
PHYSICAL REVIEW A 89, 052101 (2014)

Relativistic spin operators in various electromagnetic environments

Heiko Bauke,1 Sven Ahrens,1,2 Christoph H. Keitel,1 and Rainer Grobe1,2

1Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
2Intense Laser Physics Theory Unit and Department of Physics, Illinois State University, Normal, Illinois 61790-4560, USA

(Received 3 March 2014; published 1 May 2014)

Different operators have been suggested in the literature to describe the electron’s spin degree of freedom
within the relativistic Dirac theory. We compare concrete predictions of the various proposed relativistic spin
operators in different physical situations. In particular, we investigate the so-called Pauli, Foldy-Wouthuysen,
Czachor, Frenkel, Chakrabarti, Pryce, and Fradkin-Good spin operators. We demonstrate that when a quantum
system interacts with electromagnetic potentials the various spin operators predict different expectation values.
This is explicitly illustrated for the scattering dynamics at a potential step and in a standing laser field and also
for energy eigenstates of hydrogenic ions. Therefore, one may distinguish between the proposed relativistic spin
operators experimentally.
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I. INTRODUCTION

Elementary particles such as the electron carry some
internal angular-momentum-like degree of freedom that is
called spin. It is well understood that angular momentum
is intrinsically tied to the group-theoretic structure of (rel-
ativistic) quantum mechanics [1]. The understanding of the
physical nature of the spin, however, is still incomplete [2–4].
Historically, the concept of spin was introduced in order
to explain some experimental findings such as the emission
spectra of alkali metals and the Stern-Gerlach experiment.
A direct measurement of the spin (or more precisely the
electron’s magnetic moment), however, was missing until
the pioneering work by Dehmelt [5]. Pauli and Bohr even
claimed that the spin of free electrons was impossible to
measure for fundamental reasons [6]. Recent renewed interest
in fundamental aspects of the spin [7] arose, for example, from
high-precision measurement experiments for the electron’s
magnetic moment [8–13], the growing field of (relativistic)
quantum information theory [14–21], quantum spintronics
[22], spin effects in graphene [23–25], and light-matter
interactions at relativistic intensities [26–30].

Although the spin is regarded as a fundamental property of
the electron, there is no universally accepted spin operator. In
fact, one can find in the literature several proposals of different
spin operators for the Dirac theory [7]. These operators are
often motivated by abstract group-theoretic considerations
rather than by experimental evidence. In our view, there are
very few works that consider specific experimental schemes
and predict concrete expectation values for spin observables in
a relativistic setting. Such predictions, however, are required to
judge which of the proposed relativistic generalizations of the
spin or (equivalently) of the position operators are best suited
to describe experimental observations. For example, a paper
by Czachor [14] proposed to use an Einstein-Podolsky-Rosen
type of experiment and the associated degree of violation of
the Bell inequality to test various relativistic concepts, such
as the relativistic position operator. This work also predicts
that the center of mass and the center of charge might not
necessarily agree for a relativistic electron leading to possible
implications for quantum cryptography. Another example is
the work [31] by Choi et al., who studied spin entanglement
of massive Dirac particles.

In this work we examine seven proposals for the relativistic
spin operator, which we tentatively call here the Pauli, the
Foldy-Wouthuysen, the Czachor, the Frenkel, the Chakrabarti,
the Fradkin-Good, and the Pryce spin operators. Our aim is
to investigate and to compare their mathematical properties
and to analyze how different definitions of relativistic spin
operators may lead to different predictions for spin expectation
values in various experimental setups. The seven spin operators
discussed in this work share the same nonrelativistic limit,
obtained by assuming that the particle’s kinematic momentum
is small compared to m0c, with m0 denoting the particle’s
rest mass and c the speed of light. Thus, any differences in the
spin’s properties are purely relativistic effects and require most
likely accelerated particles. While several works have tried to
relate the different functional forms of these operators to each
other, a study that shows how the predictions depend on the
choice of the relativistic spin operator for an electron whose
dynamical evolution is governed by external electromagnetic
fields is lacking. This requires a concrete computational
analysis yielding concrete predictions about expectation values
that can be directly compared with experimental results. Using
numerical wave function solutions to the time-dependent Dirac
equation, we evaluate and compare the various predictions that
result from different relativistic spin operators. In this way we
aim to build a bridge between theoretical considerations and
experiment.

A relativistic spin operator may be introduced by splitting
the undisputed total angular momentum operator Ĵ into an
external part L̂ and an internal part Ŝ commonly referred to as
the orbital angular momentum and the spin, viz., Ĵ = L̂ + Ŝ.
Because the orbital angular momentum is related to the
position operator r̂ and the momentum operator p̂ = −i∇
(units are used in this paper for which � = 1) via L̂ = r̂ × p̂,
different definitions of the spin operator Ŝ imply different
relativistic position operators r̂ . The rather fundamental
question which mathematical operators actually correspond
to experimentally measured observables has become more
relevant as laser-particle experiments have entered the regime
in which the particle must be described in a fully relativistic
framework [27,32].

This paper is organized as follows. In Sec. II we briefly
review the Dirac equation and introduce some notation that
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will be utilized in Sec. III, where the seven spin operators
are defined and their mathematical properties are analyzed.
The expectation values of the spin operators are evaluated
for relativistic scattering dynamics in Sec. IV and for the
bound states of hydrogenic ions in Sec. V. We formulate our
conclusions in Sec. VI.

II. DIRAC EQUATION

A Lorentz invariant quantum mechanical description of the
motion of an electron is given by the time-dependent Dirac
equation. For a particle of rest mass m0 and charge q moving in
the electromagnetic potentials φ(r,t) and A(r,t) it is given by

i
∂�(r,t)

∂t
= Ĥ�(r,t)

= {cα · [ p̂ − q A(r,t)]

+ qφ(r,t) + m0c
2β}�(r,t), (1)

with the matrices α = (α1,α2,α3)T and β. These 4 × 4
matrices obey the algebra

α2
h = β2 = 1, αhαk + αkαh = 2δh,k, αhβ + βαh = 0.

(2)

To briefly discuss our notation and abbreviations, we use the
Dirac representation for the matrices αh and β such that

αh =
(

0 σh

σh 0

)
, β =

(
I2 0
0 −I2

)
, (3)

where the three 2 × 2 Pauli matrices σ = (σ1,σ2,σ3)T are
given by

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i

i 0

)
, σ3 =

(
1 0
0 −1

)
(4)

and I2 denotes the 2 × 2 identity matrix. The free-particle
Dirac Hamiltonian with A(r,t) = 0 and φ(r,t) = 0 will be de-
noted by Ĥ0. The doubly degenerate spectrum of the free Dirac
Hamiltonian is given by spec(Ĥ0) = ±cp0( p), where p0( p)
is the scaled positive energy p0( p) = (m2

0c
2 + p2)1/2 for the

momentum vector p. We will also use the operator p̂0 to denote

p̂0 =
√

m2
0c

2 + p̂2. (5)

For a given momentum eigenvalue p, the associated
eigenvectors for the positive and negative energies ±p0( p)c
can be chosen as

φ+
χ , p(r,t) = uχ , pe

i[ p·r−cp0( p)t], (6a)

φ−
χ , p(r,t) = vχ , pe

i[ p·r+cp0( p)t], (6b)

where we have introduced the vectors

uχ , p =
√

m0c + p0( p)

2p0( p)

(
χ

σ · p
m0c+p0( p)χ

)
, (7a)

vχ , p =
√

m0c + p0( p)

2p0( p)

(− σ · p
m0c+p0( p)χ

χ

)
. (7b)

The quantity χ denotes an arbitrary complex two-component
vector with χ † · χ = 1. Note that while (6a) corresponds to

states that travel in the direction given by the vector p, the states
given by (6b) travel in the opposite direction of p. The twofold
degenerate eigenspace of Ĥ0 for each eigenvalue cp0 can
be spanned by the two (mutually orthogonal) eigenfunctions
φ+

χ , p(r,t) and φ+
χ⊥, p(r,t), where the normalized vector χ⊥ is

orthogonal to χ .
Obviously, any superposition of the two functions φ+

χ, p(r,t)
and φ+

χ⊥, p(r,t) is also an energy eigenstate. Analogous state-
ments hold for the negative-energy eigenstates. The functions
φ±

χ , p(r,t) and φ±
χ⊥, p(r,t) form a basis, thus each wave packet

can be written as a superposition of φ±
χ, p(r,t) and φ±

χ⊥, p(r,t).
In the course of our presentation, it will be useful to introduce
the energy subspace operators

	̂± = 1

2

(
1 ± Ĥ0

cp̂0

)
(8)

that single out positive- and negative-energy contributions
from an arbitrary superposition.

III. SEVEN VARIATIONS ON SPIN

In this section we will define seven different spin operators
referred to as Pauli, Foldy-Wouthuysen, Czachor, Frenkel,
Chakrabarti, Pryce, and Fradkin-Good spin operators. Each of
these operators is characterized by a triplet Ŝ = (Ŝ1,Ŝ2,Ŝ3)T.
For simplicity, we will also denote the spin component in
a given n direction by Ŝn defined as Ŝn = n · Ŝ. For some
calculations it will be beneficial to parametrize the vector n
as n = (sin ϑ cos ϕ, sin ϑ sin ϕ, cos ϑ)T and to define the two
orthogonal vectors

χ↑ =
(

cos(ϑ/2)
sin(ϑ/2)eiϕ

)
, χ↓ =

(− sin(ϑ/2)e−iϕ

cos(ϑ/2)

)
, (9)

which are the eigenvectors of n · σ . Furthermore, we define
the triplet of operators �̂ = (�̂1,�̂2,�̂3)T via

�̂h = −iαjαk, (10)

with (h,j,k) being a cyclic permutation of (1,2,3). Its
individual components fulfill the usual angular momentum
commutator relationship [�̂h,�̂j ] = 2iεh,j,k�̂k with the Levi-
Civita symbol εh,j,k . This operator is normalized to �̂† · �̂ = 3
and its components have the doubly degenerate eigenvalues
±1. The standard representation of �̂ is given by

�̂h =
(

σh 0
0 σh

)
. (11)

Various spin operators can be defined in terms of the Pauli-
Lubanski vector Ŵ and the related scalar operator Ŵ0.
Introducing the generator of the Lorentz boosts

N̂ = 1

2c2
(rĤ0 + Ĥ0r), (12)

Ŵ and Ŵ0 are defined as

Ŵ = 1

c
Ĥ0 Ĵ + c p̂ × N̂ = 1

4c
(Ĥ0�̂ + �̂Ĥ0), (13)

Ŵ0 = p̂ · Ĵ = 1
2 p̂ · �̂. (14)

With these definitions we are prepared now to summarize
briefly the proposed spin operators, to give their explicit
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TABLE I. Brief summary of the proposed spin operators’ definitions and their mathematical properties. The table indicates from left to
right the definition of the various spin operators, if they commute with the free Dirac Hamiltonian, if they obey the angular momentum algebra,
if eigenvalues are ±1/2, and if the operators are related to the Pauli spin operator via an orthogonal transformation.

Definition Ŝ = Ŝ
†

[Ĥ0,Ŝ] = 0 [Ŝh,Ŝj ] = iεh,j,kŜk Eigenvalues equal to ± 1/2 Ŝ = T̂ ŜPT̂
−1

ŜP = 1
2 �̂ yes no yes yes

ŜFW = 1
2 �̂ + iβ

2p̂0
p̂ × α − p̂×(�̂× p̂)

2p̂0(p̂0+m0c) yes yes yes yes yes

ŜCz = m2
0c2

2p̂2
0

�̂ + im0cβ

2p̂2
0

p̂ × α + p̂·�̂
2p̂2

0
p̂ yes yes no no no

ŜF = 1
2 �̂ + iβ

2m0c
p̂ × α yes yes no no no

ŜCh = 1
2 �̂ + i

2m0c
α × p̂ + p̂×(�̂× p̂)

2m0c(m0c+p̂0) no no yes yes yes

ŜPr = 1
2 β�̂ + 1

2 �̂ · p̂(1 − β) p̂
p̂2 yes yes yes yes yes

ŜFG = 1
2 β�̂ + 1

2 �̂ · p̂
(

Ĥ0
cp̂0

− β
) p̂

p̂2 yes yes no yes no

expressions, and to discuss some of their properties. An
overview of the proposed spin operators is also given in Table I.

A. Pauli spin operator

The Pauli spin operator [33–38] is a direct generalization
of the spin operator of nonrelativistic quantum mechanics.
Expressing the total angular momentum operator Ĵ as Ĵ =
r × p̂ + �̂/2, it appears quite natural to identify r × p̂ as the
orbital angular momentum and to define

ŜP = 1
2 �̂ (15)

as the relativistic Pauli spin operator. In many standard
textbooks on relativistic quantum dynamics [34,37,38] this
operator is considered as the relativistic spin operator. The
energy shift for a hydrogenic ground state ψ↑ (see Sec. V)
that is exposed to a weak homogeneous magnetic field B =
(0,0,B)T (anomalous Zeeman effect) relative to the field-free
case is, with the atomic number Z [39,40],

Bq

m0

1

6

(
1 + 2

√
1 − Z2α2

el

) = Bq

m0
〈ψ↑|ŜP,3|ψ↑〉 (16)

(with αel denoting the fine-structure constant), which is often
brought up as an argument for ŜP representing the relativistic
spin [34].

The components of the Pauli spin operator are generators
of the SU(2) algebra and fulfill the angular momentum algebra

[ŜP,h,ŜP,j ] = iεh,j,kŜP,k; (17)

the total squared length is Ŝ2
P = 3/4. The degenerate eigenval-

ues sP and the normalized orthogonal eigenvectors sP of ŜP,n

are given by

sP↑,1 = uχ↑,0e
i p·r , sP↑,2 = vχ↑,0e

i p·r for sP↑ = 1
2 ,

sP↓,1 = uχ↓,0e
i p·r , sP↓,2 = vχ↓,0e

i p·r for sP↑ = − 1
2 ,

(18)

with χ↑ and χ↓ as defined in (9), which are also the
eigenvectors of the nonrelativistic Pauli spin operator ŜP,nr =
σ̂/2. The relativistic Pauli spin operator does not commute
with the free Hamiltonian,

[Ĥ0,ŜP,n] = icn( p̂ × α). (19)

As a consequence of this nonvanishing commutator, even for
a free particle the expectation value of ŜP,n can evolve non-
trivially in time, leading, for example, to the zitterbewegung
[41–43] of the Pauli spin, if the quantum state is a superposition
of states of positive- and negative-energy solutions of the free
Dirac Hamiltonian. This is often considered an undesirable
feature for a relativistic spin operator because an intrinsic
observable should be constant when no forces act.

B. Foldy-Wouthuysen spin operator

A second definition of the spin is based on the Foldy-
Wouthuysen transformation [44–48], which is a unitary
transformation T̂FW that turns the Dirac equation (1) into
block-diagonal form, reducing positive- and negative-energy
states to two-component wave functions. For the free-particle
Hamiltonian Ĥ0 Foldy and Wouthuysen showed that

T̂ −1
FWĤ0T̂FW = cβp̂0, (20)

with

T̂FW = p̂0 + m0c − βα · p̂√
2p̂0(p̂0 + m0c)

. (21)

Furthermore, Foldy and Wouthuysen postulated that the spin
operator in the transformed representation is ŜP indeed,
leading to the Foldy-Wouthuysen spin operator

ŜFW = T̂FW ŜPT̂
−1

FW (22)

or more explicitly

ŜFW = 1

2
�̂ + iβ

2p̂0
p̂ × α − p̂ × (�̂ × p̂)

2p̂0(p̂0 + m0c)
. (23)

Two years before the celebrated Foldy-Wouthuysen paper [44]
the equivalent expression

ŜFW = 1

2cp̂0

(
m0c

2�̂ − icβα × p̂ + c2 p̂ · �̂

cp̂0 + m0c2
p̂

)
(24)

for the Foldy-Wouthuysen spin operator was given by Pryce in
[49]. In this publication it was also shown that this spin operator
is closely related to the Czachor and the Frenkel spin operators
via the associated position operators. A further representation
of the Foldy-Wouthuysen spin operator (21) can be written in
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terms of the Pauli-Lubandski vector [48]

ŜFW = 1

m0c

(
cp̂0

Ĥ0
Ŵ − Ŵ0

p̂0 + m0c
p̂

)
. (25)

A fourth equivalent expression that is sometimes given in the
literature is given by [7]

ŜFW = p̂0

2m0c
�̂ − p̂ · �̂

2m0c(m0c + p̂0)
p̂ − p̂ × α

iĤ0

2m0c2p̂0
.

(26)

As ŜFW is unitarily equivalent to ŜP, its components fulfill
the same commutator relationships. From [cβp̂0,ŜP] = 0 it
follows [Ĥ0,ŜFW] = 0. Thus, the Foldy-Wouthuysen spin
operator is conserved for free particles and ŜFW,n and Ĥ0 have
a common set of eigenvectors. The degenerate eigenvalues sFW

and the normalized orthogonal eigenvectors sFW of ŜFW,n and
Ĥ0 are given by

sFW↑,1 = uχ↑, pe
i p·r , sFW↑,2=vχ↑, pe

i p·r for sFW↑ = 1
2 ,

sFW↓,1 = uχ↓, pe
i p·r , sFW↓,2 = vχ↓, pe

i p·r for sFW↓ = − 1
2 .

(27)

The eigenvectors sFW↑,1 and sFW↓,1 have the positive-energy
eigenvalue cp0( p), whereas sFW↑,2 and sFW↓,2 have the
negative-energy eigenvalue −cp0( p).

C. Czachor spin operator

The third spin vector has been discussed by Czachor [14],
but already appeared in an earlier work by Pryce [49]. It can
be defined on the basis of the spatial components of the Pauli-
Lubanski vector Ŵ . If we multiply the vector Ŵ with the
inverse of the free Dirac Hamiltonian, we can define the Pauli-
Lubanski-based spin operator

ŜCz = ŴcĤ−1
0 . (28)

Using energy subspace projection operators (8), we can rewrite
this particular spin operator in the form

ŜCz = 1
2 (	̂+�̂	̂+ + 	̂−�̂	̂−). (29)

Using the projector-based representation (29), one can easily
see that the individual spin components cannot satisfy the
usual angular momentum commutator relationships. For a
comparison with the other spin vectors, we rewrite ŜCz also in
the more explicit form

ŜCz = m2
0c

2

2p̂2
0

�̂ + im0cβ

2p̂2
0

p̂ × α + p̂ · �̂

2p̂2
0

p̂. (30)

While the Czachor spin operator has the nice feature that it
commutes with the free Dirac Hamiltonian

[Ĥ0,ŜCz,n] = 0, (31)

its components do not fulfill the angular momentum algebra.
In fact, the commutator relation

[ŜCz,h,ŜCz,j ] = iεh,j,k

(
ŜCz,k − �̂ · p̂

2p̂2
0

p̂k

)
(32)

holds. Consequently, the absolute values of the Czachor spin
operator’s eigenvalues are not equal to 1/2. The degenerate
eigenvalues sCz and the non-normalized orthogonal eigenvec-
tors sCz of ŜCz,(0,0,1)T are given by

sCz↑,1 =

⎛
⎜⎜⎝

p0( p⊥)2 + p0( p⊥)p0( p)
pz(px + ipy)

0
m0c(px + ipy)

⎞
⎟⎟⎠ei p·r ,

sCz↑,2 =

⎛
⎜⎜⎝

−pz(px − ipy)
p0( p⊥)2 − p0( p⊥)p0( p)

m0c(px − ipy)
0

⎞
⎟⎟⎠ei p·r

for sCz↑ = p0( p‖)

2p0( p)
,

sCz↓,1 =

⎛
⎜⎜⎝

−pz(px − ipy)
p0( p⊥)2 + p0( p⊥)p0( p)

m0c(px − ipy)
0

⎞
⎟⎟⎠ei p·r ,

sCz↓,2 =

⎛
⎜⎜⎜⎜⎜⎝

p0( p⊥)2 − p0( p⊥)p0( p)
+pz(px + ipy)

0
m0c(px + ipy)

⎞
⎟⎟⎟⎟⎟⎠ei p·r

for sCz↓ = − p0( p‖)

2p0( p)
, (33)

where p⊥ and p‖ denote the momentum components per-
pendicular and parallel to the spin orientation n = (0,0,1)T.
Eigenfunctions for other spin orientations may be found by an
appropriate Lorentz rotation. The eigenvalues are functions of
the momenta that are parallel to the polarization direction of
the eigenstate. In particular, the absolute values of the Czachor
spin operator’s eigenvalues are less than 1/2.

As the Czachor spin operator and the Pauli spin operator
have different eigenvalues, the Czachor spin operator cannot
be related to the Pauli spin operator via a similarity transfor-
mation. This means that there is no operator T̂Cz such that ŜCz

equals T̂Cz ŜPT̂
−1

Cz . As a consequence of the definition (29), the
operator identities

	̂+ŜP,n	̂
+ = 	̂+ŜCz,n	̂

+, (34a)

	̂−ŜP,n	̂
− = 	̂−ŜCz,n	̂

− (34b)

hold. Consequently, the Pauli and the Czachor spin operators
yield the same expectation values when applied to the
subspaces of the eigenstates (6) of the free-particle Dirac
Hamiltonian Ĥ0 with positive energy or negative energy,
respectively.

We also note that the eigenfunctions of the Foldy-
Wouthuysen spin operator with momentum strictly perpen-
dicular or strictly parallel to the spin orientation n are
eigenfunctions of the Czachor spin operator, too. Furthermore,
the total squared length of the spin operator ŜCz is Ŝ2

Cz =
(3m2

0c
2 + p̂2)/(4m2

0c
2 + 4 p̂2). The fact that it is shorter than
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the squared length of the Pauli operator Ŝ2
P = 3/4 was

associated with the Lorentz contraction in [14]. In particular,
for an ultrarelativistic particle, that is, | p| → ∞, we have
Ŝ2

Cz → 1/4. In this limit, the spin components in the two
directions perpendicular to p vanish.

D. Frenkel spin operator

A fourth definition of the spin is the quantum mechanical
analog of a classical spin vector as studied originally by
Frenkel [49–53]

ŜF = 1

2
�̂ + iβ

2m0c
p̂ × α. (35)

It also commutes with the free Dirac Hamiltonian

[Ĥ0,ŜF,n] = 0, (36)

but similarly to the Czachor operator it does not obey the
angular momentum algebra, viz.,

[ŜF,h,ŜF,j ] = iεh,j,k

(
ŜF,k + �̂ · p̂

2m2
0c

2
p̂k

)
. (37)

The degenerate eigenvalues sF and the normalized orthogonal
eigenvectors sF of ŜF,n are given by

sF↑,1 = uχ↑, p⊥ei p·r , sF↑,2 = vχ↑, p⊥ei p·r

for sF↑ = p0( p⊥)

2m0c
,

sF↓,1 = uχ↓, p⊥ei p·r , sF↓,2 = vχ↓, p⊥ei p·r

for sF↓ = −p0( p⊥)

2m0c
, (38)

where p⊥ is the component of the momentum vector p that
is perpendicular to n. Because the Frenkel spin operator and
the Pauli spin operator have different eigenvalues, the Frenkel
spin operator cannot be related to the Pauli spin operator via
a similarity transform. This means that there is no operator
T̂F such that ŜF equals T̂F ŜPT̂

−1
F . We also note that the

total squared length of the Frenkel spin operator is Ŝ2
F =

(3m2
0c

2 + 2 p̂2)/4m2
0c

2. The magnitude of the eigenvalues
and the total squared length Ŝ2

F increase to infinity as the
momentum grows.

E. Chakrabarti spin operator

A fifth proposal for the spin operator has been introduced
by Chakrabarti [54–57]. It is defined via the similarity
transformation

ŜCh = T̂Ch ŜPT̂
−1

Ch (39)

that is induced by the antiunitary Lorentz boost operator

T̂Ch = p̂0 + m0c + α · p̂
[2m0c(p̂0 + m0c)]1/2

(40a)

and its inverse, which is explicitly given by

T̂ −1
Ch = p̂0 + m0c − α · p̂

[2m0c(p̂0 + m0c)]1/2
. (40b)

The explicit form of the (non-Hermitian) Chakrabarti spin
operator follows as

ŜCh = 1

2
�̂ + i

2m0c
α × p̂ + 1

2m0c(m0c + p̂0)
p̂ × (�̂ × p̂).

(41)

In [58,59] the so-called Gürsey-Ryder operator

ŜCh = p̂0

2m0c
�̂ − p̂ · �̂

2m0c(m0c + p̂0)
p̂ − i

2m0c
p̂ × α (42)

was considered, which is just another algebraic expression for
the Chakrabarti spin operator.

The antiunitary similarity transformation operator T̂Ch is
also Hermitian and β-pseudo-unitary, that is, T̂ †

Ch = βT̂ −1
Ch β−1,

which may be simplified to T̂Ch = βT̂ −1
Ch β. The operator

T̂Ch transforms the operator β(p̂0 + α · p̂) into a diagonal
momentum-independent form, viz.,

T̂Chβ(p̂0 + α · p̂)T̂ −1
Ch = m0cβ. (43)

Similarly, when applied to the free Dirac Hamiltonian Ĥ0 the
operator T̂Ch makes it almost diagonal, viz.,

T̂ChĤ0T̂
−1

Ch = cβp̂0 + ĥ, (44)

where ĥ is in the Dirac representation the matrix

ĥ = 2c

(
0 0

σ · p̂ 0

)
. (45)

Here 0 denotes a 2 × 2 zero matrix. Note that the transformed
Hamiltonian (44) is not Hermitian as a consequence of T̂Ch not
being unitary.

We also note that the operator β ŜCh is Hermitian with re-
spect the usual scalar product, thus ŜCh is β-pseudo-Hermitian.
Because ŜCh originates from a similarity transformation of ŜP

it satisfies

[ŜCh,h,ŜCh,j ] = iεh,j,kŜCh,k; (46)

its squared length is Ŝ2
Ch = 3/4, but its time evolution is

nontrivial because of the nonvanishing commutator

[Ĥ0,ŜCh,n] = n ·
[
iα × p̂

(
p̂0

m0
+ cβ

)
+ p̂ × (�̂ × p̂)

m0

]
.

(47)

The degenerate eigenvalues sCh and the normalized eigenvec-
tors sCh of ŜCz,n follow directly via sCh = T̂ChsP [see (18)] and

052101-5



BAUKE, AHRENS, KEITEL, AND GROBE PHYSICAL REVIEW A 89, 052101 (2014)

are given by

sCh↑,1 = uχ↑, pe
i p·r , sCh↑,2 = vχ↑,− pe

i p·r for sCh↑ = 1
2 ,

sCh↓,1 = uχ↓, pe
i p·r , sCh↓,2 = vχ↓,− pe

i p·r for sCh↓ = − 1
2 .

(48)

Note that the Chakrabarti spin operator shares two of its
eigenvectors with the Foldy-Wouthuysen spin operator, viz.,
sCh↑,1 = sFW↑,1 and sCh↓,1 = sFW↓,1. Therefore, the Foldy-
Wouthuysen spin operator and the Chakrabarti spin operator
are equivalent when applied to the subspace of the eigenstates
(6a) of the free-particle Dirac Hamiltonian with positive
energy. In other words, the operator identity

ŜFW,n	̂
+ = ŜCh,n	̂

+ (49)

holds, which also follows by comparing the expressions (26)
and (42) for the Foldy-Wouthuysen and the spin operators.
In contrast, the operators ŜFW,n	̂

− and ŜCh,n	̂
− are not

equivalent, however, the following operator equality holds:

	̂−ŜFW,n	̂
− = 	̂−ŜCh,n	̂

−. (50)

As a consequence of the non-Hermiticity, the eigenvectors
of the Chakrabarti spin operator are not all pairwise orthogonal
to each other, in particular not the states sCh↑,2 and sCh↓,2,
which have different spin orientations. Furthermore, expecta-
tion values of the Chakrabarti spin operator can lie outside
the spectral range between −1/2 and 1/2. For example, for
the Gaussian wave packet of momentum width σ and mean
momentum p̄ = (p̄x,0,0)T,

�(r) =
∫

1

[(2π )
√

2πσ ]3/2
exp

(
i p · r − ( p − p̄)2

4σ 2

)

×

⎛
⎜⎝

1
0
0
0

⎞
⎟⎠d3p, (51)

we obtain for the expectation value of the Chakrabarti spin in
the z direction

〈�|ŜCh,3|�〉 = 1

2
+ 1√

2πσ

∫
exp

(
− (px − p̄x)2

2σ 2

)

× p2
x/(m0c)2

2
√

p2
x/(m0c)2 + 1

dpx. (52)

In the limit σ → 0 we find

〈�|ŜCh,3|�〉 = 1

2
+ p̄2

x/(m0c)2

2
√

p̄2
x/(m0c)2 + 1

, (53)

which is strictly larger than 1/2 and grows in leading order
linearly as |p̄x | → ∞. This example also illustrates that the
expectation values 〈�|ŜFW,n|�〉 and 〈�|ŜCh,n|�〉 are not equal
for general states, as it was claimed recently in [57].

F. Pryce spin operator

A sixth proposal for a relativistic spin operator goes back
to Pryce [49,58,60,61], who introduced the operator

ŜPr = 1

m0c

(
Ŵ − Ŵ0

Ĥ0/c + m0c
p̂

)
, (54)

which was applied in the context of quantum field theory
[62] and relativistic quantum information [63]. Utilizing the
definitions (13) and (14) the Pryce spin operator’s form is given
by

ŜPr = 1

2
β�̂ + cγ 5(β + 1)

2(Ĥ0 + m0c2)
p̂, (55)

where the 4 × 4 matrix γ 5 = iα3α2α1 is in the Dirac represen-
tation defined as

γ 5 =
(

0 I2

I2 0

)
. (56)

The equivalent expression for the Pryce spin operator

ŜPr = 1

2Ĥ0

(
m0c

2�̂ − icβα × p̂ + c2 p̂ · �̂

Ĥ0 + m0c2
p̂

)
(57)

was given in [49], which is almost identical to the definition
(24) of the Foldy-Wouthuysen spin operator except that cp̂0

has been replaced by Ĥ0. Using the operator identities

Ĥ−1
0 = α · p̂ + m0cβ

c p̂2 (58)

and

(Ĥ0 + m0c
2)−1 = α · p̂ + m0c(β − 1)

c p̂2 , (59)

we may turn (55) and (57) into a form that is more convenient
for actual calculations, yielding

ŜPr = 1

2
β�̂ + γ 5(β + 1)α · p̂

2 p̂2 p̂ (60)

or equivalently

ŜPr = 1

2
β�̂ + 1

2
�̂ · p̂(1 − β)

p̂

p̂2 . (61)

This form is unexpectedly simple and was suggested indepen-
dently from Pyrce by Stech in [64]. This form suggests that the
relativistic Pryce spin operator is a function of the momentum
operator’s direction only, not depending on the mass m0, the
speed of light c, or the amount of the momentum. In the Dirac
representation, the operator is block diagonal, viz.,

ŜPr = 1

2
β�̂ + 1

p̂2

(
0 0
0 σ · p̂

)
p̂. (62)

The spin operator ŜPr fulfills the angular momentum algebra

[ŜPr,h,ŜPr,j ] = iεh,j,kŜPr,k, (63)

its squared length is Ŝ2
Pr = 3/4, and it commutes with the free

Dirac Hamiltonian [Ĥ0,ŜPr] = 0. The degenerate eigenvalues
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sPr and the orthogonal normalized eigenvectors of ŜPr,n are
given by

s′
Pr↑,1 =

(
χ↑
0

)
ei p·r , s′

Pr↑,2 =
(

0
σ · p
| p| χ↑

)
ei p·r for sPr↑ = 1

2 ,

s′
Pr↓,1 =

(
χ↓
0

)
ei p·r , s′

Pr↓,2 =
(

0
σ · p
| p| χ↓

)
ei p·r for sPr↓ = − 1

2 .

(64)

The eigenvectors in (64) have a particular simple form;
however, they are not simultaneously eigenvectors of the
free Dirac Hamiltonian Ĥ0 and ŜPr,n. The simultaneous
eigenvectors of both operators can be written in the matrix
form (

sPr↑,1 sPr↓,1 sPr↑,2 sPr↓,2
)

= (
uυ↑,p uυ↓,p vυ↑,p vυ↓,p

)

×

⎛
⎜⎜⎝

(
χ↑ χ↓

) (
0 0
0 0

)
(

0 0
0 0

)
σ · p
| p|

(
χ↑ χ↓

)
⎞
⎟⎟⎠ eip·r , (65)

with υ↑ = (1,0)T and υ↓ = (0,1)T. The eigenvectors sPr↑,1

and sPr↓,1 have the positive energy eigenvalue cp0( p), whereas
sPr↑,2 and sPr↓,2 have the negative energy eigenvalue −cp0( p).
Note that s′

Pr↑,1 and s′
Pr↓,1 are also eigenvectors of the Pauli

spin operator, while sPr↑,1 and sPr↓,1 are also eigenvectors of
the Foldy-Wouthuysen spin operator.

Because sPr↑,1 and sPr↓,1 are positive-energy eigenfunctions
of the free Dirac Hamiltonian too, the operator identity

ŜFW,n	̂
+ = ŜPr,n	̂

+ (66)

holds. Note, however, that the operators 	̂−ŜFW,n	̂
− and

	̂−ŜPr,n	̂
− are not equivalent but states from different energy

subspaces are coupled identically, viz.,

	+ ŜFW	− = 	+ ŜPr	
− = 	− ŜFW	+ = 	− ŜPr	

+. (67)

As ŜP,n and ŜPr,n share the same eigenvalues, it is possible to
express the Pryce operator as a similarity transformation based
on ŜP, similar to the corresponding transformations for ŜFW

and ŜCh. In fact, one can show that ŜPr = T̂Pr ŜPT̂
−1

Pr with the
unitary operator

T̂Pr =
(
I2 0
0 i

σ · p̂
| p̂|

)
. (68)

Utilizing this transformation, it is possible to formulate
relativistic quantum mechanics in a representation where the
free Hamiltonian takes the form

T̂ −1
Pr Ĥ0T̂Pr = (mc2 − iγ 5c| p̂|)β (69)

similar to the Foldy-Wouthuysen picture.

G. Fradkin-Good operator

An operator that has a definition similar to the Pryce
operator was considered by Fradkin and Good in [65], the
so-called polarization vector, which is defined as

ŜFG = 1

2
β�̂ + 1

2
�̂ · p̂

(
Ĥ0

cp̂0
− β

)
p̂

p̂2 . (70)

It has been studied extensively in [59,65]. The squared length

of ŜFG is Ŝ
2
FG = 3/4 and it commutes with the free Dirac

Hamiltonian [Ĥ0,ŜPr] = 0, but it does not fulfill the angular
momentum algebra; rather

[ŜFG,h,ŜFG,j ] = iεh,j,kŜFG,k

Ĥ0

cp̂0
. (71)

The degenerate eigenvalues sFG and the normalized orthogonal
eigenvectors sFG of ŜFG,n and Ĥ0 are given by

sFG↑,1 = uχ↑, pe
i p·r , sFG↑,2 = vχ↓, pe

i p·r for sFG↑ = 1
2 ,

sFG↓,1 = uχ↓, pe
i p·r , sFG↓,2 = vχ↑, pe

i p·r for sFG↓ = − 1
2 .

(72)

The eigenfunctions of ŜFG,n are also eigenfunctions of ŜFW,n

but in the case of negative-energy states with opposite
eigenvalues. Thus

ŜFW,n	̂
+ = ŜFG,n	̂

+, (73)

ŜFW,n	̂
− = −ŜFG,n	̂

−. (74)

Comparing the definitions (61) and (70) immediately reveals
the operator identity

ŜPr,n	̂
+ = ŜFG,n	̂

+. (75)

The Fradkin-Good operator ŜFG is not related to the Pauli
operator ŜP via a similarity transformation; instead

ŜFG = T̂FWβ ŜPT̂
−1

FW (76)

with T̂FW as defined in (21).

H. Applying spin operators to wave functions

The spin operators in Table I are defined as functions of
the canonical momentum operator p̂, which has in position
space representation the form p̂ = −i∇. Consequently, the
spin operators in Table I are rather complicated differential op-
erators and their application to position space wave functions
�(r) is not straightforward. Furthermore, the spin operators
are not gauge independent as expectation vales of the canonical
momentum operator depend on the choice of the gauge. One
can deal with both issues in the following way.

Noting that in canonical momentum space the canonical
momentum operator p̂ is just a real-valued vector and that
none of the proposed spin operators depends on position, one
can apply the spin operators easily to wave functions given in
canonical momentum space

�̃( p,t) = 1

(2π )3/2

∫
�(r,t) exp(−ir · p)d3r, (77)

where the operators in Table I become plain matrices.The
spin operators as proposed in Table I can represent operators
that correspond to measurable observables only in gauges
with A(r,t) = 0 where the canonical momentum operator
equals the physical kinematic momentum operator. Physical
spin operators for general gauges with A(r,t) �= 0, however,
can be obtained by replacing p̂ by p̂ − q A(r,t) in the
definitions in Table I. In this way the spin operators become
position dependent and consequently the canonical momentum
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representation (Fourier representation) of the spin operators
are no longer plain matrices and therefore difficult to apply
whether the wave function is given in position space or Fourier
space. For this reason we will concentrate below on physical
setups with vanishing vector potential.

IV. TIME DEPENDENCE OF THE SPIN IN
SCATTERING DYNAMICS

Summarizing the results of Sec. III, the following operator
identities hold:

	+ ŜP	
+ = 	+ ŜCz	

+, (78)

ŜFW	+ = ŜCh	
+ = ŜPr	

+ = ŜFG	+. (79)

Thus, the Pauli and the Czachor spin operators yield the
same expectation values in the subspace free-particle states
with positive energy and also the Foldy-Wouthuysen, the
Chakrabarti, the Pryce, and the Fradkin-Good spin operators
are equivalent in the positive-energy subspace of free-particle
states. If an interaction with some external fields is introduced
a superposition of positive-energy free-particle solutions may
evolve such that negative-energy free-particle states become
populated and therefore it is possible to distinguish between
the various spin operators by determining their expectation
values. For a detailed discussion of the quantum field-theoretic
interpretation of transitions to negative-energy states see [66].

A. Reflection of a wave packet at a step potential

As a first example let us consider the relativistic spin
dynamics in scattering at a smooth two-dimensional step
potential

qφ(x,y) = V0

2

(
1 + tanh

x

w

)
, (80)

with V0 = 1.95 m0c
2 and w = 1/4c (in a.u.) such that the

barrier is high but still below the critical value 2m0c
2 that

would permit Klein tunneling [67]. The initial state is a
Gaussian superposition of common eigenstates of p̂, Ĥ0,
and ŜFW,2 having positive energy and positive spin in the y

direction

�(r,0) = 1

2π

∫
g( p′)uχ↑, p′ei p′ ·rd2p′, (81)

with r = (x,y)T, p′ = (p′
x,p

′
y)T, and χ↑ = (1,i)T/

√
2 here

and g( p′) denoting a Gaussian weight function corresponding
to a spatial width of 0.025 a.u. in the x and y directions. The
wave packet’s initial center of mass is at (−0.175 a.u.,0 a.u.)T

and its initial mean momentum is (m0c,0)T such that the
two-dimensional wave packet approaches the barrier from
the left. The quantum dynamics is simulated by solving the
time-dependent Dirac equation numerically by a Fourier split
operator method [42,68]. When the wave packet interacts
with the barrier negative-energy states become occupied as
indicated by the quantity 〈�(t)|	−|�(t)〉 in Fig. 1(a). After
reflection when the wave packet has left the interaction zone,
however, negative-energy states are no longer occupied.

We determine spin expectation values in the y direction.
All spin expectation values change during the interaction with
the potential step. Initially, the Pauli and the Czachor spin

FIG. 1. Relativistic spin dynamics in scattering at a step potential
(80): (a) occupation probability 〈�|	−|�〉 of negative-energy free
particles and the x coordinate of the center of mass 〈�|x|�〉,
(b) expectation values of various spin operators as a function of time
t , and (c) magnification of (b). All results are given in atomic units
and the particle’s mass m0 = 1 a.u.

operators yield the same expectation values as a result of the
initial condition and the Foldy-Wouthuysen, the Chakrabarti,
the Pryce, and the Fradkin-Good spin operators all give an
expectation value of 1/2 [see Fig. 1(b)]. When the wave packet
interacts with the step potential and a substantial fraction
of free-particle negative-energy states is occupied the spin
expectation values change in a specific way such that they
differ for all proposed spin operators. In particular, the spin
expectation values for the Foldy-Wouthuysen, the Chakrabarti,
the Pryce, and the Fradkin-Good spin operators are reduced.
In the cases of the Pryce and the Fradkin-Good spin operators
the change of the expectation value is so small (about 1%) that
it is not visible on the scale of Fig. 1(b) and therefore Fig. 1(c)
shows a magnification of Fig. 1(b).

The net effect of the scattering dynamics on the expectation
value of the spin depends on the spin operator as shown in
Table II. While the Foldy-Wouthuysen, the Chakrabarti, the
Pryce, and the Frenkel spin operators predict a small change of
the spin’s expectation value as a net effect of the step potential,
the Pauli and the Czachor spin operators predict that the spin
expectation value after interaction with the barrier is the same
as before.
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TABLE II. Initial and final spin expectation values for the
scattering dynamics in Fig. 1. In contrast to other operators, the Pauli
and the Czachor spin operators predict that the spin expectation value
after interaction with the barrier is the same as before.

〈ψ↑|Ŝ2|ψ↑〉 〈ψ↑|Ŝ2|ψ↑〉
Operator at t = 0 a.u. at t = 0.0035 a.u.

ŜP 0.3556 0.3556
ŜFW 0.5000 0.4966
ŜCz 0.3556 0.3556
ŜF 0.7084 0.7001
ŜCh 0.5000 0.4966
ŜPr 0.5000 0.4966
ŜFG 0.5000 0.4966

B. Spin dynamics in standing laser fields

A similar distinction among the spin operators can be ob-
served in a rather different scattering dynamics of an electron
in a standing wave formed by two monochromatic laser fields.
In contrast to the prior example in Sec. IV A, the electron
has sharp momentum and is therefore spatially delocalized
and also the interaction region is infinitely extended. Such
a dynamic can lead to the so-called Kapitza-Dirac effect
[28,69,70].

The system is described by the Dirac equation (1), where
the effect of the time-averaged laser field can be modeled by
the ponderomotive potential [71]

qφ(r,t) = V0 cos2(k · r)w(t). (82)

Here V0 is the potential amplitude, k is the laser’s wave vector,
and w(t) denotes the temporal envelope of the standing light
wave. As a consequence of the infinite extension of the periodic
laser field, only discrete subsets of momenta are coupled. This
allows us to expand the quantum wave function in a basis of
Foldy-Wouthuysen spin operator eigenfunctions

ψ(r,t) =
∑

n

[c
+χ↑
n (t)uχ↑, p + c

+χ↓
n (t)uχ↓, p

+ c
−χ↑
n (t)vχ↑, p + c

−χ↓
n (t)vχ↓, p]ei( p+nk)·r . (83)

Inserting this ansatz into the time-dependent Dirac equation,
we find a coupled set of ordinary differential equations for
the amplitudes of each mode. These differential equations are
solved numerically with the initial condition that all amplitudes
are zero except c

+χ↑
0 (0) = 1. (See [70] for technical details.)

In Fig. 2 we give a specific realization of a spin dynamics
in a standing laser field, where the corresponding electric
field vector points in the z direction, V0 = 0.88 m0c

2, and the
wave vector points in the x direction, k = (0.5,0,0)Tm0c. The
temporal envelope function was given by w(t) = sin2(πt/tend)
with 0 < t < tend = 10.7 T and T denoting the laser period.
The electron’s initial momentum is p = (−0.3169,0,0.1)Tm0c

and the spin is initially oriented in the z direction, i.e.,
χ↑ = (1,0)T. When the full time dependence of the laser
field is taken into account [instead of just the ponderomotive
model potential (82)] these parameters lead to the relativistic
three-photon Kapitza-Dirac effect as investigated in [28].

FIG. 2. Spin expectation values for Kapitza-Dirac scattering in a
standing laser field as a function of time (in units of the laser period
T ) for parameters given in the text.

In close analogy to the dynamics in Sec. IV A, we find again
three different values for the expectation value of the initial
spin for time t = 0 [where the ponderomotive potential (82) is
zero] depending on the choice of the spin operator (see Fig. 2).
The deviation from 1/2 is smaller than in Fig. 1 due to the
less relativistic electron momentum here. For times where the
ponderomotive potential (82) is nonzero we observe a time
evolution of the spin expectation values qualitatively similar
to that in Fig. 1. During the interaction with the laser field
these values vary in an oscillatory fashion over time and all
differ significantly from each other except those associated
with the Foldy-Wouthuysen and the Pryce operators, which
remain almost constant over time. Again the discrepancy
in the expectation values can be traced back to significant
transient excitations of negative-energy free-particle states as
represented by the amplitudes c

−χ↑
n (t) and c

−χ↓
n (t).

V. RELATIVISTIC SPIN OF THE ELECTRON IN THE
HYDROGENIC BOUND STATES

A. Hydrogenic bound states

In this section we are going to investigate the spin of
hydrogenic bound states for a highly charged ion at rest with
respect to different definitions of the relativistic spin operator.
The degenerate bound states of the Dirac Hamiltonian for the
Coulomb potential qφ(r,t) = −Z/|r| with atomic number Z,

ĤC = Ĥ0 − Z

|r| , (84)

are commonly expressed as simultaneous eigenstates ψn,κ,j,m

of ĤC , Ĵ
2
, Ĵ3, and the so-called spin-orbit operator K̂ =

β{�̂ · [r × (−i∇) + 1)]} fulfilling the eigenequations [72,73]

ĤCψn,κ,j,m = E(n,κ)ψn,κ,j,m, n = 1,2, . . . , (85a)

K̂ψn,κ,j,m = κψn,κ,j,m, |κ| = 1,2, . . . ,n,κ �= −n, (85b)

Ĵ
2
ψn,κ,j,m = j (j + 1)ψn,κ,j,m, j = |κ| − 1

2 , (85c)

Ĵ3ψn,κ,j,m = mψn,κ,j,mm = −j, (j − 1), . . . ,j. (85d)
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The eigenenergies E(n,κ) are given with αel denoting the fine-
structure constant by

E(n,κ) = m0c
2

⎡
⎣1 +

⎛
⎝ α2

elZ
2

n − |κ| +
√

κ2 − α2
elZ

2

⎞
⎠

⎤
⎦

−1/2

.

(86)

Each eigenfunction ψn,κ,j,m belongs to one of two manifolds:
For κ = j + 1/2 ∈ {1,2, . . . ,n},

ψn,κ,j,m(r,θ,φ) =

⎛
⎜⎜⎜⎜⎜⎜⎝

gn,κ,j (r)
√

j+m

2j
Yj−1/2,m−1/2(θ,φ)

gn,κ,j (r)
√

j−m

2j
Yj−1/2,m+1/2(θ,φ)

−fn,κ,j (r)i
√

j−m+1
2j+2 Yj+1/2,m−1/2(θ,φ)

fn,κ,j (r)i
√

j+m+1/2
2j+2 Yj+1/2,m+1/2(θ,φ)

⎞
⎟⎟⎟⎟⎟⎟⎠

(87a)

and for κ = −j − 1/2 ∈ {−1, − 2, . . . , − (n − 1)},

ψn,κ,j,m(r,θ,φ) =

⎛
⎜⎜⎜⎜⎜⎜⎝

−gn,κ,j (r)
√

j−m+1
2j+2 Yj+1/2,m−1/2(θ,φ)

gn,κ,j (r)
√

j+m+1
2j+2 Yj+1/2,m+1/2(θ,φ)

fn,κ,j (r)i
√

j+m

2j
Yj−1/2,m−1/2(θ,φ)

fn,κ,j (r)i
√

j−m

2j
Yj−1/2,m+1/2(θ,φ)

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(87b)

The radial functions gn,κ,j (r) and fn,κ,j (r) can be expressed
in terms of confluent hypergeometric functions [74,75] and
Yl,m(θ,φ) denote the complex-valued orthonormal spherical
harmonics as defined in [76].

Explicitly, the degenerate hydrogenic ground state is [75]

ψ1,1,1/2,1/2(r,θ,φ) = Nψ(r)

⎛
⎜⎜⎜⎜⎜⎝

Y0,0(θ,φ)

0

i
1−γ

Zαel

√
1
3Y1,0(θ,φ)

−i
1−γ

Zαel

√
2
3Y1,1(θ,φ)

⎞
⎟⎟⎟⎟⎟⎠, (88a)

ψ1,1,1/2,−1/2(r,θ,φ) = Nψ(r)

⎛
⎜⎜⎜⎜⎜⎝

0

Y0,0(θ,φ)

i
1−γ

Zαel

√
2
3Y1,−1(θ,φ)

−i
1−γ

Zαel

√
1
3Y1,0(θ,φ)

⎞
⎟⎟⎟⎟⎟⎠,

(88b)

with γ =
√

1 − Z2α2
el, the radial function

ψ(r) = e−m0Zr

(2m0Zr)1−γ
, (89)

the normalizing factor

N = (2m0Z)3/2

√
1 + γ

2�(1 + 2γ )
, (90)

and the electron rest mass m0. In momentum space,
the degenerate bound states (88) may be expressed
as [77]

ψ̃1,1,1/2,1/2(p,θ ′,φ′)

= N

⎛
⎜⎜⎜⎜⎜⎝

J0(m0Z,γ,p)Y0,0(θ ′,φ′)
0

1−γ

Zα
J1(m0Z,γ,p)

√
1
3Y1,0(θ ′,φ′)

− 1−γ

Zα
J1(m0Z,γ,p)

√
2
3Y1,1(θ ′,φ′)

⎞
⎟⎟⎟⎟⎟⎠, (91a)

ψ̃1,1,1/2,−1/2(p,θ ′,φ′)

= N

⎛
⎜⎜⎜⎜⎜⎝

0

J0(m0Z,γ,p)Y0,0(θ ′,φ′)
1−γ

Zα
J1(m0Z,γ,p)

√
2
3Y1,−1(θ ′,φ′)

− 1−γ

Zα
J1(m0Z,γ,p)

√
1
3Y1,0(θ ′,φ′)

⎞
⎟⎟⎟⎟⎟⎠ (91b)

by using the functions J0(z,γ,p) and J1(z,γ,p) as defined
in (A6) and (A7), respectively.

B. Spin expectation values and spin variance

In momentum space representation, the relativistic spin
operators introduced in Sec. III are simple matrices, thus,
with the momentum space representation (91) spin expectation
values as well as the spin variance of the degenerate hydrogenic
ground states can be calculated. For simplicity, we calculate
spin expectation values in the z direction, that is, n = (0,0,1)T,
for the reminder of this section. The spin expectation values

〈ψ↑|Ŝ3|ψ↑〉 and the spin variance 〈ψ↑|Ŝ2
3 |ψ↑〉 − 〈ψ↑|Ŝ3|ψ↑〉2

are displayed in Fig. 3(a) for the state ψ↑ = ψ1,1,1/2,1/2 as
a function of the atomic number Z. In general, the spin
expectation values and the spin variance are complicated
functions of the nuclear charge Z. For the Pauli and the Pryce
spin operators, however, the spin expectation values and the
spin variance are given explicitly by

〈ψ↑|ŜP,3|ψ↑〉 = 1
6

(
1 + 2

√
1 − Z2α2

el

)
, (92a)

〈ψ↑|Ŝ2
P,3|ψ↑〉 − 〈ψ↑|ŜP,3|ψ↑〉2 = 1

4 − [
1
6

(
1 + 2

√
1 − Z2α2

el

)]2

(92b)

and

〈ψ↑|ŜPr,3|ψ↑〉 = 1
2 , (93a)

〈ψ↑|Ŝ2
Pr,3|ψ↑〉 − 〈ψ↑|ŜPr,3|ψ↑〉2 = 0, (93b)

respectively.
For small atomic numbers (Z � 20), all spin operators yield

about 1/2; for larger Z when relativistic effects set in, however,
expectation values differ significantly from each other. While
for Pauli, Fouldy-Wouthuysen, Czachor, Chakrabarti, and
Fradkin-Good spin operators the spin expectation value is
reduced, the expectation value of the Frenkel spin operator
exceeds 1/2. Only for the Pryce operator do we find that the
spin expectation values is 1/2 for all values of Z, implying zero
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FIG. 3. (a) Spin expectation values (adopted from [78]) and
(b) spin variance of various relativistic spin operators for the
hydrogenic ground state (88a) as a function of the atomic number
Z. For the ground state (88b) we find the same spin variance and the
same spin expectation values but with opposite sign (not displayed in
the plots).

spin variance as shown in Fig. 3(b). Spin expectation values
and spin variances for the state ψ↓ = ψ1,1,1/2,−1/2 follow by
symmetry via

〈ψ↑|Ŝ3|ψ↑〉 = − 〈ψ↓|Ŝ3|ψ↓〉 (94)

and

〈ψ↑|Ŝ2
3 |ψ↑〉 − 〈ψ↑|Ŝ3|ψ↑〉2 = 〈ψ↓|Ŝ2

3 |ψ↓〉 − 〈ψ↓|Ŝ3|ψ↓〉2
.

(95)

The different predictions for spin expectation values and
spin variances that follow from different definitions of the rel-
ativistic spin operator may serve as a basis for an experimental
test for a relativistic spin operator [78] that is implemented
by a particular spin measurement experiment. We assume
that the electron of a highly charged hydrogenlike ion was
prepared in its ground state ψ↑, e.g., by exposing the ion to
a strong magnetic field in the z direction and turning it off
adiabatically. A spin measurement experiment for such a state
will yield spin 1/2 with probability P↑ = 1/2 + 〈ψ↑|Ŝ3|ψ↑〉,
where Ŝ3 is the spin operator that is realized by the particular
measurement procedure. For hydrogenlike uranium, Z = 92,
our theoretical predictions yield, for example, for the Pauli
operator P↑ = 91.4%, for the Fouldy-Wouthuysen operator
P↑ = 99.8%, and P↑ = 100% in the case of the Pryce operator.
Note that it is a completely open question how experimental

procedures that aim to measure the electron spin state map to
mathematical spin operators.

C. Pryce spin operator in systems with spherical symmetry

We demonstrated that only the Pryce spin operator yields
spin expectation values of ±1/2 for the ground states of
hydrogenlike ions. In the following we will show that this
is a consequence of the spherical symmetry of the Coulomb
potential and that each system with spherical symmetry has
some energy eigenstates that are eigenstates of the Pryce spin
operator too. On can show [74,75] that every bound eigenstate
of any system with spherically symmetric potential φ(|r|),

Ĥs = Ĥ0 + qφ(|r|), (96)

has the form (87a) or (87b), respectively. Only the radial func-
tions gn,κ,j (r) and fn,κ,j (r) depend on the specific potential.
Consequently, the momentum space representations of (87)
have for κ = j + 1/2 the form

ψ̃n,κ,j,m(p,θ ′,φ′)

=

⎛
⎜⎜⎜⎜⎜⎜⎝

g̃n,κ,j (p)
√

j+m

2j
Yj−1/2,m−1/2(θ ′,φ′)

g̃n,κ,j (p)
√

j−m

2j
Yj−1/2,m+1/2(θ ′,φ′)

−f̃n,κ,j (p)i
√

j−m+1
2j+2 Yj+1/2,m−1/2(θ ′,φ′)

f̃n,κ,j (p)i
√

j+m+1/2
2j+2 Yj+1/2,m+1/2(θ ′,φ′)

⎞
⎟⎟⎟⎟⎟⎟⎠

(97a)

and for κ = −j − 1/2

ψ̃n,κ,j,m(p,θ ′,φ′)

=

⎛
⎜⎜⎜⎜⎜⎜⎝

−g̃n,κ,j (p)
√

j−m+1
2j+2 Yj+1/2,m−1/2(θ ′,φ′)

g̃n,κ,j (p)
√

j+m+1
2j+2 Yj+1/2,m+1/2(θ ′,φ′)

f̃n,κ,j (p)i
√

j+m

2j
Yj−1/2,m−1/2(θ ′,φ′)

f̃n,κ,j (p)i
√

j−m

2j
Yj−1/2,m+1/2(θ ′,φ′)

⎞
⎟⎟⎟⎟⎟⎟⎠

, (97b)

respectively, with

g̃n,κ,j (p) =
√

2

π
(−i)j−1/2

∫ ∞

0
gn,κ,j (r)jj−1/2(rp)r2dr,

(98a)

f̃n,κ,j (p) =
√

2

π
(−i)j+1/2

∫ ∞

0
fn,κ,j (r)jj+1/2(rp)r2dr

(98b)

for (97a) and

g̃n,κ,j (p) =
√

2

π
(−i)j+1/2

∫ ∞

0
gn,κ,j (r)jj+1/2(rp)r2dr,

(98c)

f̃n,κ,j (p) =
√

2

π
(−i)j−1/2

∫ ∞

0
fn,κ,j (r)jj−1/2(rp)r2dr

(98d)

for (97b) (see also the Appendix). The momentum space
representation of the Pryce spin operator in the z direction
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is

ŜPr,3 =

⎛
⎜⎜⎜⎝

1
2 0 0 0

0 − 1
2 0 0

0 0 − 1
2 + cos2(θ ′) cos(θ ′) sin(θ ′)e−iφ′

0 0 cos(θ ′) sin(θ ′)eiφ′ 1
2 − cos2(θ ′)

⎞
⎟⎟⎟⎠.

(99)

With this result one can show that

ŜPr,3ψn,κ,j,j = 1
2ψn,κ,j,j , (100a)

ŜPr,3ψn,κ,j,−j = − 1
2ψn,κ,j,−j (100b)

by employing (97a) and (99) and expressing the spherical
harmonics in terms of trigonometric functions. Thus,
eigenstates of central potentials with extremal quantum
number m = ±j are eigenstates of the Pryce spin operator
with eigenvalue ±1/2.

This has an interesting consequence for the spin
of superpositions of states with m = ±j as, for
example, �(r,t) = c1ψ1(r,t) + c2ψ2(r,t) with ψi(r,t) =
ψn,ji+1/2,ji ,ji

(r)e−E(n,ji+1/2)t . The spin expectation value of this
state is given by

〈� | Ŝ3 | �〉 = |c1|2 〈ψ1|Ŝ3|ψ1〉 + |c2|2 〈ψ2|Ŝ3|ψ2〉
+ 2 Re 〈c1ψ1|Ŝ3|c2ψ2〉 . (101)

As the states ψ1 and ψ2 have different energies the mixing term
〈c1ψ1|Ŝ3|c2ψ2〉 and therefore the spin expectation value oscil-
lates in time with the frequency |E(n,j1 + 1/2) − E(n,j2 +
1/2)| unless ψ1(r,t) and ψ2(r,t) are eigenfunctions of the
spin operator Ŝ3, as is the case for the Pryce spin operator. The
|E(n,j1 + 1/2) − E(n,j2 + 1/2)| varies over several orders of
magnitude depending on the parameters n, j1, j2, and Z and
can be made small by increasing the quantum number n.

The Pryce spin operator allows us to establish a notable
correspondence between the relativistic Dirac theory and
the nonrelativistic Pauli theory of systems with spherical
symmetry. In the nonrelativistic case, the Pauli Hamiltonian for
some spherically symmetric potential φ(|r|) and the operator
of total angular momentum are defined as

Ĥs,nr = p̂2

2m0
+ qφ(|r|) (102)

and Ĵnr = r × p̂ + σ/2, respectively. The second term in the
nonrelativistic total angular momentum equals the nonrela-
tivistic Pauli spin operator

ŜP,nr = 1
2σ . (103)

In analogy to the Dirac theory, the two-component eigenfunc-
tions of the Pauli Hamiltonian (102) can be expressed as simul-

taneous eigenstates ψnr
n,κ,j,m of Ĥs,nr, Ĵ

2
nr, Ĵnr,3, and the non-

relativistic spin-orbit operator K̂nr = σ · [r × (−i∇) + I2)]}
fulfilling the eigenequations [72,73]

Ĥs,nrψ
nr
n,κ,j,m = Enr(n)ψnr

n,κ,j,m, n = 1,2, . . . , (104a)

K̂nrψ
nr
n,κ,j,m = κψnr

n,κ,j,m, |κ| = 1,2, . . . ,n,κ �= −n,

(104b)

Ĵ
2
nrψ

nr
n,κ,j,m = j (j + 1)ψnr

n,κ,j,m, j = |κ| − 1
2 , (104c)

Ĵnr,3ψ
nr
n,κ,j,m = mψnr

n,κ,j,m, m = −j,(j − 1), . . . ,j, (104d)

where Enr(n) denotes the eigenenergies. The ψnr
n,κ,j,m are in

general not eigenfunctions of ŜP,nr. One can show [72],
however, that

ŜP,nr,3ψ
nr
n,κ,j,j = 1

2ψnr
n,κ,j,j , (105a)

ŜP,nr,3ψ
nr
n,κ,j,−j = − 1

2ψnr
n,κ,j,−j (105b)

hold. A comparison of (100) and (105) shows that the
nonrelativistic Pauli spin operator ŜP,nr and the relativistic
Pryce spin operator ŜPr play an analogous role within the
theories they belong to.

VI. DISCUSSION AND CONCLUSIONS

We have reconsidered the electron’s spin degree of freedom
within relativistic quantum mechanics. The motivation of our
investigation was the observation that there is no universally
accepted spin operator in the Dirac theory. In fact, several
relativistic spin operators have been proposed in the literature.
We investigated the properties of some popular proposed spin
operators and analyzed how the different spin operators can
lead to different theoretical predictions for expectation values
of the spin in different physical setups.

The two pairs given by the Pauli and the Czachor spins
and by the Foldy-Wouthuysen and the Chakrabarti spins,
respectively, act as identical operators in each of two the
subspaces of free-particle states with positive and negative
energy. On the basis of the spin operators’ mathematical
properties, the Foldy-Wouthuysen and the Pryce spin operators
seem to be the most promising candidates for a proper
relativistic spin operator. Both operators commute with the free
Dirac Hamiltonian as well as with the total angular momentum
operator and the linear momentum operator. Furthermore, they
obey the angular momentum algebra and have eigenvalues
±1/2. The Foldy-Wouthuysen and the Pryce spin operators
are equivalent on the subspace of wave functions that are
superpositions of free-particle eigenstates with positive energy.
However, we demonstrated in three different physical setups
that if interaction potentials are present one can distinguish
between both operators because they may lead to different
expectation values for the same quantum state. The three setups
reveal a rather consistent behavior.

The various proposed spin operators are usually motivated
by abstract theoretical considerations rather than experimental
evidence. The fact that these spin operators yield different
predictions about the expectation value of the spin in several
setups as, for example, for electrons in scattering at a step
potential, electrons in standing laser fields, or hydrogenic
eigenstates as considered here, offers the opportunity to
discriminate between the various proposed spin operators.
In this way one may rule out some operators for which the
theoretical predictions are incompatible with experimental
results. The identification of the correct relativistic spin
operator would immediately induce relativistic operators for
the orbital angular momentum and the position. Thus, the
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identification of the right description of the spin within the
Dirac theory has broad implications beyond the spin itself.

We provided precise predictions about what could be
measured if a spin measurement procedure implements a
physical realization of a particular spin operator. However,
we did not dwell on how to measure the spin. In fact,
experiments that measure the spin (and not mere spin effects)
are challenging from a technological point of view as well
as conceptually even today. As pointed out earlier, it is
a completely open question how experimental measuring
procedures map to mathematical spin operators. See [2] for
an in-depth discussion. There is a ongoing effort to advance
spin measurement techniques. A Stern-Gerlach experiment for
electrons may be feasible [79–81]. The spin may be measured
indirectly via transferring it to orbital angular momentum [82].
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APPENDIX: FOURIER TRANSFORM IN SPHERICAL
COORDINATES

Using the vectors r and p and their representation in
spherical coordinates r = (r sin θ cos φ,r sin θ sin φ,r cos θ )T

and p = (p sin θ ′ cos φ′,r ′ sin θ ′ sin φ′,r ′ cos θ ′)T the (inverse)
Fourier transform of some function f (r) is defined as

F±[f (r)] = 1

(2π )3/2

∫
f (r) exp(±ir · p)d3r

= 1

(2π )3/2

∫ ∞

0

∫ π

0

∫ 2π

0
f (r,θ,φ)

× exp{±irp[sin θ sin θ ′ cos(φ − φ′)

+ cos θ cos θ ′]}r2 sin θ dφ dθ dr. (A1)

For functions not depending on the azimuthal angle
f (r,θ,φ) = f (r,θ ) the (inverse) Fourier transform simplifies
to

F±[f (r)] = 1√
2π

∫ ∞

0

∫ π

0
f (r,θ )J0(rp sin θ sin θ ′)

× exp(±irp cos θ cos θ ′)r2 sin θ dθ dr, (A2)

with J0(x) denoting the zeroth-order Bessel function of the first
kind. For spherically symmetric functions f (r,θ,φ) = f (r) we

finally get

F±[f (r)] =
√

2

π

∫ ∞

0
f (r)r2j0(rp)dr. (A3)

Note that for spherically symmetric functions the Fourier
transform and its inverse have the same form.

If the radial and angular dependences separate, e.g.,
f (r,θ,φ) = R(r)Yl,m(θ,φ) with Yl,m(θ,φ) denoting the
complex-valued orthonormal spherical harmonics, it is ben-
eficial to utilize the generalized Jacobi-Anger identities

1

(2π )3/2
exp(±ir · p)

=
√

2

π

∞∑
l=0

(±i)ljl(rp)
l∑

m=−l

Yl,m(θ,φ)Y ∗
l,m(θ ′,φ′)

=
√

2

π

∞∑
l=0

(±i)ljl(rp)
l∑

m=−l

Y ∗
l,m(θ,φ)Yl,m(θ ′,φ′), (A4)

with the spherical Bessel functions of the first kind jl(x) as
defined in [76]. By using (A4) and the orthonormalization of
the spherical harmonics, we find

F±[R(r)Yl,m(θ,φ)]

= (±i)lYl,m(θ ′,φ′)

√
2

π

∫ ∞

0
R(r)jl(rp)r2dr. (A5)

Specifying R(r) as R(r) = e−zr/(2zr)1−γ , we may define the
two functions J0(z,γ,p) and J1(z,γ,p) as

J0(z,γ,p) =
√

2

π

∫ ∞

0

e−zr

(2zr)1−γ
r2j0(rp)dr

=
√

2

π

2γ−1�(γ + 1)

z2p(1 + p2/z2)(γ+1)/2

× sin[(1 + γ ) arctan(p/z)], (A6)

J1(z,γ,p) =
√

2

π

∫ ∞

0

e−zr

(2zr)1−γ
r2j1(rp)dr

=
√

2

π

2γ−1�(γ )

z2p(1 + p2/z2)(γ+1)/2

× (−(1 + γ ) cos[(1 + γ ) arctan(p/z)]

+ z

p
sin[(1 + γ ) arctan(p/z)]) (A7)

for 0 < γ < 1. Equations (A6) and (A7) are two special cases
of a more general formula that may be useful in investigating
excited states of the hydrogen atom [see Eq. (32.7) in [83]].

[1] E. Wigner, Ann. Math. 40, 149 (1939).
[2] M. Morrison, Stud. Hist. Philos. Mod. Phys. 38, 529 (2007).
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