin interface under the assumption that motion
in the interface affects mass and kinetic contributions to the en-
ergy of the bosons. The general analytic results for the density
of states �(E,z0) in the interface are displayed in Eqs. (27)
and (30). We have found that �(E,z0) always approaches
two-dimensional behavior ∼E for high energies (34). On
the other hand, it approaches the three-dimensional behavior
∼E

√
E2 − m2c4 displayed in Eq. (31) in a low-energy limit

but only if the shift (m2) of the gap parameter in the interface
satisfies the constraint �2|m2| 	 �

2/c2. Since |�| should
scale with the thickness of the interface, decreasing interface
thickness in systems with quasirelativistic dispersion relations
and sufficiently small |m2| should open up an energy range
with three-dimensional behavior. Equation (37) explains when
this also complies with a parabolic approximation in the bulk.
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The results in the interface are analytic and in full
compliance with the corresponding parabolic results. They
confirm that the presence of an interface which only affects
propagation properties of particles but does not necessarily
exert an attractive potential on the particles still induces
two-dimensional behavior in the high-energy limit.
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APPENDIX: SOLUTION OF EQ. (22)

Substitution of the Fourier representation

〈x|G|x ′〉 = 1
√

2π
7

∫
d2k‖

∫
d2k′

‖

∫
dk0

∫
dk′0

∫
dk⊥〈k0,k‖,k⊥|G|k′0,k′

‖,z
′〉

× exp[i(k‖ · x‖ − k′
‖ · x′

‖ − k0x0 + k′0x ′0 + k⊥z)]

into Eq. (22) yields

�

2π

∫
dκ⊥ exp[i(κ⊥ − k⊥)z0]

(
k2

‖ + m2c2

�2

)
〈k0,k‖,κ⊥|G|k′0,k′

‖,z
′〉 +

(
k2

‖ + k2
⊥ − (k0)2 + m2c2

�2

)
〈k0,k‖,k⊥|G|k′0,k′

‖,z
′〉

= exp(−ik⊥z′)√
2π

δ(k‖ − k′
‖)δ(k0 − k′0).

Substitution of

〈k0,k‖,k⊥|G|k′0,k′
‖,z

′〉 = 〈k⊥|G(k0,k‖)|z′〉δ(k‖ − k′
‖)δ(k0 − k′0)

then yields(
k2

‖+k2
⊥−(k0)2 + m2c2

�2

)
〈k⊥|G(k0,k‖)|z′〉+ �

2π

∫
dκ⊥ exp[i(κ⊥ − k⊥)z0]

(
k2

‖ + m2c2

�2

)
〈κ⊥|G(k0,k‖)|z′〉 = exp(−ik⊥z′)√

2π
.

This implies that 〈k⊥|G(k0,k‖)|z′〉 must have the form

exp(ik⊥z0)〈k⊥|G(k0,k‖)|z′〉 = 1

(mc/�)2 + k2 − iε

(
exp[ik⊥(z0 − z′)]√

2π
+ f (k0,k‖,z′)

)
, (A1)

where the factor f (k0,k‖,z′) has to satisfy

�

2π

∫
dk⊥

(
exp[ik⊥(z0 − z′)]√

2π
+ f (k0,k‖,z′)

)
m2(c/�)2 + k2

‖
(mc/�)2 + k2 − iε

+ f (k0,k‖,z′) = 0. (A2)

The pole shift −iε in the denominator is such that Eq. (A1) reproduces the retarded free Green’s function for � = 0.
For the evaluation of the integral we observe∫

dk⊥
2π

exp(ik⊥z)F (k⊥)

k2
⊥ + k2

‖ − (k0)2 + (mc/�)2 − iε

= i�(z)�[(k0)2 − k2
‖ − (mc/�)2]F (

√
(k0)2 − k2

‖ − (mc/�)2)
exp(i

√
(k0)2 − k2

‖ − (mc/�)2z)

2
√

(k0)2 − k2
‖ − (mc/�)2

+ i�(−z)�[(k0)2 − k2
‖ − (mc/�)2]F (−

√
(k0)2 − k2

‖ − (mc/�)2)
exp(−i

√
(k0)2 − k2

‖ − (mc/�)2z)

2
√

(k0)2 − k2
‖ − (mc/�)2

+�(z)�[k2
‖ + (mc/�)2 − (k0)2]F (i

√
k2
‖ + (mc/�)2 − (k0)2)

exp(−
√

k2
‖ + (mc/�)2 − (k0)2z)

2
√

k2
‖ + (mc/�)2 − (k0)2

+�(−z)�[k2
‖ + (mc/�)2 − (k0)2]F (−i

√
k2
‖ + (mc/�)2 − (k0)2)

exp(
√

k2
‖ + (mc/�)2 − (k0)2z)

2
√

k2
‖ + (mc/�)2 − (k0)2

. (A3)
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Evaluating the integral in Eq. (A2) and solving for f (k0,k‖,z′) yield

f (k0,k‖,z′)

= −i�[(k0)2 − k2
‖ − (mc/�)2]

�(k2
‖ + m2(c/�)2)

2
√

(k0)2 − k2
‖ − (mc/�)2 + i�(k2

‖ + m2(c/�)2)

exp(i
√

(k0)2 − k2
‖ − (mc/�)2|z′ − z0|)
√

2π

− �[k2
‖ + (mc/�)2 − (k0)2]�(k2

‖ + m2(c/�)2)

2
√

k2
‖ + (mc/�)2 − (k0)2 + �(k2

‖ + m2(c/�)2)

exp(−
√

k2
‖ + (mc/�)2 − (k0)2|z′ − z0|)

√
2π

,

and therefore

〈k⊥|G(k0,k‖)|z′〉 = 1√
2π

1

k2
⊥ + k2

‖ − (k0)2 + (mc/�)2 − iε

{
exp(−ik⊥z′)

− i
�[(k0)2 − k2

‖ − (mc/�)2]�(k2
‖ + m2(c/�)2)

2
√

(k0)2 − k2
‖ − (mc/�)2 + i�(k2

‖ + m2(c/�)2)
exp[−ik⊥z0 + i

√
(k0)2 − k2

‖ − (mc/�)2|z′ − z0|]

− �[k2
‖ + (mc/�)2 − (k0)2]�[k2

‖ + m2(c/�)2]

2
√

k2
‖ + (mc/�)2 − (k0)2 + �[k2

‖ + m2(c/�)2]
exp[−ik⊥z0 −

√
k2
‖ + (mc/�)2 − (k0)2|z′ − z0|]

}
.

Fourier transformation yields

〈z|G(k0,k‖)|z′〉 =
∫

dk⊥
exp (ik⊥z)√

2π
〈k⊥|G(k0,k‖)|z′〉

= i
�[(k0)2 − k2

‖ − (mc/�)2]

2
√

(k0)2 − k2
‖ − (mc/�)2

{
exp[i

√
(k0)2 − k2

‖ − (mc/�)2|z − z′|]

− i�[k2
‖ + m2(c/�)2]

2
√

(k0)2 − k2
‖ − (mc/�)2 + i�[k2

‖ + m2(c/�)2]
exp[i

√
(k0)2 − k2

‖ − (mc/�)2(|z − z0| + |z′ − z0|)]
}

+ �[k2
‖ + (mc/�)2 − (k0)2]

2
√

k2
‖ + (mc/�)2 − (k0)2

{
exp[−

√
k2
‖ + (mc/�)2 − (k0)2|z − z′|]

− �[k2
‖ + m2(c/�)2]

2
√

k2
‖ + (mc/�)2 − (k0)2 + �[k2

‖ + m2(c/�)2]
exp[−

√
k2
‖ + (mc/�)2 − (k0)2(|z − z0| + |z′ − z0|)]

}
.

The energy-dependent Green’s function in x space (9) is then

〈x|G(E)|x′〉 = 1

(2π )2

∫
d2k‖ exp[ik‖ · (x‖ − x′

‖)]〈z|G(k0,k‖)|z′〉|E=�ck0

= 1

2π

∫ ∞

0
dk‖ k‖J0(k‖|x‖ − x′

‖|)〈z|G(k0,k‖)|z′〉|E=�ck0 . (A4)
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