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We study the dynamics of a two-level system described by a slowly varying Hamiltonian and weakly coupled
to the Ohmic environment. We follow the Bloch-Redfield perturbative approach to include the effect of the
environment on qubit evolution and take into account modification of the spectrum and matrix elements of qubit
transitions due to the time dependence of the Hamiltonian. We apply this formalism to two problems. (1) We
consider a qubit, or a spin- 1

2 , in a rotating magnetic field. We show that once the rotation starts, the spin has a
component perpendicular to the rotation plane of the field that initially wiggles and eventually settles to the value
proportional to the product of angular rotation velocity of the field and the Berry curvature. (2) We reexamine
the Landau-Zener transition for a system coupled to the environment at arbitrary temperature. We show that as
temperature increases, the thermal excitation and relaxation become leading processes responsible for transition
between states of the system. We also apply the Lindblad master equations to these two problems and compare
results with those obtained from the Bloch-Redfield equations.
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I. INTRODUCTION

The increasing demand for accurate control of quantum
devices using high-fidelity control protocols [1–5] has stimu-
lated interest in the study of the dynamics of quantum systems
in response to a slowly varying Hamiltonian. Moreover, rapid
progress in the field of adiabatic quantum computing has fueled
further interest in and the need for more careful analysis of the
dynamics of quantum systems whose parameters vary slowly
in time [6]. In addition, decoherence in any real quantum
system sets a rigid constraint on the time interval during
which a quantum protocol must be carried out, limiting all
protocols to intermediate time intervals that are shorter than
the decoherence time. At these intermediate time scales, both
nonadiabatic corrections and coupling to the environment
become equally important.

The previous analysis [1,2,7,8] of the qubit dynamics with
time-dependent Hamiltonians was based on the Lindblad
master equation [9,10] that describes the interaction with
environment in terms of dephasing and transition processes
characterized by phenomenological decoherence rates. An
alternative microscopic approach, formulated as a perturbative
theory for a quantum system with a time-independent Hamil-
tonian interacting with its environment, introduces the Bloch-
Redfield (BR) master equation [11–15]. If the Hamiltonian
of the system changes in time, the BR approach has to be
modified to properly account for nonadiabatic corrections.

In this paper we extend the BR approach to account for
slow evolution of the system Hamiltonian in the presence of
the environment. The main concept of the BR theory is based
on the identification of decoherence processes in terms of the
matrix elements for transitions caused by environment in the
eigenstate basis of the quantum system [11,12,15]. For the
Hamiltonian that varies with time, one can still use a basis
defined by eigenvectors of the Hamiltonian [13,16–24], where
the Hamiltonian is always represented by a diagonal matrix
H̃ = UHU †, where the unitary transformation U denotes a
transition from the original basis to the eigenstate basis. The
time dependence of U produces an extra term in the time
evolution of the quantum system that is effectively described

by the new Hamiltonian H̃ − iU∂tU
†. This expression is

not necessarily diagonal and another basis transformation is
required. Such series of diagonalization transformations can be
continued indefinitely, but for slowly changing Hamiltonian,
the series can be truncated after a finite number of transforma-
tions, neglecting terms of the higher order in time derivatives of
the parameters in the Hamiltonian. In addition to changes in the
effective spectrum of the system, matrix elements representing
coupling between the quantum system and its environment are
also modified, resulting in a redefinition of the transition rates
for the system.

We focus our analysis on the dynamics of a two-level
quantum system—a qubit or a spin- 1

2 system—in the presence
of a time-dependent field, which we refer to below as the
control field of the qubit. We study the dynamical response of
the transverse magnetization to quench velocity of the control
field. The transverse magnetization measurements can provide
the value of the Berry curvature of a quantum system [8,25]
and, consequently, characterize topological properties of a
ground state of the system.

Since any real qubit is always coupled to its environment,
it is necessary to perform detailed analysis of the nonadiabatic
dynamics of a qubit system in the presence of dissipation. To
this end, we investigate the effect of pure dephasing and energy
relaxation due to the Ohmic bath on the qubit polarization.
Our results indicate that the decoherence suppresses the
transient wiggles of the out-of-plane qubit projection, thereby
bringing up the linear relation between the qubit response
and the quench velocity. Thus, the dissipation facilitates
the Berry curvature measurement based on the nonadiabatic
response, proposed in Ref. [25]. Furthermore, our study is also
applicable to other experimental techniques that are based
on an interference effect for the Berry phase measurement
in qubits since the drive parameter was changed slowly in
measurements reported in Ref. [26]; see also Refs. [21,27,28]
for theoretical analysis of the influence of environment on the
Berry phase.

We also apply the modified BR equation to the Landau-
Zener (LZ) problem [29–32] in a qubit coupled to the
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environment at arbitrary temperature. The LZ problem in
a quantum system coupled to its environment has attracted
significant interest recently, where the environment was con-
sidered as a source of classical noise [33,34], or quantum fluc-
tuations that cause transitions between qubit states [22,35–42],
or pure dephasing [7,43]. More recently, the LZ interferometry
has attracted growing interest [44–51]. Here we focus on the
role of quantum fluctuations in the environment that cause
transitions between the eigenstates of the qubit in the LZ
problem. We argue that during the LZ transition, the matrix
elements of the coupling between the qubit and its environment
must be considered in the basis of eigenstates of the full qubit
Hamiltonian and, therefore, the matrix elements acquire an
explicit time dependence due to rotation of the eigenstate
basis in addition to straightforward dependence on the energy
difference between the eigenstates. This treatment modifies the
previous results of Refs. [35–37] and generalizes the results
of Refs. [22,40], where a similar basis transformation was
naturally included in the calculations. We disregard the effect
of the Lamb-Stark shift on the qubit spectrum due to coupling
to the environment, considered in Ref. [41], since this can be
included in the redefined control field of the qubit. We focus
solely on the transition effects due to non-unitary evolution of
the qubit density matrix. We consider the quantum fluctuations
of the environment that are fixed along the direction of the
control field at very long initial and final moments of the LZ
transition so that the matrix element that characterizes the
transition between qubit states at long times is absent and
environment produces dephasing only. For arbitrary direction
of the fluctuating field, the transition remains effective over
long time and will effectively bring the qubit to the ground
state for a zero-temperature environment. We also consider
“dephasing” coupling [7,43] when the quantum fluctuations
occur only in the direction parallel to the direction of the
control field in the parameter space of the qubit Hamiltonian.
Our result is in agreement with Ref. [7] of the same problem
within Lindblad master equation, in the limit of a high-
temperature environment.

This paper is organized as follows. In Sec. II, we present
a formalism of the BR equations in transformed basis for
time-dependent Hamiltonians. In Sec. III, we study the
evolution of a qubit whose control field rotates in a plane
with a constant magnitude and consider different direc-
tions of the environmental coupling field. In Sec. IV, we
consider the LZ problem in the presence of a zero- or
a finite-temperature environment and show that transition
is dominated by thermal excitation of the qubit at finite
temperatures. In Sec. V, we analyze the nonadiabatic effects
within the Lindblad formalism. We end with conclusions in
Sec. VI.

II. BLOCH-REDFIELD APPROACH TO
TIME-DEPENDENT HAMILTONIANS

We consider a spin coupled to a bath of harmonic oscillators.
The full Hamiltonian Ĥ = Ĥ0 + Ĥint + Ĥenv is a sum of the
Hamiltonian for the spin in the magnetic field b(t),

Ĥ0 = − 1
2 b(t) · σ̂ , (1)

the interaction Hamiltonian of the spin with the environ-
ment [52],

Ĥint =
∑

q

λqn · σ̂
âq + â

†
q

2
, (2)

and the bath Hamiltonian,

Ĥenv =
∑

q

�ωq(â†
q âq + 1/2). (3)

Here we assume that each environment oscillator interacts
with the spin as a quantized magnetic field λq(â†

q + âq)/2 in
the common direction n, â

†
q and âq are raising and lowering

operators of the field.
The reduced density matrix ρ̂ of the spin is determined by

tracing out environment degrees of freedom of the full density
matrix ρ̂full. The full density matrix satisfies the unitary master
equation

dρ̂full(t)

dt
= 1

i �
[Ĥ (t),ρ̂full(t)]. (4)

There are several approaches to obtain the corresponding
equations for time evolution of the reduced density matrix
for the qubit. Here we consider the limit of weak coupling of
a qubit to the environment, when the density matrix is defined
by the BR equations [11,12]; see also Refs. [13,15,22], where
a diagrammatic technique was developed to treat the weak
coupling to environment.

The environmental effects are characterized by the spectral
density function of the coupling J (ε) = π

∑
q λ2

qδ(ε − �ωq).
A generic spectral function has a power-law dependence on
energy at small energies, J (ε) ∼ εs , and vanishes rapidly for
energies above the ultraviolet cutoff Ec. Here we consider
the Ohmic (s = 1) environment with exponential high-energy
cutoff,

J (ε) = 2παε exp(−ε/Ec), (5)

where the dimensionless parameter α defines the strength of
coupling between the qubit and its environment and Ec is
the cutoff. We restrict ourself to the weak-coupling limit,
α � 1. Our approach can be adapted to non-Ohmic environ-
ments by utilizing the corresponding spectral functions J (ε)
in the calculations below.

In general, the effect of weak environment on the qubit
dynamics is twofold. On one hand, the qubit Hamiltonian is
renormalized by the environment modes with ε < Ec, known
as the Lamb and Stark effects. On the other hand, when
we integrate out the environmental degrees of freedom, we
also obtain nonunitary terms in the evolution of the quantum
system. Both of these effects are accounted for by the BR
equation [11,12,15] for the qubit density matrix ρ̂(t).

We first consider the case of a constant external magnetic
field along ẑ direction, b = b ẑ. Then, the BR equation has the
following form in the eigenstate basis:(

ρ̇00(t)

ρ̇11(t)

)
=

(−
e 
r


e −
r

) (
ρ00(t)

ρ11(t)

)
, (6a)

ρ̇01(t) = (iε − 
2)ρ01(t), (6b)

ρ̇10(t) = (−iε − 
2)ρ10(t). (6c)
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We obtained the above equations within secular approxima-
tion that neglects fast oscillating terms with frequencies larger
than the decoherence rates.

The equation in the matrix form, Eq. (6a), determines the
evolution of diagonal elements of the density matrix. The
relaxation and excitation rates, 
r and 
e, are defined by
the spectral density J (ε) at the energy corresponding to the
energy difference between two states of the qubit,


r = n2
x + n2

y

2�
J (ε)[N (ε) + 1], (7a)


e = n2
x + n2

y

2�
J (ε)N (ε), (7b)

and N (ε) = 1/[exp(ε/T ) − 1] is Planck’s function. The factor
n2

x + n2
y indicates that only the component of the fluctuating

environment field that is perpendicular to the direction of the
control field b gives rise to the qubit flip processes.

The off-diagonal elements of the density matrix are char-
acterized by the decoherence rate 
2 and pure dephasing rate

ϕ given by


2 = 1
2 (
r + 
e) + 
ϕ, 
ϕ = n2

zJ0. (7c)

The decoherence stems from two processes: the qubit flip
processes with rate 
r + 
e and pure dephasing which is
not responsible for energy transitions at low frequency with
rate J (ε � 0) ≡ J0. The only source of pure dephasing is the
fluctuating fields of the environment along the external field b;
hence, the factor cos θ in the definition of the pure dephasing
term, 
ϕ ∝ n2

z .
The renormalization of the qubit Hamiltonian by the

environment due to the Lamb or Stark effects is determined by
the imaginary part of the environmental correlation function,
as discussed in Ref. [15]. Explicitly, the renormalized qubit
energy ε is

ε = b + δε, δε = −P

∫
dω

4π

J (ω) coth(ω/2T )

ω − b
, (8)

where P denotes the Cauchy principal value. Below, we as-
sume that the control field b already includes renormalization
effects from the environment. The goal of this paper is to
investigate the features of the qubit evolution originating from
decoherence characterized by rates 
r and 
e, respectively.
The significance of the effect of the Lamb and Stark shifts on
the evolution of the qubit was demonstrated in Ref. [41] in the
context of the LZ problem.

We note that the qubit density matrix can be defined in
terms of the magnetization in x, y, and z directions as

ρ̂(t) = 1
2 [1 + m(t) · σ ] . (9)

Then the BR equations [Eq. (6)] acquire a more common form
of the Bloch equations:

ṁz = (
r − 
e) − (
r + 
e)mz, (10a)

ṁx = −iεmy − 
2mx (10b)

ṁy = iεmx − 
2my. (10c)

The above BR equations were obtained on the basis of qubit
eigenstates. In the case when the control field b(t) changes
in time, we perform transformation Û1(t) of the basis that

keeps the qubit Hamiltonian diagonal. This basis is commonly
referred to as adiabatic. The corresponding transformation has
two consequences.

The first consequence of Û1(t) transformation is that the
Hamiltonian in the new basis acquires an extra term originating
from the time dependence of the transformation Û1(t). Thus,
the qubit Hamiltonian in the new basis is

Ĥ
U1
0 (t) = −ε(t)

2
σ̂z − iÛ1(t) ˙̂U †

1 (t). (11)

The resulting Hamiltonian still may remain nondiagonal due
to the Berry connection term, iÛ1(t) ˙̂U †

1 (t). We can introduce
a new transformation Û2(t) that diagonalizes the right-hand
side of (11), but this transformation generates a new term
iÛ2(t) ˙̂U †

2 (t) and the “diagonalization” series of transforma-
tions Ûn(t) does not stop for an arbitrary time evolution of
b(t), because the Berry connection terms appearing in each
consecutive diagonalization transformation acquires an extra
time derivative. However, for slow time evolution, the series
of transformations can be truncated by the first one or two
transformations. Since the BR treatment of environmental
effect requires anyway that the system changes in time slower
than the rates given by Eqs. (7) and (7c) in the master equation,
the truncation to a limited number of transformations Ûn(t)
under slow evolution of b(t) is justified. Also, in a special
case of constant rotation of b(t) in a plane, the second
transformation Û2 is time-independent and the transformation
series stops after this second basis rotation.

The second consequence of the basis transformations is
the modified interaction term in that the coupling between the
qubit and its environment,

˜̂Hint =
∑

q

λqn′(t)σ̂
âq + â

†
q

2
, n′(t)σ̂ = nV̂ (t)σ̂ V̂ †(t), (12)

is modified from the initial coupling operator n · σ to
the environment field by the transformation matrix V̂ (t) =
Ûn(t) · · · Û1(t). This transformation changes the correspond-
ing “projection” factors n{x,y,z} in Eqs. (7) as well as the
spectral weights J (ε).

Modification of the coupling between the qubit and its
environment, introduced by Eq. (12), swaps components
of the fluctuating field responsible for the pure dephasing
and transition processes. For example, in case of a fixed
external field b‖ez, fluctuations along ez give rise to pure
dephasing and do not cause transition processes between
qubit eigenstates. However, as b(t) rotates while n remains
in the ez direction, the fluctuating component along field
b(t) is the only one responsible for the dephasing with the
corresponding rate proportional to the spectral weight of its
low-frequency fluctuations J0, while the component of the
fluctuating field perpendicular to b will produce qubit flip
processes with the rate characterized by the spectral weight of
fluctuating field with the energy equal to the energy of qubit
flip J (ε(t)). The second unitary transformation further mixes
matrix elements of the coupling to environment representing
qubit flip processes and pure dephasing.

Below, we present explicit expressions for the rates in
Eqs. (7) for two special cases of evolution of b(t) for different
types of environment. We focus on the effect of qubit flip
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processes due to environment and assume that J0 = 0 in
most numerical solutions. We note that the pure dephasing
produced by the low-frequency noise of the environment can be
successfully described in terms of fluctuations of the classical
field and may also include non-Markovian time correlations
that are omitted in the BR approach. Effects of classical noise
were discussed in Refs. [33,34,43,53–55] for the LZ transition
and in Refs. [21,27] for Berry phase measurements.

III. QUBIT ROTATION IN A PLANE

We first consider a qubit with the Hamiltonian charac-
terized by a time-dependent field in the x-z plane: b(t) =
�{sin θ (t),0, cos θ (t)}. By definition, θ (t) = 0 for t < 0. The
transformation to adiabatic basis is defined by

Û1(t) = exp[iσ̂yθ (t)/2] (13)

and the resulting qubit Hamiltonian has the form

Ĥ
U1
0 = −�σ̂z + θ̇(t)σ̂y

2
. (14)

Here the second term is responsible for the nondiagonal form
of the Hamiltonian for time-dependent rotation angle θ (t) and
causes the resultant field to point out of the rotation plane of
b(t). This Hamiltonian has eigenvalues ε± = ±

√
�2 + θ̇2/2

and eigenvectors, which are different from the vectors of the
adiabatic basis. The latter two represent spin states in the (x-z)
plane with my = 0. On the contrary, the qubit in the ground
state |g〉 of the Hamiltonian (14) has a nonzero expectation
value of the polarization my in the direction perpendicular to
the (x-z) plane of the control field b:

my = 〈g|σ̂y |g〉 = − θ̇√
�2 + θ̇2

. (15)

In the limit of slow rotations, θ̇(t) � �, this result is consistent
with a more general expression that connects a generalized
force fi = −〈g|∂Ĥ (X)/∂Xi |g〉 to time-dependent parameters
X(t) of the Hamiltonian through the Berry curvature Fij

as [8,25]

fi = −〈g|∂Ĥ (X)

∂Xi

|g〉 =
∑

j

Fij Ẋj (t). (16)

Comparing Eqs. (15) and (16), we identify fy = my/2, Ẋ = θ̇ ,
and Fyθ = 1/(2�). Explicitly, the coefficient of the linear term
in the rate of change of the magnetic field, i.e., ��, is the Berry
curvature 1/2�2. Indeed, this value of the Berry curvature
gives the Berry phase � = π for one full rotation of the control
field in the (x-z) plane after its integration over the half sphere,∫
S(b) ds/(2�2) = π . This relation holds for an isolated qubit

controlled by field b(t), assuming that b(t) is a slowly varying
function of time with continuous higher derivatives.

However, if the rotation of the control field b starts
instantaneously with constant angular velocity θ̇ (t) = �, i.e.,
θ (t) = �t , the rotation is equivalent to a quantum quench in
the representation of Eq. (14) from θ̇ = 0 to θ̇ = � [56]. The
qubit that was initially in the ground state of the original time-
independent Hamiltonian, −bσ̂z/2, is in the superposition of
eigenstates of the new Hamiltonian and exhibits precession

z

y

x

y

x

z)b()a(

FIG. 1. (Color online) The Bloch sphere representation of the
qubit state in the diabetic basis with � = 0.2� and initial condition
z = 1 for (a) α = 0 and (b) α = 0.02 at T = 0. For the dissipationless
dynamics the trajectory of the qubit state form cycloids along the
equator y = 0. However, for the dissipative dynamics the cycloidal
trajectory flattens to a circular one with a finite value my(∞).

around the new direction of the effective field (0,�,b). This
precession causes oscillations of

my(t) = Tr{σ̂y ρ̂(t)} (17)

around its average value given by Eq. (15), as illustrated in
Fig. 1(a). Here we use � = 0.2� for a qubit decoupled to the
environment. The qubit trajectories on the Bloch sphere in the
original state basis is a cycloid along the equator in the plane
of rotation of the control field and the “height” of the cycloid
is proportional to �.

In the rest of this section, we analyze the effect of
the environment on qubit response to rotating control field.
We demonstrate that a qubit coupled to a zero-temperature
environment relaxes towards the lower eigenstate of Hamil-
tonian (14), and for a long time limit after the rotation is
started the qubit state obeys Eq. (15). For rotation with constant
angular velocity �, the transformed Hamiltonian, Eq. (14) is
time independent and can be diagonalized by the second basis
transformation,

Û2 = cos η/2 − iσ̂x sin η/2, tan η = �/�. (18)

The qubit Hamiltonian in a new basis after a full transfor-
mation V̂ (t) = Û2Û1(t) becomes fully diagonal with time-
independent eigenvalues:

Ĥ V
0 = Û2Ĥ

U1
0 Û

†
2 = −W

2
σ̂z , W =

√
�2 + �2. (19)

We can apply the BR equation for the qubit density matrix,
where the rates in Eq. (6) are defined by the interaction
term Hint, Eq. (2), with σ · n replaced by its transformation
under V̂ (t) according to Eq. (12). The result of the V̂ (t)
transformation depends on the original orientation of the vector
n in the qubit space. Below we consider three orientations of
n. We note that for the limit � � � considered in this section,
the shift of eigenvalues of Hamiltonian (19) and modification
of the coupling to environment by the second transformation
Û2 � 1 is not significant and can be disregarded to the lowest
order in �.
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A. Environment field perpendicular to the rotation plane

We first consider the case when the coupling between
the qubit and its environment is determined by the vector
n = ŷ perpendicular to the plane of rotation of the external
field b(t). For a time-independent Hamiltonian, this coupling
causes qubit flip processes and the corresponding decoherence
rates are defined by the environment spectral function at the
excitation energies equal to the qubit energy splitting. For
time-dependent Hamiltonian with rotating b(t), we have to
write the qubit coupling operator n · σ in the rotated basis that
diagonalizes the original Hamiltonian. As we discussed above,
the transformation is a product of two consecutive transforma-
tions. The first transformation, Û1(t) to the adiabatic basis does
not change the coupling operator Û1(t) n · σ Û

†
1 (t) = σ̂y . The

second transformation results in

�̂y = V̂ (t) σ̂yV̂
†(t) = σ̂y cos η + σ̂z sin η. (20)

Here the first term represents the qubit flip process, while the
second term preserves the qubit orientation and causes pure
dephasing. The corresponding rates in the BR equations are
given by


r = cos2 η

2
J (W )[N (W ) + 1], (21a)


e = cos2 η

2
J (W )N (W ), (21b)


2 = 
r + 
e

2
+ sin2 η

2
J0, (21c)

with W and η defined by Eqs. (19) and (18), respectively.
The qubit dynamics is characterized by the relaxation and
excitation rates proportional to the spectral function J (W )
of environment at energy W ; these rates appear with factor
cos2 η = �2/W 2 and recover the case of the qubit with
a time-independent Hamiltonian with b⊥n when only en-
vironment modes in resonance with the qubit contribute
to the qubit dynamics. At finite �, however, the pure
dephasing mechanism arises after transformation Û2 and
originates from the low-frequency modes of the environment
with spectral density J0. The pure dephasing rate contains
factor sin2 η = �2/W 2, which is small for slow rotation
with � � �.

The Bloch equations (10) with rates given by Eq. (21)
can be solved to get the qubit density matrix ρ̂U2 (t) in
the second rotated basis. In conjunction with the initial
condition, the time evolution of my(t) is then obtained by
Tr[�̂yρ̂(t)]; see Fig. 1(b) for � = 0.2� and α = 0.02. Initially,
after the rotation starts, the qubit state at the Bloch sphere
exhibits wiggles similar to those in Fig. 1(a) for an isolated
system. As rotation continues, wiggles flatten out and the
quit evolution on the Bloch sphere becomes a circle cross
section of the sphere by an x-z plane shifted along the
y axis.

First, we provide an exact analytical solution by choos-
ing the initial state to be a thermal state ρ(0)(0) = 1/2 +
tanh(W/2T )σz/2. Defining m0 = tanh(W/2T ), the initial
condition for the Bloch equation becomes mz(0) = m0 cos η,
mx(0) = 0, and my(0) = m0 sin η. Integrating the Bloch

equation with the above initial condition yields

my(t) = −m0 sin η

×
(

1 − 2 sin2 η

2
e−
tott − cos ηe−
tott/2 cos Wt

)
,

(22)

where 
tot = 
r + 
e and we assumed J0 = 0. In the long
time limit, t → ∞, my(t) reaches its stationary-state solution,

my(∞) = − �

W
tanh

W

2T
� −�

�
tanh

�

2T
, (23)

regardless of the form of the initial state. The significance of
this expression is that the dynamical transverse response of
the qubit subject to a rotating magnetic field is a consequence
of the geometric phase effect in the sense that the stationary
value my(∞) does not depend on the strength of the coupling
to environment. Therefore, my(∞) is purely geometrical and
immune to quantum zero-temperature fluctuations of the
environment.

Next, in order to get the numerical solution of the BR
equations (6) we utilize standard integration methods for a
system of linear differential equations with time-dependent
coefficients. Alternatively, we obtain the same results using
the BR functions of the QUTIPpackage [57,58] with a proper
adjustment to the system Hamiltonian and the interaction term
[see Eqs. (12) and (19)] for time dependence of the eigenstate
basis, as presented in Figs. 2 and 3. We verified that the results
shown in the plots are identical to numerical integration of the
BR equations with the rates given by Eqs. (21). In both plots,
the initial condition of the density matrix is chosen to be the
ground state at t = 0 when b‖ez. We obtain plots consistent
with the analytical result, Eq. (22), for the thermal state of the
density matrix at t = 0.

In Fig. 2, we present the time evolution of my(t) for several
values of the coupling to the environment. From the plot
it is clear that the role of the environment is to suppress
transient wiggles of my and to bring the system to the steady
state, defined by Eq. (23) with tanh(�/2T )→1. However,

FIG. 2. (Color online) Time dependence of the out-of-plane po-
larization, my(t), at zero temperature of environment for α = 0.02
(solid line) and α = 0.05 for fluctuating environment field out of the
plane of rotation, n = ŷ. The pure dephasing rate is zero, J0 = 0.
The frequency of rotation of the control field is � = 0.1�. The thin
horizontal line represents the asymptotic values of my(∞).
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FIG. 3. (Color online) Time dependence of the out-of-plane po-
larization, my(t), at various temperatures of environment, T = 0
(solid line), T = 0.5� (dashed line), and T = � (dotted line), for
fluctuating environment field out of the plane of rotation, n = ŷ. The
pure dephasing rate is zero, J0 = 0. The frequency of rotation of the
control field is � = 0.1�. The coupling to environment α = 0.05.
The thin horizontal lines represent the asymptotic values of my(∞)
at different temperatures.

the transverse magnetization is fragile to thermal fluctuations,
since these fluctuations create excitation to the higher energy
state. The result is shown in Fig. 3, where we fix α and
plot my(t) for different temperatures T = {0,1/2,1}�. We
note that since the dephasing rate, 
2 = (
r + 
e)/2, grows
with the temperature, the oscillations decay faster for higher
temperatures. Also, at finite temperatures, the spin has nonzero
probability to stay in the excited state, the asymptote of
my(t→∞) is reduced in agreement with Eq. (23).

B. Environment field in the rotation plane

We now consider the qubit interacting with environment
field in the plane of rotation. We take n = ez and for b‖ez

the coupling to the environment results in pure dephasing
and is characterized by the low-frequency spectral density J0.
As b rotates, the effect of environment alternates between
pure dephasing and qubit transitions between eigenstates.
We obtain this variation in qubit flip and dephasing rates
already after applying transformation Û1 = exp(iσ̂yθ/2) to the
interaction Hamiltonian of the qubit and environment, Eq. (2).
However, for rotating b(t) we have to take into account the
gauge term −iÛ1(t)∂t Û

†
1 (t) in Eq. (11) by applying the second

transformation Û2 to Ĥint. We obtain

V̂ (t)σ̂zV̂
†(t) = −σ̂x sin �t − (σ̂y sin η − σ̂z cos η) cos �t,

(24)

which contains matrix elements for qubit flip processes at any
moment of time. The corresponding rates in the BR equations
are


r = G(t)

2
J (W )[N (W ) + 1], (25a)


e = G(t)

2
J (W )N (W ), (25b)


2 = 
r + 
e

2
+ J0 cos2 η cos2 �t, (25c)

FIG. 4. (Color online) Time dependence of the out-of-plane po-
larization, my(t), at zero temperature of environment, for α = 0.05
(solid line) and α = 0.1 (dashed line) for fluctuating environment
field in the plane of rotation, n = ẑ. The pure dephasing rate is zero,
J0 = 0. The frequency of rotation of the control field is � = 0.1�.
The relaxation is reduced for time intervals when �t � πn. The thin
horizontal line represents the asymptotic values of my(∞).

where G(t) ≡ sin2 η + sin2 �t cos2 η and thus the qubit flip
rates are nonzero as a function of time.

The evolution of the qubit in this case corresponds to
precession of a spin in the magnetic field with initial state
distinct from its new ground state after the quench. Namely, its
dynamics will correspond to suppression of off-diagonal ele-
ments of its density matrix with the rate 
2(t) and equilibration
of the diagonal elements of ρ with rates 
r/e(t). We emphasize
that in this case all decoherence rates are time dependent.

We calculate time dependence of my(t) by numerically
solving the BR equations with the rates given by Eq. (25).
We present the result of integration in Fig. 4 for two different
values of α at zero temperature and find clear evidence that
the decoherence rates are roughly one half smaller compared
to the result of previous subsection for the same value
of α. Meanwhile, in Fig. 5 we fix α and plot my(t) for
different temperatures. At times longer than the relaxation
time 1/
2, my(t) becomes constant with its value my(∞) =
−�/W tanh(W/2T ); see Eq. (23)

C. Longitudinal coupling to environment

We also consider a somewhat artificial scenario when the
coupling vector n = sin �t ex + cos �t ez in Eq. (2) rotates
together with the external field b(t) [59]. For a stationary
Hamiltonian this environment does not produce qubit flip
processes and results in pure dephasing, when the diagonal
elements of the density matrix do not change and only
off-diagonal elements decrease with time. In cases when the
direction of the control field rotates with frequency �, the basis
transformation term in Eq. (11) introduces qubit flip processes
for this coupling with the rates in Eqs. (6) given by


r = sin2 η

2
J (W )[N (W ) + 1], (26a)


e = sin2 η

2
J (W )N (W ), (26b)


2 = 
r + 
e

2
+ cos2 ηJ0. (26c)
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FIG. 5. (Color online) Time dependence of the out-of-plane po-
larization, my(t), for α = 0.1 and T = 0 (solid line), T = 0.5�

(dashed line), and T = � (dotted line) in the case when fluctuating
environment field is in the plane of rotation, n = ẑ. The pure
dephasing rate is zero, J0 = 0. The frequency of rotation of the control
field is � = 0.1�. The thin horizontal lines represent the asymptotic
values of my(∞) at different temperatures.

For slow rotation � � �, we have sin η � 1 and qubit
flip processes are small. In this case, dephasing will suppress
precession on time scale ∼1/J0, and further equilibration
of the system occurs on a longer time scale ∼�/π�2.
We describe the evolution of a qubit coupled to high-
temperature environment using a dephasing Lindblad model in
Sec. V.

D. Coupling to a strongly damped quantum oscillator

In this section we consider the interaction of a qubit with a
single damped quantum harmonic oscillator. This model can
be used to describe environment with a sharp spectral function
J (ε). The interaction part of the Hamiltonian is similar to
Eq. (2),

Ĥint = λ

2
(â + â†)n · σ , (27)

and the single-mode Hamiltonian of the oscillator is Ĥo/c =
ω0(â†â + 1/2). We describe dissipation of the oscillator using
the Lindblad relaxation operators for the full density matrix
ρ̄(t) of the qubit and the oscillator system:

˙̄ρ(t) = −i[Ĥ (t),ρ̄] − κ(â†âρ̄ + ρ̄â†â − 2âρ̄â†). (28)

This equation is a standard Lindblad master equation with
time-dependent Hamiltonian. The difference with the previous
calculations of this section is that we keep a full quantum
mechanical treatment of the qubit interaction with the os-
cillator and perform all transformations of the qubit basis
for the full Hamiltonian of the qubit and the oscillator. At
the same time, we assume that the Lindblad superoperator
for the relaxation of the harmonic oscillator, represented
by the last term in Eq. (28), is not affected by these
transformations.

We evaluate the qubit projection perpendicular to the
rotation plane of the control field as a function of time. Figure 6
shows the comparison between calculation of BR equa-
tions and damped quantum oscillator with different coupling

FIG. 6. (Color online) Time dependence of the out-of-plane po-
larization, my(t), at zero temperature of environment for a qubit
coupled to a damped harmonic oscillator with damping rate κ = 0.2�

and coupling constant between the qubit and environment λ = 0.1�.
Coupling vector n ‖ ŷ (solid line) and n ‖ ẑ (dash-dotted line). For
comparison, the solution for the BR equation is presented (dashed
line) with α = 0.03 and J0 = 0. The rotation angular velocity is
� = 0.1�. The thin horizontal line represents the asymptotic values
of my(∞).

directions at zero temperature. All three curves saturate at
universal value my(∞) = −�/W . It is worth pointing out
that the n ‖ ẑ coupling results in time-dependent transition
rates that are at minimum when b ‖ n and at maximum when
b⊥n, as one can conclude from the amplitude of oscillations
of my(t) for n‖ez. Effectively, the overall relaxation is slower
than that of the case n ‖ ŷ and the amplitude of oscillating my

at t� = nπ decays insignificantly. The calculations at finite
temperature T = 0.5� are plotted in Fig. 7 and in all cases
my(∞) is consistent with Eq. (23).

FIG. 7. (Color online) Time dependence of the out-of-plane po-
larization, my(t), at environment temperature T = 0.5� for a qubit
coupled to a damped harmonic oscillator with damping rate κ = 0.2�

and coupling constant between the qubit and environment λ = 0.1�.
Coupling vectors n ‖ ŷ (solid line) and n ‖ ẑ (dash-dotted line). For
comparison, the solution for the BR equation is presented (dashed
line) with α = 0.03 and J0 = 0. The rotation angular velocity is
� = 0.1�. The thin horizontal line represents the asymptotic values
of my(∞).
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IV. LANDAU-ZENER TRANSITION

In this section we consider the LZ transition in a qubit
coupled to its environment. The external field in the qubit
Hamiltonian (1) has the form b(t) = {�,0,vt}, where � is
the minimal level separation and v characterizes the rate at
which the Hamiltonian changes. For the LZ problem, the qubit
is initially in the ground state |g〉 with the density matrix
ρ̂(t→ − ∞) = |g〉〈g|. The task is to find the probability of
the system to be in the excited state |e〉 which is given by
P∞ = limt→+∞〈e|ρ̂(t)|e〉.

Effects of the environment on a qubit’s dynamics can be
separated into pure dephasing of the qubit state during the LZ
process and inelastic qubit flips. When we consider a qubit
coupled to its environment that causes qubit flip processes, we
have to be careful with the formulation of the LZ problem.
Indeed, the LZ process is formally infinitely long and the
qubit flip processes accompanied by the energy exchange will
result in equilibration of the qubit system with its environment.
In particular, for the zero-temperature environment, the qubit
will relax to the ground state even if it was temporarily
excited during the LZ process. For an environment at finite
temperature, the qubit state will tend to thermal state ρ̂(t) =
diag{ρ00,ρ11} with ρ11/ρ00 = exp[−E(t)/T ]. However, as
formally E(t)→∞ for long times t , the qubit will relax to
the ground state and we find P∞ = 0.

Previous considerations (see, e.g., [35]) predicted P∞→0
for the Ohmic environment with large high-frequency cutoff
in the environment modes [60]. However, in this case the
problem loses its meaning since the LZ transition is shadowed
by trivial relaxation of a quantum system to its ground state by
releasing its energy to the environment. One can reformulate
the problem in terms of finite time LZ process, which may be an
experimentally relevant situation in some cases. Alternatively,
one can assume that the environment spectral function has
a relatively low cutoff at high frequencies Ec ∼ � and the
relaxation is absent after time t � Ec/v. Here, we consider
a special orientation of the coupling vector with environment
when n‖ez, where ez is defined by b̂(t→ ± ∞)‖ez. In this
situation, the relaxation processes becomes weak at long times
|t | � �/v. This type of coupling is expected to be dominant
in qubits with relatively long energy relaxation times, but
with short dephasing time due to dominant coupling with the
fluctuating field parallel to the qubit field along ez.

We utilize the BR approach to the problem of LZ transitions
in the presence of environment with n = ez. In principle,
we need to write the BR equations in the basis where the
transformed qubit Hamiltonian is diagonal after an infinite
series of basis transformations given by Ûn, which can be an
infinite series. However, under the condition v � �2, the series
of basis transformations can be limited by Û2(t)Û1(t).

The first transformation changes the representation from
diabatic basis of states |↑〉 and |↓〉 along ez to the adiabatic
basis of the ground, |g〉, and excited, |e〉, states, where the
Hamiltonian is diagonal. The first transformation matrix Û1(t)
has the same form as in Eq. (13), except the rotation angle
θ (t), which is now defined as

cos θ (t) = − vt√
v2t2 + �2

. (29)

The transformed Hamiltonian in the adiabatic basis has the
form [17–20]

Ĥ
U1
0 = −E(t)

2
σ̂z − v�

2E2(t)
σ̂y, E(t) =

√
v2t2 + �2. (30)

The second transformation is chosen to diagonalize matrix
Ĥ

U1
0 and has the form

Û2(t) = exp

(
− iη

2
σ̂x

)
, tan η(t) = v�

E3(t)
. (31)

The Hamiltonian in this “improved eigenstate” basis has the
form

Ĥ
U2
0 = −W (t)

2
σ̂z − η̇

2
σ̂x, (32a)

W (t) =
√

E2(t) + v2�2

E4(t)
, η̇ = 3v3�t

E3(t)W 2(t)
. (32b)

Without dissipation, the LZ problem is equivalent in all
three representations, with a properly written Hamiltonian,
i.e., Eq. (1) for the diabatic basis, Eq. (30) for the adiabatic
basis, and Eq. (32a) for “improved eigenstate” basis. In all rep-
resentations, the qubit follows the appropriate instantaneous
control field b̃(t), but since this field is time dependent, the
qubit deviates from the instantaneous direction of b̃(t) and
acquires an additional precession around the control field.
When the original field eventually reaches its final direction,
b‖ez at t � �/v, the direction of the control field becomes
time independent and the qubit simply precesses around ez

with a nonzero projection of its state on the excited state,
given by the known expression [29,30,32]

P LZ
∞ = exp

(
−π�2

2v

)
. (33)

Note that in Fig. 8 this precession remains in all three
considered representations, but the overall trajectories are
smoother in the transformed representations. As we look
at the projection of the qubit state on the “excited state”
P (t) = 〈e|ρ̂(t)|e〉 in the appropriate basis (see Fig. 9), the
oscillations decrease faster in the transformed representations,
because the control field b(t) aligns faster with its final
direction. We also note that since the control field remains
aligned with its initial direction longer in transformed basis,
the numerical computation can run over shorter time intervals,
thus making computation faster and more accurate.

Next, we take into account interaction with the environment
within the BR approach. The coupling to the environment is
modified in the diagonal basis of the Hamiltonian; see Eq. (12)
and Ref. [18]. Under the Markovian approximation and to the
second order in the coupling to environment, we obtain the
corresponding BR equations in the form

ρ̇00 = i
η̇

2
(ρ01 − ρ10) − 
eρ00 + 
rρ11, (34a)

ρ̇11 = −i
η̇

2
(ρ01 − ρ10) + 
eρ00 − 
rρ11, (34b)

ρ̇01 = −[
2 + iW (t)]ρ01 + i
η̇

2
(ρ00 − ρ11), (34c)

ρ̇10 = −[
2 − iW (t)]ρ10 − i
η̇

2
(ρ00 − ρ11), (34d)
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)c()b()a(

FIG. 8. (Color online) Representation of a qubit state during the LZ process on the Bloch sphere in (a) the diabatic basis of states |↑〉
and |↓〉 along fixed ẑ axis; (b) the adiabatic basis of the ground, |g〉, and excited, |e〉, states; (c) the “improved” eigenstate basis, |g〉 and |e〉,
obtained from the diabetic basis by U2 transformation. In the diabatic basis the trajectory of qubit state moves across the sphere from state |↓〉
(ground state at t→−∞) towards |↑〉 and slowly approaches the circle of constant precession at t→∞. The trajectory in the adiabatic basis and
eigenstate basis shows a simpler trajectory and fast switch to the constant precession circle. Level-crossing speed v = 0.5�2 and no coupling
to environment.

where W (t) and η̇ are given by Eq. (32b). The rates for the
above equations are


r = GLZ(t)

2
J (W (t))[N (W (t)) + 1], (35a)


e = GLZ(t)

2
J (W (t))N (W (t)), (35b)


2 = 
r + 
e

2
+ J0 cos2 η cos2 θ (t), (35c)

where GLZ(t) = sin2 η + sin2 θ (t) cos2 η is a function of time-
dependent basis rotation angles θ (t) and η(t) defined by
Eqs. (29) and (31). We note that the above equations for BR
rates are given by truncation of the transformation series of
the interaction Hamiltonian, Eq. (12), up to the second order,
V̂ = Û2(t)Û1(t). An equivalent approach with only first-order
transformation V̂ = Û1(t) was studied in Ref. [50]. Therefore,

FIG. 9. (Color online) Projection of a qubit state during the LZ
process on the Bloch sphere on the |↓〉 state in the diabatic basis
(dash-dotted line) and on the ground state in the adiabatic basis (solid
line) and the “improved” eigenstate basis (dashed line). In the diabatic
basis the projection of the qubit state shows long oscillations with
amplitude decreasing as a power law in time, while the eigenstate
projections quickly reach the asymptotic value. Level-crossing speed
v = 0.5�2 and no coupling to environment.

the rates are defined within O(η2) � O(v2/�4) accuracy. The
unitary evolution described by either Ĥ

U1
0 or Ĥ

U2
0 has no

approximations and is valid for arbitrary values of v. We
emphasize that once the basis transformation gives rise to
nonzero decoherence rates, the qualitative results are similar
regardless of our choice of the BR rates on the basis obtained
after either Û1 or Û2Û1 transformations. The rates in the Û1

basis are given by Eq. (35), with η = 0. We now discuss the
solution of Eq. (34).

A. Zero-temperature dissipative environment

We first consider the zero-temperature environment and set
J0 = 0 to focus solely on qubit flips rather than dephasing.
We numerically integrate the BR equation (34) and plot the
probability of the system to be in the excited state Pe(t) =
〈e|ρ(t)|e〉 as a function of time in Fig. 10 for α = 0.05.
For numerical integration, we used both direct integration of

FIG. 10. (Color online) The probability of occupation of the
excited state in the LZ transition in the U2 basis. The temperature
of environment is zero, T = 0, the level velocity is v = 0.5�2.
We assume that the dephasing is absent, J0 = 0. The asymptotic
curve for Ec = ∞ is given by Eq. (36b) with a proper choice of
integration constant C.
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linear differential equations (34) and the QUTIP package for
numerical solution of the BR equations [57,58], obtaining
identical results. As the qubit levels go over the avoided
crossing, the probability of the qubit to be in the excited state
increases, roughly following the same function of time as Pe(t)
for an isolated qubit, α = 0. As the levels further depart from
each other, the relaxation of the qubit from the excited state
becomes the dominant process in the qubit dynamics, and Pe(t)
monotonically decreases and becomes constant once the level
separation ∼vt exceeds the ultraviolet cutoff Ec, or t � Ec/v

and the qubit is effectively decoupled from the environment. In
Fig. 10 we compare the behavior of Pe(t) for different values
of Ec. For finite ultraviolet cutoff Ec = 5�, the probability
Pe(t) saturates for t� � 10. For Ec→∞, the probability Pe(t)
slowly decreases for all t > �/v.

To evaluate this suppression, we can utilize Eqs. (34) in the
asymptotic regime for t � v/�, when 
r (t) � η̇(t). We write

dPe(t)

dt
= − �2

2v2t2
J (vt)Pe(t), (36a)

Pe(t) = C exp

(
−πα�2

v
ln

vt

�

)
∝ t−πα�2/v, (36b)

where we used the relaxation rate 
r from Eq. (35a). The latter
equation demonstrates that even for an environment with n‖ez,
the relaxation on long times scales is important. Formally, the
power-law dependence of Pe(t) on time originates from the
slow converging integral

∫
dtJ (vt)/v2t2 ∼ ln vt/� due to

linearly increasing environment spectral function J (ε) with
energy. With a proper choice of integration constant C, we
obtain a good agreement between computed Pe(t) in Fig. 10
and the asymptote, defined by Eq. (36b).

This power-law dependence stops and reaches a fixed value
P∞ when the qubit level separation exceeds the environment
ultraviolet cutoff at times t � Ec/v. We evaluate the long-
time asymptotic value of Pe(t � Ec/v) = P∞ by taking into
account the high-energy cutoff in the environment spectral
function, Eq. (5). We obtain

P∞(T = 0) = C�, � = exp

{
−πα�2

v
ln

2Ec

eγ �

}
, (37)

where γ � 0.577 is the Euler’s constant, the integration
constant C ∼ P LZ

∞ , and factor � describes suppression of
the excited state due to slow relaxation, while qubit level
separation increases from its minimum � to values above
the cutoff energy Ec; see Appendix A for the derivation of
Eq. (37).

Equations (36) are valid for α � 1. For larger values of
α, one has to take into account the renormalization of the
qubit Hamiltonian when the off-diagonal matrix element in
the original Hamiltonian �r is given by the self-consistent
relation [52]

�r = � exp

[
−1

2

∫ ∞

0

J (ω)

ω2 − �2
r

dω

]
, (38)

with solution �r = �(�/Ec)α/(1−α). Hence, the relaxation
rate is [40]


r (E) = π�r

2
(2α)

(
E

�r

)2α−1

, (39)

where 
(x) is the 
 function. The integration over time with
E(t) � vt gives [40]

ρ11(t) = C ′ exp

[
− π�2

r

4α
(2α)v

(vt)2α

�2α
r

]
. (40)

Notice that in the limit α � 1, �r = �, the relaxation rate

r reduces to 
r (E) = πα�2/E, in agreement with the
relaxation rate in Eq. (36a). Similarly, Eq. (40) becomes
Eq. (36b)

B. Finite temperatures

At finite temperatures, the excitation and relaxation rates
may exceed η̇ terms for strong-enough coupling of the qubit to
its environment and slow drive v. In this case, we disregard η̇

terms in Eq. (34) and the diagonal elements of the density
matrix satisfy the rate equations. Since the rate equations
preserve the trace of the density matrix, Pg(t) + Pe(t) = 1,
with Pg(t) = 〈g|ρ(t)|g〉, we introduce m(t) = Pg(t) − Pe(t)
and obtain the differential equation for m(t):

1


0

dm

dt
= 1 − m coth

W (t)

2T
, 
0 = παW (t)GLZ(t),

(41)

GLZ(τ ) = �2[v2 + (v2τ 2 + �2)2]

v2�2 + (v2τ 2 + �2)3
.

The initial condition is m(ti) = 1 for ti = −∞. While we can
write a formal solution to Eq. (41), the solution is not well
defined due to logarithmic divergence of

∫
ti

0(t)dt for the

spectral function J (ε) without a cutoff. We present the result
of numerical solution of Eqs. (34) and the rate equations in
Fig. 11. We notice that for higher temperatures, these two
solutions are indistinguishable because the thermal effects
dominate only in short time scales |vt | < T such that the time
window is long enough for the qubit to be thermalized and its
off-diagonal elements of density matrix vanish.

FIG. 11. (Color online) The probability of occupation of the
excited state, Pe(t), in the LZ transition in the U2 basis at finite
temperature of environment for v = 0.5�2, α = 0.05, and J0 = 0.
The solid lines represent solutions of rate equations (41) that show
good agreement with the BR equations at higher temperatures.
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Integrating Eq. (41) over t yields the following solution of
P∞ = 1/2 − m(∞)/2:

P∞ =
∫ ∞

−∞

e(t)e− ∫ ∞

t

0(t ′) coth W (t ′)

2T
dt ′dt. (42)

The integral over time t is understood as thermal activation
processes with rate 
e(t) and integral in the exponent can
be considered as contribution of relaxation processes after
thermalization. For weak coupling α � 1 and not very high
temperatures αT � v/�, the integral in the exponential is a
slow function of t . Therefore, we can replace the lower bound
of the integration by t = 0. We obtain P∞ in the limit of low
temperatures T � �,

P∞ � 2πα�2

v

√
πT

2�
e−�/T �, (43)

and in the limit of higher temperatures T � �,

P∞ � 2π2αT �

v
�, (44)

where � is defined by Eq. (37). The details of the derivation
of the above equations are presented in Appendix A. We
remind the reader that Eqs. (42)–(44) are valid when the
rate equations (41) are a good approximation to the BR
equations (34). In this case, the transition of the system to
the excited state is a consequence of incoherent excitation by
environment of the qubit and is not the coherent phenomenon
that leads to the excitation in the LZ transition of an isolated
quantum system. However, the excitation processes only
happen when the adiabatic eigenstates of the qubit have a
nonzero matrix element with the coupling to the environment;
the latter happens when the “control field” b̂ is not parallel
to the environment field, which happens during time �/v,
when the excitation rate can be estimated as παT , resulting
in the excitation probability ∝αT �/v; cf. Eq. (44). As the
level separation E(t) exceeds temperature, only the relaxation
process remains, which causes transitions to the ground state.
The effect of this relaxation is represented by the exponential
factor in Eqs. (43) and (44); cf. Eq. (36b).

From the above analysis, we conclude that a finite temper-
ature of the environment leads to the “equilibration” between
the ground and excited states of the qubit, and as temperature
increases, the probability of the transition to the excited state in
the LZ process increases monotonically; cf. Refs. [17,18]. This
behavior is demonstrated in Fig. 12, where P∞ is shown as a
function of T for several values α of coupling between the qubit
and its environment. We also note that the temperature effects
appear at T � �, at smaller T , values of P∞ are characterized
by the excitation through unitary evolution with the subsequent
relaxation.

When we consider P∞ as a function of coupling α for
several values of T , we observe a more complicated behavior.
For T = 0, shown by the solid line in Fig. 13, the transition
probability P∞ monotonically decreases from its value P LZ

∞
[Eq. (33)], as α increases, in agreement with Eq. (37). At
finite temperatures, P∞ increases for smaller values of α, as
the excitation process becomes more efficient and provides
an extra boost for transitions to the excited state in addition
to that produced by unitary dynamics. However, this boost is
only a linear function of α [see Eqs. (43) and (44)], and at

FIG. 12. (Color online) Transition probability P∞ as a function
of environment temperature T at different values of coupling between
the qubit and the environment for n‖ ẑ. Level-crossing speed v =
0.5�2, the high-energy cutoff for the environment is Ec = 10�, and
J0 = 0. We take P∞ = Pe(t = 4Ec/v).

stronger values of α the exponential dependence of � on α

results in decreasing P∞ as α increases. The nonmonotonic
dependence of P∞ on α can be understood as a competition
between energy relaxation and thermal activation, whereas
the competition between energy relaxation and driving was
analyzed in Ref. [38].

C. Longitudinal coupling

We also consider the environment that produces a fluctuat-
ing field along the direction of the control field, n‖b, in the LZ
problem. The decoherence rates in the BR equations (34) are
given by


r = sin2 η

2
J (W (t))[N (W (t)) + 1], (45a)


e = sin2 η

2
J (W (t))N (W (t)), (45b)


2 = 
r + 
e

2
+ J0 cos2 η. (45c)

FIG. 13. (Color online) Transition probability P∞ as a function
of the coupling parameter of the qubit and the environment, α, at
different environment temperatures for n‖ ẑ. Level-crossing speed
v = 0.5�2, the high-energy cutoff for the environment is Ec = 10�,
and J0 = 0. We take P∞ = Pe(t = 3Ec/v).
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For this configuration of coupling between the qubit and
the environment, the matrix elements for transitions between
different eigenstates of the qubit caused by the environment are
small and the qubit flip rates 
r,e are proportional to sin2 η �
v2�2/E6(t) � v2/�4 and vanish fast for |t | � �/v as 
r,e ∼
�2/v4t6. Such a fast decrease of the qubit flip rates in time
simplifies either numerical or analytical integration of the BR
equation and makes P∞ independent from the high-energy
cutoff Ec.

In particular, for finite temperatures, when the BR equations
can be reduced to the rate equations, time evolution of m(t) =
Pg(t) − Pe(t) is given by Eq. (41) with GLZ(t) = sin2 η. The
general solution of the rate equation takes a form similar to
Eq. (42):

P∞ =
∫ ∞

−∞

e(t)e− ∫ ∞

t

l (t ′) coth W (t ′)

2T
dt ′dt,

(46)

l = παW (t) sin2 η(t).

Performing time integration in Eq. (46) gives for T � �

P∞ = αv

√
π3

32T �3
exp

(
−�

T

)
exp

(
−2παv

3�2

)
. (47)

For high temperatures, T � �, we obtain (see Appendix B)

P∞ = 1

2

[
1 − exp

(
−3π2

4
α

T v

�3

)]
. (48)

As we mentioned above, the results in Eqs. (46) and (48) are
independent from the cutoff energy Ec. Equation (47) shows
that P∞ vanishes in the low-temperature limit, unless we take
into account nonadiabatic unitary evolution of the quantum
state in the LZ problem. In the limit of high temperatures
T � �, but still weak coupling, αvT � �3, we obtain the
linear dependence of P∞ on T ,

P∞ = 3π2

8
α

T v

�3
, (49)

which follows from Eq. (48).

FIG. 14. (Color online) Transition probability P∞ as a function
of environment temperature T for n‖b̂ at different values of drive
velocity. The high-energy cutoff for the environment is Ec = 10�

and J0 = 0. The solid lines represent solutions of the rate equations
Eq. (41). We take P∞ = Pe(t = 4Ec/v).

Since a simple form of P∞ cannot be obtained in the
intermediate-temperature regime, we numerically calculate the
solution of rate equation as well as that of BR equation for
comparison; see Fig. 14. When the level-crossing speed v is
small enough, the transition is mainly due to thermalization
at short times and energy relaxation at longer times. In this
regime, the rate and BR equations are in a very good agree-
ment, as demonstrated in Fig. 14 for v = 0.25�2. However,
as the level-crossing speed increases, the nonadiabatic unitary
evolution also contributes to the transition to the excited state,
increasing the probability for a system to be in the excited state.
Since the nonadiabatic unitary evolution is not incorporated in
the rate equations, the equations underestimate the probability
of the excitation in the LZ process; compare the solid and
dashed curves in Fig. 14 for v = 0.5�2.

V. LINDBLAD DEPHASING EVOLUTION

We compare the results obtained from the BR equations
in the case of longitudinal coupling with the theory based
on the Lindblad equation for pure dephasing operators. For
both problems, the qubit Hamiltonian can be parametrized
by the control field b = E(t){sin θ, 0, cos θ}, where E(t) is
the magnitude of the control field equal to the qubit level
separation. The corresponding equation for the density matrix
in the adiabatic basis has the form

ρ̇ = iE(t)

2
[σz,ρ] + iθ̇

2
[σy,ρ] + γ

2
(σzρσz − ρ). (50a)

In the component form the above equation is

ρ̇00 = θ̇

2
(ρ01 + ρ10), ρ̇11 = − θ̇

2
(ρ01 + ρ10), (50b)

ρ̇01 = [iE(t) − γ ]ρ01 − θ̇

2
(ρ00 − ρ11), (50c)

ρ̇10 = [−iE(t) − γ ]ρ10 − θ̇

2
(ρ00 − ρ11). (50d)

These equations are similar to Eqs. (6), but because
they are not written in the eigenstate basis, the last two
equations contain extra terms. Time derivatives of diagonal
terms contain the off-diagonal terms of the density matrix
multiplied by the quantity characterizing the off-diagonal part
of the Hamiltonian, θ̇ . Time derivatives of the off-diagonal
components of the density matrix have the terms identical to
those in Eqs. (6) and the extra terms characterized by the
diagonal matrix elements and parameter θ̇ . In this section
we again consider the two cases: (1) the qubit rotation
with a constant angular velocity θ̇ = �, i.e., θ (t) = �t and
E(t) = �; (2) the LZ problem with E(t) = √

�2 + v2t2 and
θ (t) = arctan �/vt .

A. Rotating field

When the control field rotates in the (x-z) plane, b(t) =
�{sin �t, 0, cos �t}, the effective Hamiltonian is time inde-
pendent. To make a comparison with the calculation of BR
equations, one can look for a quasistationary-state solution
of the density matrix at time scale t ∼ 1/γ with an ansatz
that the off-diagonal elements are ρ01/10 ∝ �. We disregard
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FIG. 15. (Color online) Polarization my(t) as a function of time
t for dephasing Lindblad evolution. The decoherence rate γ = 0.1�

and rotation velocity � = 0.1�. After the rotation starts, polarization
shows an oscillatory behavior originating from the qubit precession;
at longer times the precession stops and the qubit relaxes to an
unpolarized state according to Eq. (52).

�2 terms for ρ̇00/11 and take ρ00 = 1. Then we have ρ01 =
�/2(i� − γ ) and ρ10 = �/2(−i� − γ ), and the out-of-plane
qubit projection is [8]

my(L) = −�

2

�

�2 + γ 2
. (51)

We argue, however, that the above expression does not hold
for the authentic steady state, ˙̂ρ = 0, at longer times and for
general configuration of the initial conditions. We present the
result of numerical integration of the Lindblad equations (50)
in Fig. 15 for � = 0.1� and γ = 0.1�. In our calculation,
we consider the case when the qubit is prepared in the ground
state prior to rotation for t < 0. When the rotation starts, the
Hamiltonian acquires extra terms ∼� and the qubit exhibits
a precession around new direction of the control field. This
precession is reduced by the decoherence with rate 
2 � γ

and the oscillatory component in my(t) vanishes for times
t ∼ 1/γ .

At longer times, the diagonal matrix elements start changing
as well and the system will eventually relax to ρ00 = ρ11 = 1/2
and ρ01 = ρ10 = 0. The reason for this behavior is that at long
times, the diagonal elements acquire significant changes even
though these changes have small factor �2. In the language
of the BR equation, the Lindblad pure dephasing operator
contains relaxation and excitation components in the eigenstate
basis of the transformed Hamiltonian Ĥ V

0 and 
e = 
r =
γ�2/(�2 + �2), which is the high-temperature limit because
it does not distinguish processes with absorption or emission of
environment excitations. Correspondingly, the density matrix
reaches the high-temperature limit with equal probabilities of
occupation of eigenstates of the qubit Hamiltonian,

m(L)
y (t) = − �√

�2 + �2
exp

(
− 2�2γ t

�2 + �2

)
. (52)

This asymptotic behavior is consistent with the result obtained
from the numerical solution of the Lindblad equation (50),
shown in Fig. 15.

B. Landau-Zener problem

The expression for LZ problem to the lowest order in v

can be obtained from the explicit form of the Lindblad equa-
tion (50) with E(t) given by Eq. (30) and � = v�/E2(t). We
assume that the changes in the system are slow and disregard
ρ̇01 and ρ̇10 in Eqs. (50). Then we find ρ01 = �/2(−iE +
γ )[ρ00 − ρ11] and ρ10 = [ρ01]∗. Substituting these expressions
to Eq. (50b), we obtain

P (L)
∞ = 1

2

{
1 − exp

[
−γ

∫ ∞

−∞

v2�2

E4(t)

dt

γ 2 + E2(t)

]}

= 1

2

{
1 − exp

[
− πv

2�2
R

(
γ

�

)]}
, (53)

where

R(x) = 2 + (x2 − 2)
√

x2 + 1

x3
√

x2 + 1
. (54)

In the limit v � �2, we recover the result of Ref. [7]:

P (L)
∞ = − πv

4�2
R

(
γ

�

)
. (55)

At small decoherence rate and slow drive, γ � �, we take
R(x � 1) � 3x/4 and reproduce the previous result, Eq. (49),
if we identify γ = 2παT . The agreement between Eqs. (49)
and (53) has a simple interpretation. The Lindblad equation
can be viewed as the high-temperature limit of the BR equation
for the Ohmic environment [61]. The Lindblad equation (50)
is written on the basis that does not completely diagonalize
the Hamiltonian operator, and when we rewrite this equation
in the basis diagonalizing matrix E(t)σ̂z + �σ̂x , we arrive
to the collapse operators that represent transition processes
between the eigenstates with equal excitation and relaxation
rates 
(L)

e,r ≈ γ [�2(t)/E2(t)]. It is the excitation processes that
cause transitions of the system to the excited state with the
population of an excited state P∞ in accordance with Eq. (53).
To account for finite temperatures, the Lindbladian operators
are to be written in the eigenstate basis of the “dressed”
Hamiltonian; see Ref. [62].

FIG. 16. (Color online) Transition probability P∞ as a function
of dephasing rate γ for different level-crossing speeds v/�2 =
0.1, 0.25, 0.5. Solid lines are numerical solutions of the Lindblad
equation, Eq. (50), and dashed lines are given by Eq. (53).
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A large decoherence rate, γ � �, suppresses the off-
diagonal elements of the density matrix and effectively reduces
the excitation and relaxation rates ∼γ�2/(E2 + γ 2). As a
result, the qubit is more likely to stay in its ground state
without experiencing an excitation during the LZ avoided
level crossing. The maximum of R(xm) ≈ 0.42 is reached at
xm = 1.14.

We compare Eq. (53) (dashed lines) with the result of
numerical integration of the Lindblad equation (50) (solid
lines) in Fig. 16. We observe that at stronger decoherence
rate, when the off-diagonal unitary terms in the evolution of
the density matrix can be neglected in comparison with the
decoherence terms, γ � v/� in the LZ problem, the two
solutions are equivalent.

VI. DISCUSSION AND CONCLUSIONS

In conclusion, we have presented a detailed analysis of
the dynamics of an open quantum system in the presence
of time-varying control field. Specifically, we formulated a
time-dependent BR approach to study the dynamics of a
spin- 1

2 system whose Hamiltonian varies slowly with time.
Here we studied the dynamics in the presence of the Ohmic
environment; however, our formalism can be readily applied to
non-Ohmic cases as well. Using a modified BR approach, we
investigated two problems. In the first problem, we studied
the response of a qubit to a rotating control field of the
qubit with a fixed magnitude. We noted that when the qubit
basis is transformed to keep the effective Hamiltonian in
the diagonal form, which is required for proper perturbative
analysis of the coupling between the qubit and its environment,
the transformed Hamiltonian acquires extra gauge terms. The
gauge terms result in the modification of the qubit-environment
coupling and are related to the renormalization of the mass and
friction terms due to changing parameters of the Hamiltonian;
cf. Ref. [63]. The exact form of the renormalization depends on
a particular orientation of the control field with respect to the
fluctuating environment field. We have illustrated this scenario
by considering different orientations of the environment field:
(1) control field and fluctuations are always perpendicular to
each other, and the corresponding relaxation rates are time
independent; (2) control and fluctuation fields are parallel only
at some moments of time, in which case the relaxation rates
significantly oscillate in time; (3) fluctuations are always along
the direction of the control field, then the relaxation rates are
small in the parameter given by the ratio of the rotation velocity
and level separation.

Our analysis offers a clear evidence of robustness of
topological features against external noises. To see this, one
needs to consider a long time limit where the qubit density
matrix reaches a steady-state solution that at zero temperature
coincides with the ground state of the effective Hamiltonian.
When this ground-state qubit configuration is looked at in the
original laboratory basis, the qubit has a constant projection
in the direction perpendicular to the plane of rotation and the
magnitude of the projection is proportional to the product of
rotation velocity of the control field and the Berry curvature
of the qubit ground state. In the long time limit, this response
is unaffected by the environmental coupling field, at least for
a zero-temperature environment. This relation of the response

at long times and the Berry curvature can be utilized as a
practical method for measurements of the Chern number [64]
of a quantum system.

We also considered an environment with a very sharp
spectral function. We represent this environment by a quantum
harmonic oscillator that has internal relaxation. In this case we
solve the Lindblad master equation for the system of coupled
qubit and oscillator and find that the results are qualitatively
similar to the solution of the BR equation with properly chosen
relaxation rates.

In the second example, we revisited the LZ problem. In this
case, the modification of the matrix elements for transitions
between eigenstates of the qubit Hamiltonian is essential, even
though it was not always taken into account [35,37]. The
eigenstate basis that is necessary to use in the treatment of
interaction of the qubit with its environment is also convenient
for numerical evaluation because in this basis the system
behavior during the LZ level crossing is represented by a
smooth function that quickly reaches its long-time asymptotic
value.

For a qubit weakly coupled to the environment, the evolu-
tion, long after the level crossing, reduces to suppression of
the off-diagonal elements of the density matrix and relaxation
of the excited state to the ground state, the latter is accurately
described by the rate equations. For the fluctuating field along
the asymptotic direction of the control field, the relaxation rate
decreases as the level separation increases due to suppression
of the matrix elements of qubit transition between eigenstates
caused by the environment. However, this suppression is not
sufficient to cut the relaxation in the long time limit, and
the relaxation results in a power-law decay of the excited
state, until the separation between the qubit states exceeds
the ultraviolet cutoff of the environment.

At finite temperature, in addition to enhancement of
decoherence rates for the qubit, the excitation processes
produce transitions from the ground to the excited qubit state,
eventually increasing the probability for the qubit to appear
in the excited state after the transition. The BR equations
accurately describe the crossover for the LZ transition in an
isolated quantum system, Eq. (33), with unitary evolution, to
the open system at arbitrary temperature; see Sec. IV.

Furthermore, we compare the results obtained from the
generalized BR equations with that from the Lindblad master
equation. In particular, we focused on the case of pure dephas-
ing Lindblad superoperators [7,8], which are equivalent to the
longitudinal coupling of the environment (fluctuating field of
the environment is along the control field). We found that the
two results are consistent in the high-temperature limit, when
the Lindblad and BR equations are equivalent, but application
of the Lindblad equation for a system coupled to a low-
temperature environment may result in unphysical solutions.

Finally, we note that the generalization of the BP equations
can be applied to accurately evaluate the fidelity of quantum
gates. By taking into account proper modification of the transi-
tion and dephasing rates caused by time-varying parameters in
the Hamiltonian, optimization techniques for gate operations
can be further improved. Similarly, the BR equations for a
time-dependent Hamiltonian are also required for accurate
description of protocols for adiabatic quantum computing and
the Berry phase measurement in recent experiments [65].
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APPENDIX A: SOLUTION OF RATE EQUATIONS FOR
THE AVOIDED LEVEL CROSSING

Here we evaluate the integral in Eq. (42). Notice that while
the integral over t ′ in the exponent,

I1(t) =
∫ ∞

t


0(t ′) coth
W (t ′)

2T
dt ′, (A1)

originates on long interval from ∼�/v to Ec/v, the second
integral converges for time |t | � T/v; for not very large
temperatures, we can replace the low limit of integration in
Eq. (A1) with t = 0. In this case, we have

P∞ = e−I1(0)I2, I2 =
∫ ∞

−∞

e(t)dt, (A2)

where W (t) =
√

�2+v2t2+v2�2/(�2+v2t2)2 � √
�2+v2t2,


e(t) = GLZ(t)J (W (t))N (W (t))/2, 
0 = GLZ(t)J (W (t))/2,
with GLZ � �2/(�2+v2t2) and J (ω) = 2παω exp(−ω/Ec).
First, let us change the integration variable t = √

s2 − �2/v

such that dt = s/v
√

s2 − �2ds and the integral in the expo-
nential then reads

I1(0) =
∫ ∞

�

πα�2

v
√

s2 − �2
coth

s

2T
exp(−s/Ec)ds. (A3)

This integral can be evaluated in two cases. First, we consider
the low-temperature limit T →0, in which the hyperbolic
cotangent coth s/2T →1 + 2 exp(−s/T ). Therefore, an inte-
gral is obtained,

I1(0) = πα�2

v
[2K0(�/T ) + K0(�/Ec)] , (A4)

where K0(x) is the zeroth-order modified Bessel function
of the second kind with the following asymptotes: K0(x) �√

π/2x exp(−x) for x � 1 and K0(x) � − ln(xeγ /2) for
x � 1 and γ � 0.577 is the Euler constant. As a result, for
T � �, we have

I1(0) � πα�2

v

[√
2πT

�
e−�/T + ln(2Ec/�) − γ

]
. (A5)

The first term can be disregarded for T � �.
At higher temperatures, there is a stronger contribution to

I1(0) originating from the short time interval |t | � T/v. We
can estimate this contribution as

δI1 = πα�2

v

∫ ∞

�

2T

s
√

s2 − �2
ds = πα�2

v

πT

�
. (A6)

We emphasize that this is the contribution which we do
not evaluate correctly when replace Eq. (42) with Eq. (A2).
Therefore, we can treat the above expression for δI1 as the
boundary of applicability of our approximation, indicating that
transition from Eq. (42) to (A2) is justified not for very high
temperatures, such that δI1 � 1.

Next, we evaluate the integral

I2 =
∫ ∞

−∞

e(t)dt = 2

∫ ∞

�

ds
2πα�2

v
√

s2 − �2

exp(−s/Ec)

exp(s/T ) − 1
.

(A7)

As before, we first consider the low-temperature limit, T �
�, in which we approximate 1/[exp(s/T ) − 1] � exp(−s/T ).
Then the integral becomes

I2 � 2πα�2

v
K0(�/T ) � 2πα�2

v

√
πT

2�
e−�/T . (A8)

In the high-temperature limit, we utilize 1/[exp(s/T ) − 1] �
T/s, and we obtain

I2 = π2αT �

v
. (A9)

This equation is valid for high-temperature limit T � �,
provided that our substitution of Eq. (42) with (A2) is justified,
or αT � v/�.

To sum up, we evaluated P∞ in the limits of low and
moderately high temperatures. The results are presented by
Eqs. (43) and (44).

APPENDIX B: SOLUTION OF RATE EQUATIONS FOR
THE AVOIDED LEVEL CROSSING FOR AN

ENVIRONMENT WITH LONGITUDINAL COUPLING

For longitudinal coupling, the transition probability P∞ in
the limit of low temperatures T � � can be evaluated similarly
to the calculations in Appendix A. We replace Eq. (46), where
the integral over time t converges fast for |t | � T/v, by the
expression

P∞ = I2e
−I1 , I2 =

∫ ∞

−∞

e(t)dt, (B1)

I1 =
∫ ∞

0

l(t)dt, (B2)

where in the last integral we take the lower limit of integration
to zero and coth W/2T →1. In the above expression, W (t) =√

�2 + v2t2 + v2�2/(�2 + v2t2)2 � √
�2 + v2t2, 
e(t) =

GLZ(t)J (W (t))N (W (t))/2, 
0 = GLZ(t)J (W (t))/2, with
GLZ � v2�2/(v2t2 + �2)3 and J (ω) = 2παω exp(−ω/Ec).
Similarly, let us change the integration variable
t = √

s2 − �2/v such that dt = s/v
√

s2 − �2ds. The
integral I1 then reads

I1 =
∫ ∞

�

πα�2v

s4
√

s2 − �2
ds = 2παv

3�2
. (B3)

We note that this integral converges fast and the high-energy
cutoff of the environment can be omitted. Similarly, the integral
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over 
e(t) can be rewritten as

I2 =
∫ ∞

�

2πα�2v

s4
√

s2 − �2

ds

exp(s/T ) − 1

�
∫ ∞

�

√
2πα�3/2v

s4
√

s − �
exp (−s/T ) ds

� αv

√
π3

32T �3
exp (−�/T ) . (B4)

In the high-temperature limit, we follow a different ap-
proach. We assume that the environment is at high temperature
and the relaxation rates are enhanced by factor T/W (t).
In this case, we also have a fast convergence of integrals

∫

0(t)dt at |t | � �/v and for T � �, we can simplify the

rate equation (41) to

dm

dt
= −2παT

v2�2

W 2(t)E4(t)
m(t). (B5)

This equation can be integrated to find m(t) with initial condi-
tion m(−∞) = 1 and used to define P∞ = [1 − m(+∞)]/2:

P∞ = 1 − e−I3

2
, I3 = 2παT

∫ ∞

−∞

v2�2dt

W 2(t)E4(t)
. (B6)

For v � �2, we obtain

I3 = 3π2

4

αT v

�3
, (B7)

arriving to Eq. (48).
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