
RAPID COMMUNICATIONS

PHYSICAL REVIEW A 89, 050102(R) (2014)
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An incomplete quantum measurement can induce nontrivial dynamics between degenerate subspaces, a closed
sequence of such projections produces a nonabelian holonomy. We show how to induce unitary evolution on an
initial subspace from such finite discrete sequences and also construct a near deterministic repeat-until-success
protocol. We also prove necessary and sufficient criteria on the auxiliary Hilbert space dimension required for
inducing isometries between subspaces.
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The geometric structure of quantum theory is highlighted
by the phenomenon of the Pancharatnam-Berry phase whereby
the cyclic evolution of a pure quantum state induces a
geometric phase (U(1) abelian holonomy) in addition to
the standard dynamic phase [1,2]. Nonabelian holonomies
can be induced by the cyclic adiabatic modulation of a
Hamiltonian with a degenerate subspace [3] or by nonadiabatic
means [4]. Alternatively, the evolution of a subspace can be
driven deterministically by a dense sequence of incomplete
(degenerate) projections again leading to a holonomy [5].
Such Zeno effects have been proposed for quantum con-
trol and computation [6,7] and for engineered quantum
systems [8].

The more practical case of finite projective sequences was
addressed by Anandan and Pines [5] and later by Åberg,
Kult, and Sjöqvist [9,10], where they analyzed the geometric
structure of sequences of points in the Stiefel manifold of
projective subspaces and found the associated holonomies.
Here, we extend this by explicitly constructing finite discrete
sequences of degenerate projections that induce isometries
between subspaces and demonstrate two methods of achieving
unitary holonomic evolution. The first is minimal in that only
one auxiliary Hilbert space dimension is required, though at
the expense of the success probability. The second provides
a near deterministic protocol but requires a doubling of the
Hilbert space dimension. We also prove that this doubling is a
necessary condition for stepwise unitary (isometric) subspace
dynamics.

In an N -dimensional Hilbert space we can perform an
incomplete measurement where one outcome is a degenerate
projection onto a k-dimensional subspace and the comple-
mentary result can be taken as a projection onto a N − k-
dimensional subspace. Without loss of generality, we will
identify a projection operator with its +1 eigenspace or a
set of basis vectors. Consider an initial state |ψ0〉 lying in
a k-dimensional subspace associated with a projector �0.
Applying a second k-dimensional projector �1 (assumed to
be nonorthogonal to �0), the system survives with probability
p1 = 〈ψ0|�1|ψ0〉 and now lies within the subspace of �1. The
normalized conditional state is given by �1|ψ0〉/√p1.

Extending this to a sequence of projections {�j }nj=0 where
the final projection �n coincides with �0, the system may
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undergo a cyclic evolution and return to its original subspace.
The final conditional state is related to the initial state
by

|ψf 〉 = �|ψ0〉/√pf , (1)

where the cumulative operation is given by

� =
∏
j

�j , (2)

and the survival probability is pf = 〈ψ0|�†�|ψ0〉. In general,
� is not proportional to a unitary operation on the initial
subspace. In the limit of a dense sequence of projections
approaching a continuous path in the associated Grassmann
manifold, then � becomes unitary [9].

We require only one additional dimension (N = k + 1)
in order to generate a unitarily proportional � using a finite
sequence. To illustrate, we construct a unitary operation U =∑

eiφm |ψm〉〈ψm| chosen to be diagonal in some orthonormal
basis {|ψm〉}km=1 for the initial subspace. The process proceeds
stepwise by generating each phase factor in turn by a
subsequence of projections driving the mth component of
the superposition around a loop within a two-dimensional
subspace spanned by |ψm〉 and a single auxiliary level |ψa〉.
Each loop generates a geometric phase equal to half of the
solid angle enclosed on the Bloch sphere.

Specifically, to generate φm we use a subsequence {�l
m}Nm

l=0,
where the starting and ending subspaces coincides with �0,
i.e., �0

m = �Nm
m = �0,

�l
m =

⎛
⎝∑

j �=m

|ψj 〉〈ψj |
⎞
⎠ + |ψl

m〉〈ψl
m|, (3)

with |ψ0
m〉 = |ψNm

m 〉 = |ψm〉, and |ψl
m〉 traces a path in the

the subspace of {|ψm〉,|ψa〉}. The first term on the righthand
side simply projects onto all but one of the spanning basis
vectors on �0. The cyclic evolution of the remaining term is
responsible for generating the φm-phase (Fig. 1). An initial
state |ψ〉 = ∑

αj |ψj 〉 in the image of �0 will transform
under the sequence �m = ∏

l �
l
m into the unnormalized state∑

j �=m αj |ψj 〉 + tmαm|ψm〉, where tm = Tr[
∏Nm

l=0 |ψl
m〉〈ψl

m|]
and arg tm = φm. We require that |tm| > 0 for a nontrivial
success probability. A possible subsequence �l

m can be
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FIG. 1. Geometric phase of the |ψm〉 component. The |ψm〉
component of the �0 subspace is driven by a projective subsequence
along the closed path indicated by the thick arrows within a two-
dimensional subspace represented by a Bloch sphere. The transition
amplitudes are equal in magnitude between the four points (solid
circles). The Pancharatnam or geometric phase associated with the
cyclic evolution is half of the solid angle � enclosed (shaded) and is
equal to φm.

specified by∣∣ψ0
m

〉 = ∣∣ψ4
m

〉 = |ψm〉, ∣∣ψ2
m

〉 = |ψa〉,
∣∣ψ1

m

〉 = 1√
2

(|ψm〉 + |ψa〉), (4)

∣∣ψ3
m

〉 = 1√
2

(|ψm〉 + eiφm |ψa〉),

with |tm|2 = ( 1
2 )4 = 1

16 . Increasing Nm would enable the
transition probability to increase until in the limit of Nm → ∞
we induce the Zeno effect and tm → 1.

Applying �m for each m leads to the final unnormalized
state

|ψ ′〉 =
∑
m

tmαm|ψm〉 = �|ψ〉, (5)

where � = ∏
m �m = ∑

tm|ψm〉〈ψm|. For the conditional op-
eration to be unitary on the initial subspace, all the amplitudes
should be reduced by the same factor so that the survival
probability is independent of the initial state, i.e., |tm| = t .
This can be ensured either through suitable choice of �m or
by a final filtering operation to equalize tm to their smallest
magnitude. The success probability of any initial state is
then t2 and the conditional evolution is unitary as required,
|ψ ′〉/‖|ψ ′〉‖ = (�/t)|ψ〉 = U |ψ〉.

The procedure above creates a final unitary operation
from the conditional success of several nonunitary steps.

Any information gain at each step is offset in subsequent
projections, so overall no information is gained about |ψ〉
conditional on all steps succeeding. An alternate procedure
would ensure that every transition is an isometry between the
source and image subspaces and this requirement leads to a
restriction on the minimum dimension N of the embedding
Hilbert space, as shown below.

Let �0 and �1 be nonorthogonal k-degenerate projec-
tors specified with orthonormal bases B0 = {|μj 〉}kj=1 and
B1 = {|νj 〉}kj=1, respectively. Let span(B0

⋃
B1) be (k + k′)-

dimensional, 1 � k′ � k. We can augment B0 with k′ extra
vectors {|μj 〉}k+k′

j=k+1 to form a basis B′
0 = {|μj 〉}k+k′

j=1 for the

combined subspace. We now use the augmented basisB′
0 to ex-

press the vectors of B1 as {|νj ′ 〉 = ∑k+k′
j=1 Cj ′j |μj 〉}kj ′=1, where

C is a k × (k + k′) complex matrix with orthonormal rows.
Using Gaussian elimination on C, we can find a matrix D,
which defines a new orthonormal basis for �1, B′

1 = {|ν ′
j ′ 〉 =∑k+k′

j=1 Dj ′j |μj 〉}kj ′=1, where {|ν ′
j ′ 〉}k−k′

j ′=1 ⊂ span(B0), and only
{|ν ′

j ′ 〉}kl′=k−k′+1 have support outside of span(B0). This implies
that �0 and �1 share a (k − k′)-dimensional subspace. The k′
elements of B′

1 not in this common subspace can be written, up
to a relative phase, as |ν ′

j ′ 〉 = cos θj ′ |mj ′ 〉 + sin θj ′ |nj ′ 〉, where
|mj ′ 〉 ∈ span(B0), |nj ′ 〉 ∈ ker(�0), and 0 < θj ′ < π/2.

If �1 induces a nontrivial isometry on span(B0), this implies
that �0 and �1 do not share any common nontrivial eigenvec-
tors, i.e., k = k′, otherwise the transition probabilities for states
in the common eigenspace and those with outside support
would differ. Hence, we can express B′

1 = {cos θ |mj ′ 〉 +
sin θ |nj ′ 〉}kj ′=1, and the transition probability between the
subspaces is t2 = cos2 θ . Completing the resolution of the
identity specifies a measurement, and the complementary
outcome to �1 given by �̃1 = I − �1 is also a projective
isometry that translates the subspace of �0 to one that is
orthogonal to �1. If we make a two-outcome measurement
{�1,�̃1}, regardless of the resulting projection the information
originally in the subspace of �0 is preserved. We now use this
to construct a repeat-until-success protocol.

We illustrate the basic idea by implementing isometries
on a qubit initially embedded in the {|0〉,|1〉} subspace. We
augment the system by the direct sum of two additional levels,
{|2〉,|3〉}, and define a measurement with two two-dimensional
degenerate projections with subspaces

�1 : {cos θ |0〉 + eiφ sin θ |2〉, cos θ |1〉 + eiϕ sin θ |3〉}
(6)

�̃1 : {sin θ |0〉 − eiφ cos θ |2〉, sin θ |1〉 − eiϕ cos θ |3〉},
where the phases {φ,ϕ} are arbitrary. The measurement
probabilities are independent of the initial state and are
P1 = cos2 θ and P1̃ = sin2 θ , respectively. Conditional on the
result, we can choose different pairs of degenerate projections
to measure in the next round, each subsequent measurement
may depend on previous outcomes resulting in a binary tree of
projections [11]. If at some point in the sequence the resultant
subspace returns to the original one, a unitary holonomy
would be the result. A randomly chosen sequence of such
measurements periodically revisiting the original subspace can
generate a desired unitary in an expected number of steps
polynomial in the approximation error [12–14].
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FIG. 2. (Color online) Qubit unitary projection sequence. Each
two-outcome measurement is indicated by a pair of similar arrows
between nodes representing the initial and final subspaces associated
with degenerate projections. (i) The qubit is initially in the {|0〉,|1〉}
subspace and the first measurement (solid green lines) projects
equiprobably onto the {(|0〉 + |2〉)/√2,(|1〉 + |3〉)/√2} subspace or
its complement, {(|0〉 − |2〉)/√2,(|1〉 − |3〉)/√2}. (ii) The second
measurement (dashed yellow) projects back onto the original {|0〉,|1〉}
subspace or forwards onto the {|2〉,|3〉} subspace that acts as a
“checkoint.” In the former case, the qubit is unaltered and we begin
again. (iii) For the {|2〉,|3〉} outcome, the next (third) measurement
(dash-dotted blue) begins the return loop via a different subspace.
(iv) The fourth measurement (dotted red) either projects back to
the {|2〉,|3〉} checkpoint subspace or completes the loop returning
the system to the initial subspace. The qubit will have undergone a
unitary holonomy U = ei

ϕ
2 e−iϕ

σz
2 , up to a ±1 global phase factor

depending on the path taken through the graph. The rotation axis of
U can be chosen by redefinition of {|0〉,|1〉}. As each transition is
equally weighted (p = 1

2 ), the mean time for traversing the graph top
to bottom can be shown to be eight steps.

Alternatively, it may be more efficient for the projection
sequence to trace out specific paths; Fig. 2 demonstrates such
a sequence that implements a near deterministic qubit rotation.
An initial qubit state is translated between different subspaces
according to the directed graph structure until it returns to the
original subspace having had applied to it a unitary holonomy.
Due to measurement randomness, the measurements may need
to be repeated until a successful sequence of results is obtained.
The probability of failure decreases exponentially in the total
number of allowed steps and repeat-until-success protocols
have been used to good effect in gate synthesis [15].

As a concrete example, we implement U = ei
ϕ

2 e−iϕ
σz
2 on

an initial state |ψ〉 = α|0〉 + β|1〉 assuming that we take the
minimal traversal (no backtracking) down the right side of the
graph in Fig. 2. The first measurement takes us to the subspace
{(|0〉 − |2〉)/√2,(|1〉 − |3〉)/√2} and the system becomes

|ψ1〉 =
( |0〉−|2〉√

2
〈0|−〈2|√

2
+ |1〉−|3〉√

2
〈1|−〈3|√

2

)
√

1
2

|ψ〉

= α
|0〉 − |2〉√

2
+ β

|1〉 − |3〉√
2

, (7)

where in the first line we have normalized the state by the
square root of the transition probability, which is independent

of |ψ〉 as required by isometry. If the second projection does
not take us back up to the original subspace but down to
the next “checkpoint” subspace {|2〉,|3〉} instead, the state is
now

|ψ2〉 = −(α|2〉 + β|3〉). (8)

The third measurement begins the return loop but via a
different subspace; an outcome to the right results in

|ψ3〉 = α
|0〉 − |2〉√

2
+ β

eiϕ|1〉 − |3〉√
2

. (9)

A final successful measurement completes the loop leaving
the qubit back in its original subspace,

|ψ4〉 = α|0〉 + eiϕβ|1〉 = U |ψ〉, (10)

as required. A simple calculation shows that holonomies
corresponding to different traversals only differ by a ±1 global
phase factor.

We can generalize the procedure in Fig. 2 to induce a k-
dimensional unitary on an initial subspace spanned by {|j 〉}kj=1.
We augment the Hilbert space with an additional k′ = k

levels {|j̄〉}kj . We now project onto subspaces spanned by
(unnormalized) vectors {|j 〉 + |j̄〉} and {|j 〉 − |j̄〉} for the first
measurement, {|j 〉} and {|j̄〉} for the second measurements,
{eiφj |j 〉 + |j̄ 〉} and {eiφj |j 〉 − |j̄〉} for the third measurements,
and {|j 〉} and {|j̄〉} for the fourth and final measurements in
the graph. The induced holonomy after a successful sequence
of projections is given by U = diag(eiφm ) in the {|j 〉} basis, up
to a ±1 global phase. The graph structure is identical to that
in Fig. 2 with the same transition probabilities and expected
transit time of eight steps.

In summary, we have elucidated criteria and restric-
tions for inducing isometries between subspaces by dis-
crete projections, complementing previous work exploring
the Zeno regime [6,7] or formal aspects of projective
holonomies [5,9,10]. In order to preserve information during
each projection, the dimensionality of the entire space must
be at least twice that of the initial subspace. The direct and
iterative holonomies coincide in this case [10]. Using a cyclic
sequence of projections we construct a repeat-until-success
protocol to implement a general unitary operation with an
average of eight measurements. If doubling the initial subspace
dimension is not possible, we also show that a single additional
level is sufficient for inducing a unitary holonomy. In this case,
the trade-off is in the success probability, though it can be
increased with more projections until we ultimately recover
the Zeno effect in the infinite limit.

The required highly degenerate projections may be possible
experimentally. The proposal in Ref. [16] suggests a way of
performing infinitely degenerate projections on photon num-
ber in cavity quantum electrodynamics with displacements and
squeezing to effectively modify the projection subspace. An
intriguing possibility in such infinite dimensional systems is
the creation of additional empty levels, as in the Hilbert hotel
paradox [17,18], to act as ancillary dimensions as required
for stepwise isometries. This may require the development
of more non-Gaussian operations in order to perform the
required manipulations of the states to project onto different
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subspaces in conjunction with the techniques outlined in
Ref. [16].

Comparing this work with measurement-based quantum
computation (MBQC) [19] and ancilla-driven computation
(ADQC) [20–22], which also employ measurement to drive
dynamics, the key differences are that in the latter two schemes,
a tensor product structure is assumed, and measurement is
performed on subsystems, not subspaces [11,23]. Our results
are more general since a tensor product space can be mapped
to a direct sum, but not neccessarily the converse. The minimal
addition of a single qubit (e.g., in ADQC) automatically
doubles the dimensionality and this doubling is both necessary
and sufficient for unitary conditional evolution via projections
on the qubit. In some experimental implementations, e.g.,
using position degrees of freedom [24], it is comparatively
easy to increase dimensionality by the direct sum of ancillary
levels, rather than add subsystems and couple them to perform
entangling operations.

We finally note that near deterministic unitary holonomies
require that coherence is preserved at each step. The results
of Ref. [25] and references therein show that it is impossible,
with unit probability, to “unlearn” information gained from a
measurement outcome whose Kraus operator does not have a
flat distribution of singular values. Hence, this rules out the
possibility of measurement trees or graphs where all final
cumulative results are unitary but for which some of the
intermediate effects are not isometries. The two classes of
protocol presented lie at the ends of the spectrum, either
preserving coherence at every step, or else only one of
the final outcomes is unitary with the rest collapsing the
state.
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