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Periodic array of Bose-Einstein condensates in a magnetic lattice
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We report the realization of a periodic array of Bose-Einstein condensates (BECs) of 87Rb F = 1 atoms trapped
in a one-dimensional magnetic lattice close to the surface of an atom chip. A clear signature for the onset of BEC
in the magnetic lattice is provided by in situ site-resolved radio-frequency spectra, which exhibit a pronounced
bimodal distribution consisting of a narrow component characteristic of a BEC together with a broad thermal
cloud component. Similar bimodal distributions are found for various sites across the magnetic lattice. The
realization of a periodic array of BECs in a magnetic lattice represents a major step towards the implementation
of magnetic lattices for quantum simulation of many-body condensed matter phenomena in lattices of complex
geometry and arbitrary period.
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Optical lattices based on arrays of optical dipole traps are
used extensively to trap periodic arrays of ultracold atoms and
quantum degenerate gases in a broad range of applications.
These range from simulations of condensed matter phenom-
ena [1] to studies of low-dimensional quantum gases [2],
high precision atomic clocks [3], and registers for quantum
information processing [4,5]. A potentially powerful alterna-
tive approach involves magnetic lattices based on periodic
arrays of magnetic microtraps created by permanent magnetic
microstructures [6–16], current-carrying wires [17–19], or
vortex arrays in superconducting films [20]. Magnetic lattices
based on patterned magnetic films may, in principle, be tailored
to produce two-dimensional (2D) [or one-dimensional (1D)]
arrays of atomic ensembles in arbitrary configurations [12].
Periodicities may range from tens of micrometers, i.e., the in-
teresting range for Rydberg-interacting quantum systems, such
as Rydberg-dressed Bose-Einstein condensates (BECs) [21]
and Rydberg-mediated quantum gates [15,22], down to below
the optical wavelength where tunneling coupling strengths
may exceed those possible with conventional optical lattices.
Currently, there is also much interest in creating 2D periodic
lattices of complex geometry, such as triangular, honeycomb,
kagome, and superlattices, in order to simulate condensed
matter phenomena [23], including exotic quantum phases, such
as graphene-like states [24–26], which are predicted to occur
in lattices with noncubic symmetry.

Despite these prospects for magnetic lattices, little has
been achieved to date, compared to optical lattices, in part
due to the difficulty in controlling the resulting potentials,
including magnetic homogeneity and efficient loading of the
microtraps. Another serious challenge is to overcome the
inelastic collision losses which can occur at high atom densities
and which are accentuated when miniaturizing the traps.
For example, previous experiments involving 2D arrays of
magnetic microtraps with a period of about 25 μm [11] were
limited by rapid three-body loss (decay rates >20 s−1) which
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precluded the formation of Bose-Einstein condensates with
observable condensate fractions.

In this Rapid Communication we report clear signatures
for the realization of a periodic array of BECs of 87Rb atoms
in a 1D 10-μm-period magnetic lattice. The signature for
the onset of BEC is provided by in situ site-resolved radio-
frequency (rf) spectroscopy [11,27]. To minimize three-body
losses in the magnetic lattice the atoms are prepared in the
|F = 1,mF = −1〉 low-field seeking state which has a three-
times smaller three-body recombination coefficient [28,29]
and weaker magnetic confinement than the |F = 2,mF = +2〉
state on which previous work was based [11]. Additionally,
we employ lattice traps with lower trap frequencies and hence
lower peak atom densities. The realization of a periodic array
of BECs in a magnetic lattice represents a major step towards
creating periodic arrays of BECs in more complex lattice
geometries with smaller lattice periods which are required
for simulation of many-body condensed matter phenomena.

Our 1D lattice of magnetic microtraps is created by
superimposing the magnetic field from a grooved, perpen-
dicularly magnetized magnetic film with uniform bias fields
Bbx and Bby along the x and y directions [Fig. 1(a)] [6,10].
The magnetic field components in the case of an in-
finite 1D lattice with no axial confinement along the
x direction and for distances z � a/2π from the mag-
netic microstructure are [Bx,By,Bz] ≈ [Bbx ; B0sin(ky)e−kz +
Bby ; B0cos(ky)e−kz] [6], where a is the lattice period, k =
2π/a, B0 = 4Mz(ekt − 1), t is the magnetic film thickness,
and 4πMz is the magnetization (in Gauss). A contour plot of
calculated equipotentials, which are proportional to |B(x,y,z)|,
is shown in Fig. 1(a). The strength and direction of the bias
fields determine the potential minima, their distance from the
magnetic microstructure, the trap frequencies, and the barrier
heights [6]. The potential minima need to be nonzero to prevent
losses due to Majorana spin flips.

Details of the 1D 10-μm-period magnetic microstructure
and atom chip are described elsewhere [10,30]. Briefly, the
microstructure consists of a 10 mm × 10 mm magnetic film
deposited on a microfabricated grooved silicon substrate
on the atom chip, which is mounted upside-down in the
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FIG. 1. (Color online) (a) Schematic of the magnetic microstruc-
ture used to create a periodic 1D lattice of magnetic microtraps with
nonzero potential minima. Contour lines are equipotentials calculated
for the parameters in this experiment with contour interval of 0.5 G.
(b) Part of the absorption image for an array of clouds of 87Rb
|F = 1,mF = −1〉 atoms trapped in the 1D 10-μm-period magnetic
lattice, after evaporative cooling to a trap depth δf = (ff − f0) =
100 kHz, which cools the atoms below the critical temperature. The
image was recorded by reflective absorption imaging along the axial
x direction (see inset), which produces images both after reflection
(bottom image) and prior to reflection (top image) of the imaging
beam from the chip surface (dashed line). The effective pixel size is
2.0 μm. The vertical arrow indicates the lattice site (site 38) at which
the rf spectra in Fig. 2 were recorded.

UHV chamber. The magnetic film is a six-layer structure of
1.0-μm-thick perpendicularly magnetized Tb6Gd10Fe80Co4

(total thickness 1.3 μm), for which 4πMz ∼ 3 kG, HC ∼ 6
kOe, and TCurie ∼ 300 ◦C [31]. The magnetic microstructure
is mounted 300 μm below a combined U and Z wire oriented
with its central section perpendicular to the grooves. The bias
fields and weak axial confinement are provided by the current-
carrying Z wire [30]. For Iz = 17 A and Bbx = 51 G, the
trap frequencies determined from numerical simulations are
ωx/2π = 259 Hz and ωy,z/2π = 7.3 kHz, which is consistent
with ωy/2π = 7.5 kHz measured by parametric heating. The
trap frequencies correspond to a geometric mean frequency
ω̄/2π = (ωxω

2
y)1/3/2π = 2.40 kHz and an aspect ratio of

30. In comparison to earlier experiments on a 2D magnetic
lattice [11], ω̄ is about four times smaller, and correspondingly,
the expected three-body loss rates, which scale as ω̄6 [32], are
about 104 times smaller. The calculated barrier heights are
�By = 4 G (130 μK) and �Bz ∼ 1 G (30 μK).

Typically, 1 × 108 87Rb atoms are collected in a mirror
magneto-optical trap (MOT) 1.2 mm below the chip before
being transferred to a compressed U -wire MOT where they
are polarization-gradient cooled and optically pumped to the
|F = 1,mF = −1〉 state. The atoms are then transferred to a
Z-wire trap 600 μm below the chip where they are

evaporatively cooled. About 3 × 106 atoms at 10–15 μK are
then brought close to the magnetic lattice by ramping Iz from
38 A down to 17 A in 100 ms with Bbx = 51 G. Under these
conditions the Z-wire trap merges smoothly with the magnetic
lattice microtraps located 8 μm below the chip, allowing
∼1 × 106 atoms to be loaded into the magnetic lattice [30].

The lifetime of the atoms in the magnetic lattice microtraps
is ∼12 s, which is sufficient for the atoms to be evaporatively
cooled (for 1.5 s) by ramping an rf field from 7.0 MHz down
to a final evaporation frequency ff . A trap depth of δf =
(ff − f0) = 100 kHz (where f0 is the trap bottom) leaves
∼5 × 104 atoms trapped in ∼100 lattice sites, or 〈N〉 ∼ 500
atoms per site, in the central region of the lattice.

Figure 1(b) shows part of an in situ absorption image for
a periodic array of clouds of 87Rb |F = 1,mF = −1〉 atoms
trapped in multiple sites of the 1D 10-μm-period magnetic
lattice after evaporative cooling to a trap depth δf = 100 kHz,
which cools the atoms below the critical temperature. The
image was recorded using reflective absorption imaging [33]
along the long axis of the elongated atom clouds. The imaging
beam is focused by a cylindrical lens into a light sheet and sent
at a slight angle (∼2◦) to the reflecting gold surface of the chip,
resulting in images both after and prior to reflection. Detection
of the two images provides a measure of the distance of the
trapped atoms from the chip surface (8 μm). The effective
pixel size is 2.0 μm, corresponding to 5.0 pixels per lattice
period. The measured resolution from the width of the images
of individual sites is 4 μm.

The clouds of atoms in Fig. 1(b) are resolved in their
individual lattice sites, which allows us to perform site-
resolved measurements. The variation in site-to-site transmit-
ted intensity (∼ ± 30%) across the lattice is due mainly to
imperfections in the gold mirror on the chip surface and to
nonuniform loading of the lattice and nonuniformity of the
imaging light. In addition, some of the variation is due to
inhomogeneity in the magnetic lattice. The positions of the
individual clouds of atoms reveal that the lattice period is
constant to within 1% across the lattice.

Figure 2 presents in situ rf spectra of atom loss over a range
of rf frequencies f taken at a single lattice site [site 38, vertical
arrow in Fig. 1(b)] after the atoms have been evaporatively
cooled to trap depths δf = 600, 400, and 100 kHz. The power
of the rf pulse was reduced to one-tenth of that used for
evaporative cooling to minimize power broadening, and the
rf pulse duration was 40 ms. The rf spectra evolve from (a)
a broad truncated Boltzmann-type frequency distribution for
δf = 600 kHz, characteristic of a thermal cloud, through to
(c) a narrow Thomas-Fermi-type frequency distribution for
δf = 100 kHz, characteristic of a BEC. For (b), δf = 400 kHz,
the rf spectrum exhibits a pronounced bimodal distribution
consisting of BEC plus thermal cloud components [34]. The
critical temperature for quantum degeneracy for N = 500
atoms per site (δf = 100 kHz) and ω̄/2π = 2.40 kHz is
Tc = 0.9 μK. The time decay of the BECs in the magnetic
lattice corresponds to a half-life of ∼0.5 s.

To fit the data in Fig. 2, we use a self-consistent mean-field
model which takes account of atom-atom interactions in both
the BEC and thermal cloud and the mutual interaction between
them [11], but neglects the kinetic energy of the condensate
fraction via the Thomas-Fermi approximation and effects of
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FIG. 2. (Color online) Rf spectra for 87Rb |F = 1,mF = −1〉
atoms after evaporative cooling in the 1D magnetic lattice to trap
depths δf = (ff − f0) of (a) 600 kHz, (b) 400 kHz, and (c) 100 kHz
in lattice site 38. The solid lines represent fits to the data based on
a self-consistent mean-field model for a BEC plus thermal cloud as
described in the text.

gravity sag in the tightly confining magnetic traps. For the
density distribution of the condensates we use [35]

nc(r) = Max

{(
1

g

)
[μ − V (r) − 2gnth(r)]; 0

}
, (1)

where nth(r) = Li3/2[exp(−|μ−Veff(r)|)/kBT ]/λ3
dB is the

density distribution of the thermal cloud, Veff(r) = V (r) +
2g[nth(r) + nc(r)], and V (r) = 1/2M(ω2

xx
2 + ω2

yy
2 + ω2

zz
2)

is the confining harmonic potential. Li3/2[z] is the polylogarith-
mic function with base 3/2, λdB is the thermal de Broglie wave-
length, g = 4π�

2as/M is the mean-field coupling constant,
M is the atom mass, and as is the s-wave scattering length.
Equation (1) is solved iteratively to obtain nc(r) for a given
temperature T and chemical potential μ, where the elongated
cloud with trap frequencies ωx and ωy can be replaced by a
spherical cloud with mean trap frequency ω̄ = (ωxω

2
y)1/3. The

rf frequency distribution is then obtained from the resonance
condition hf = μB |gFB| for �mF = ±1 spin-flip transitions
and by determining the number of atoms �N (f ) in a spherical
shell 4πr2�r of constant frequency f that are removed by a
rf knife of width �f . For the case of a pure BEC, the number
of trapped atoms removed by the rf knife at frequency f is
�N (f ) ∝ Max{f 1/2(μ/(|mF|h)−f )�f ; 0} with a base width
μ/(|mF|h).

The solid lines in Fig. 2 represent fits to the rf spectra
using the above model. For a given data set, μ and T are

TABLE I. Trap bottom (f0), chemical potential (μ/h), atom
temperature (T), condensate fraction (%), and atom number (Nabs)
derived from absorption images and normalized to

〈
Nμ,T

〉
, for various

sites across the lattice. The trap depth δf is 100 kHz.

Site f0 (MHz) μ/h (kHz) T (μK) BEC (%) Nabs (atoms)

22 4.9318 (5) 7.0 (1.0) 0.55 (5) 37 (5) 240 (100)
35 4.9320 (5) 7.5 (0.5) 0.50 (5) 50 (5) 510 (50)
36 4.9322 (5) 7.5 (0.5) 0.50 (5) 50 (5) 430 (50)
37 4.9323 (5) 7.7 (0.5) 0.58 (5) 39 (5) 430 (50)
38 4.9322 (5) 7.5 (0.5) 0.50 (5) 50 (5) 460 (50)
39 4.9322 (5) 7.3 (0.5) 0.52 (5) 45 (5) 490 (50)
40 4.9324 (5) 7.5 (0.5) 0.55 (5) 42 (5) 480 (50)
41 4.9324 (5) 7.0 (0.5) 0.55 (5) 37 (5) 370 (50)
42 4.9324 (5) 7.0 (0.5) 0.55 (5) 37 (5) 400 (50)
43 4.9320 (5) 8.0 (0.5) 0.60 (5) 39 (5) 320 (50)
44 4.9325 (5) 7.5 (0.5) 0.53 (5) 45 (5) 430 (50)
67 4.9320 (5) 7.8 (0.5) 0.60 (5) 38 (5) 440 (50)
70 4.9319 (5) 7.2 (0.5) 0.56 (5) 38 (5) 390 (50)
71 4.9320 (5) 7.8 (0.5) 0.55 (5) 45 (5) 460 (50)
85 4.9320 (5) 8.7 (1.0) 0.60 (5) 44 (5) 450 (100)

varied until the calculated rf spectrum provides a reasonable
fit to the experimental spectrum with the constraint that the
total atom number Nμ,T derived from μ and T is consistent
with the atom number Nabs derived from the absorption image
and normalized to 〈Nμ,T 〉 for various lattice sites. For the
trap depth δf = 400 kHz [Fig. 2(b)], the data fit well to a
narrow BEC component plus a broad thermal cloud component
with chemical potential μ/h = 19 kHz, corresponding to
N ∼ 8700 atoms, and temperature T = 1.5 μK. The slight
rounding of the leading edge of the spectrum is attributed to
residual power broadening. For the trap depth δf = 100 kHz
[Fig. 2(c)], the fit yields μ/h = 7.5 kHz, corresponding to
N ∼ 380 atoms, and T = 0.50 μK. The condensate fraction
deduced from the fit is 50 (5)%, or 54 (5)% if we include the
contribution from the rounded leading edge in Fig. 2(c).

Our absorption imaging scheme allows rf spectra to be
recorded simultaneously for all of the ∼100 populated sites
across the magnetic lattice, with a total acquisition time of
about 1 h. The spectrum for each of the analyzed lattice sites
exhibits a strong BEC component, similar to Fig. 2(c). Table I
summarizes the results for a sample of 15 sites which are
representative of the central region (sites 23–85) of the lattice,
including a string of ten adjacent sites (35–44), and sites
near the ends of the central region. The site-to-site variations
in f0, μ, T, and condensate fraction indicate that the sites
are remarkably uniform across the lattice. In particular, the
trap bottoms, which could be accurately determined from
the intercepts of the fitted rf spectra with the (f − f0) axis,
show site-to-site variations of only ±0.4 kHz corresponding
to ±0.6 mG in 7.0 G. This degree of uniformity across the
lattice is not reflected in the absorption image in Fig. 1(b) or
in the atom numbers Nabs derived from the absorption image
which show significant variations in transmitted intensity as
discussed above.

As an independent check for the onset of Bose-Einstein
condensation in the magnetic lattice we measure the atom
loss rate due to three-body recombination. For a BEC, the
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density-density fluctuations are suppressed relative to a
thermal cloud, due to a factor of 6 smaller three-particle
correlation function g(3) [28]. The three-body recombination
loss rate is given by dN(t)/dt = −K3

∫
n3(r,t)d3r , where

K3 is the loss rate constant. Assuming that during the atom
loss the BEC maintains a Thomas-Fermi profile, the atom
number decay becomes Nc(t) = N0(t)(1 + βt)−5/4 where β =
(32/105)K3n

2
c,p(0) and nc,p(0) is the initial peak density of the

condensate. The three-body recombination rate is measured by
monitoring the atom loss for hold times out to 500 ms where
the condensate still persists. A power-law fit to the atom decay
curve yields an exponent of −1.21(4), which is consistent with
the BEC value of −5/4 but significantly different from the ther-
mal cloud value of −1/2. For an initial peak density nc,p(0) =
8 × 1014 cm−3, which was determined from analysis of the rf
spectra, the three-body decay constant is found to be K3 =
5.5(1.0) × 10−30 cm6 s−1, which is consistent with previous
measurements for 87Rb |F = 1,mF = −1〉 atoms [28,36], but
much smaller than the value K3 = 4.2(1.8) × 10−29 cm6 s−1

measured for a thermal cloud [28].
Arrays of BECs in a 10-μm-period magnetic lattice are

promising for the implementation of Rydberg-interacting
quantum systems by exploiting the long-range dipolar inter-
action between atoms excited to Rydberg states. The size of
each BEC in the array is well within the typical Rydberg
blockade radius, so that each BEC could potentially be used
as a collective qubit. The interaction driven level shift between
two n ≈ 80 s Rydberg excitations at a distance of 10 μm is
still several MHz, which far exceeds the Rydberg state decay
rate [22]. At the same time, each trap is sufficiently far from
the chip surface to minimize unwanted surface effects [15]. It
should also be possible to create spatially separated Rydberg-
dressed BECs [21] or degenerate Fermi gases, in which
Rydberg states are weakly admixed to the atoms, resulting
in strong long-range and anisotropic interactions. This might
enable the realization of “coupled quantum gases” where
atoms in spatially separated traps may strongly influence one
another (e.g., [37]).

Another application will be to engineer simple graphene-
like model systems with tunable parameters, for example,
using magnetic lattices with hexagonal symmetry loaded from
a BEC or degenerate Fermi gas. In periodic lattices the
tunneling rates scale with period a and barrier height V0 as
J ∝ a−1/2V

3/4
0 exp[−CV

1/2
0 a] [where C = (32M)1/2/h] [1].

For a square optical lattice with a = 0.64 μm, the tunneling
rate for 87Rb atoms is estimated to be J ∼ 20 Hz for V0 ∼
12Er (where Er is the recoil energy) [38] or J ∼ 330 Hz for
V0 ∼ 6Er . Thus, in order to have significant tunneling rates in
a magnetic lattice, submicron periods are required. Due to the
tighter confinement, atomic states with low inelastic collision
rates should be chosen (for example, fermionic atoms such
as 40K) or the number of atoms per site should be limited
to less than three, which would normally be the case for a
2D lattice with submicron period. Additionally, the magnetic
potentials need to be smooth and homogeneous with constant
periodicity (<1%–2% [20]) and uniform trap bottoms. To
produce high-quality magnetic potentials with submicron
periods we propose to use nanofabricated multiatomic layer
Co/Pd (or Pt) films (with ∼6 nm grain size) presently under
development for high density data storage.

In conclusion, we have realized a periodic array of Bose-
Einstein condensates in a 10-μm-period 1D magnetic lattice.
A clear signature for the onset of BEC was provided by
in situ site-resolved rf spectra which show a pronounced
bimodal distribution. Similar bimodal distributions were found
for various sites across the magnetic lattice. This result
represents a major advance towards the implementation
of magnetic lattices to create periodic arrays of BECs
for quantum simulation of many-body condensed matter
phenomena in lattices of complex geometry and arbitrary
period.
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