
PHYSICAL REVIEW A 89, 044101 (2014)

Semiclassical and quantum analysis of a free-particle Hermite wave function
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In this Brief Report we discuss a solution of the free-particle Schrödinger equation in which the time and
space dependence are not separable. The wave function is written as a product of exponential terms, Hermite
polynomials, and a phase. The peaks in the wave function decelerate and then accelerate around t = 0. We
analyze this behavior within both a quantum and a semiclassical regime. We show that the acceleration does not
represent true acceleration of the particle but can be related to the envelope function of the allowed classical
paths. Comparison with other “accelerating” wave functions is also made. The analysis provides considerable
insight into the meaning of the quantum wave function.

DOI: 10.1103/PhysRevA.89.044101 PACS number(s): 03.65.Ta

I. INTRODUCTION

The Schrödinger equation is at the center of nonrelativistic
quantum theory. The usual method of solution is to separate
the time and space dependence of the wave function and
solve the time independent Schrödinger equation [1]. This
can be done analytically for a few simple model potentials
and otherwise it is straightforwardly amenable to numerical
solution. This approach has had huge success in describing a
vast array of physical phenomena, in particular the electronic
and structural properties of atoms, molecules, and solids. The
Schrödinger equation has also been shown to have more exotic
solutions such as accelerating Airy wave functions [2,3]. The
wave function introduced by Berry and Balazs [2] also has
the remarkable property that it does not broaden with time.
However, it does not represent a single particle because it is
not square integrable and thus is not an element of a Hilbert
space; therefore there is no contradiction with Ehrenfest’s
theorem. Later, Lekner [3] derived a more general form of
the Airy wave function which is both well behaved and
square integrable. Both the expectation values of position and
momentum show no acceleration, except in the Berry-Balazs
limit where the wave function is not square integrable. In
a subsequent paper Nguyen and Lekner [4] were able to
derive wave functions that describe true acceleration via
an extended Galilean transformation of a free-particle wave
function, where the extended Galilean transformation also
introduces a potential into the Hamiltonian which drives the
acceleration. In this Brief Report we derive, describe, and
try to gain insight into an exotic, apparently accelerating
solution of the free-particle Schrödinger equation that is
square integrable and which also displays some unusual
characteristics. In Sec. II we write down and describe the
solution. In Sec. III A we perform a quantum-mechanical
analysis of the wave function and show that the probability
density accelerates. Accelerating probability densities for free
particles is an apparent contradiction. However, they have been
found to be explicable on the basis of classical mechanics [2].
Therefore in Sec. III B we have performed a parallel classical
analysis to show how the accelerating probability density
can be understood and how the semiclassical and quantum
descriptions are related. In Sec. IV we compare the properties
of our Hermite wave function with those of a Gaussian and
the the Airy wave function of Lekner [3]. In conclusion we

discuss the considerable insight this calculation yields into the
meaning of the quantum-mechanical wave function.

II. THEORY

The time dependent free-particle Schrödinger equation in
1 + 1 dimensions is
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Using a symmetry analysis and separation of the variables [5,6]
it is possible to find a solution of Eq. (1) as
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Wave functions similar to this have been obtained previ-
ously [7] although not in precisely this form to our knowledge.
Here tc is an arbitrary positive constant with the dimensions
of time. Hn(y) are the Hermite polynomials [8]. Square
integrability requires that n be an integer. This wave function
has been normalized between ±∞ and the normalization is
constant with respect to time, as it must be. Equation (2)
reduces to a Gaussian wave packet centered on the origin when
n = 0. This expression may be checked by direct substitution.
Henceforth we will retain constants in equations, but all
figures will be calculated in atomic units (a.u.) with � = 1
and m = 1/2.

Equation (2) has one remarkable property. If we look at its
form at t = 0 and define the frequency ω = 1/tc it becomes
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Surprisingly, this is exactly the form of the eigenfunctions
of the harmonic oscillator. Of course this is only true at
t = 0 because our wave function evolves according to the
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free-particle Schrödinger equation, not the one describing the
harmonic oscillator.

This identification helps us because we already know that
for the quantum harmonic oscillator the kinetic-energy and
potential-energy operators provide an equal contribution to the
total energy of the oscillator. Our Hamiltonian only contains
the kinetic-energy operator, so at t = 0 and hence at all times

En = 1

2
(n + 1/2)�ω = 1

2
(n + 1/2)

�

tc
= 1

2m
〈p̂2〉, (4)

where the last equality has been confirmed computationally.
Of course, it would always be possible to use Eq. (3) as an

initial state of our system and then to integrate the Schrödinger
equation directly, or to expand it in terms of some basis
functions such as plane waves with time dependent coefficients
and integrate that. However, such a procedure is essentially
numerical and would in general require large numbers of basis
functions, making it rather opaque and unwieldy.

III. RESULTS

A. Quantum-mechanical results and analysis

In Fig. 1 we show a contour plot of the probability density
associated with this wave function as a function of time for
n = 2 and tc = 1. The principal effect of tc is to set the time
scale. The wave function itself is strongly oscillatory but the
oscillatory nature cancels in the probability density to produce
three peaks. At all times the probability density is symmetric
about x = 0. For t � 0 the probability density consists of a
pair of broad peaks on either side of x = 0 moving toward
x = 0 at approximately constant velocity and a central peak
which has its maximum at x = 0 at all times. As the two outer
peaks get close together their contour lines, shown in Fig. 1,
describe a curve indicating that the peaks are decelerating and
narrowing, and at t = 0 they form two well-localized peaks
close to the origin. For t > 0 this behavior is reversed with the
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FIG. 1. Contour map of the density associated with the wave
function of Eq. (2) as a function of time and space. This was evaluated
for tc = 1 a.u. with n = 2. Superimposed on this are the hyperbolas
given by Eq. (6).

outer peaks accelerating away from each other and broadening,
and as t continues to increase the peaks move asymptotically
to a constant velocity. The peak at the origin simply broadens
as time increases in either the negative or positive direction
from zero.

Clearly the path of the outer peaks is hyperbolic, and we
can find the equation for this path. We can find the maximum
of the probability density by differentiating it with respect to
x. This leads to
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as the condition for a wave-function peak. We can insert the
explicit expressions for the Hermite polynomials here to find
the condition for any given n. For n = 2 we find

x = ±
√

5�
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. (6)

These two hyperbolas are shown superimposed on the density
in Fig. 1. Clearly they represent the motion of the wave-
function peaks as a function of time.

B. Semiclassical analysis

Accelerating wave functions have been observed previ-
ously [2]. In that case the acceleration of the wave function
was shown to have a classical origin. In this Brief Report
we simply perform a similar analysis on the wave function
Eq. (2) and obtain an analogous result. The key insight found
originally and here is that the wave function should really be
regarded as representing families of particle paths rather than
an individual classical particle. The present wave function can
be regarded as the simplest possible case of this because the
initial phase-space orbits are simply circular. We will show
what we mean by this explicitly as we proceed.

We will analyze the classical motion using Hamilton’s equa-
tions. To do this we need an initial position and momentum
for the particle. This can be provided by the analogy with the
harmonic oscillator at t = 0. The harmonic oscillator has a
Hamiltonian:

H = p2

2m
+ 1

2
mω2x2 = E. (7)

At t = 0 we can write the energy of our system in the same
way. Writing this down with zero subscripts to indicate that
the quantity is valid at t = 0 only and dividing through by E

gives

p2
0√
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This allows a simple parametrization of the position and
momentum at t = 0:

p0(θ ) =
√

2mE sin θ, x0(θ ) =
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FIG. 2. (Color online) Phase-space curves (p vs x for the family
of paths described by Eqs. (9) and (10). At t = 0 this is a circle in
phase space which shears into an ellipse as time proceeds.

Every different value of θ in these equations represents the
initial conditions for one member of the family of paths. With
these initial conditions we can solve Hamilton’s equations for
a free particle to give

p = p0(θ ) = const,
(10)

x = x0(θ ) + pt/m = x0(θ ) + p0(θ )t/m.

These equations all represent paths that are straight lines
representing uniform motion. As time passes, x increases
linearly and p remains constant. The phase-space curve
associated with p0(θ ) and x0(θ ) is a circle [9], but as time
passes it shears into an ellipse. This is shown in Fig. 2 for
times 0 � t < 2 a.u. Next we plot the possible particle paths
described by Eq. (10) with initial conditions Eq. (9). This is
shown in Fig. 3. These paths form a characteristic shape as
shown. The edges of this shape form a hyperbolic caustic or
envelope function in space-time. An equation for the caustic
can be found using standard methods [10]; i.e., we have to
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FIG. 3. (Color online) The family of allowed classical paths for
the system described by Eq. (10). All quantities are in atomic units.

satisfy

x(t) = x(t,θ ),
∂x(t,θ )

∂θ
= 0. (11)

This is easily done using Eqs. (9) and (10) and results in
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For n = 2 this comes out as
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which is identical to Eq. (6). Clearly the peak in the space-
time representation of the wave function in Fig. 1 corresponds
exactly to the caustic enveloping the classically allowed paths.

IV. EXPECTATION AND UNCERTAINTY

Lekner has derived the normalizable Airy wave func-
tion [3]:

ψ(x,t) = Ai
[
q
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Here u and v are velocities that are real, v is positive, and
a is an acceleration. We will consider this wave function in
its rest frame (u = 0) and compare it with the one derived
in this Brief Report. Although checked by us, all results for
this wave function quoted here were originally published by
Lekner and are reproduced here for comparative purposes only.
It is instructive to compare the expectation values of position
and momentum for the various wave functions. This is done in
Table I. To make the comparison with the Airy wave function
as meaningful as possible we have identified tc = v/a. The
uncertainties have the usual definitions:
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For the Airy wave function,
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TABLE I. Comparison of the expectation values of the Airy,
Gaussian, and Hermite (n = 1 and 2) wave functions and evaluation
of the uncertainty principle. 〈x2〉 has not been included for the Airy
wave function because the expression is too long. However, it can
easily be found from 〈x〉 and the uncertainty in Eq. (16).
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It is easy to show from the table that the uncertainty in
position for all the wave functions is in accord with the general
result [11]

(�x)2 = (�x)2
t=0 +

(
�p

m

)2

t2. (17)

Surprisingly the Airy wave function has an identical uncer-
tainty in momentum as the Gaussian wave function. The
uncertainties in position look very different partially because
the Airy wave function is not centered on x = 0, and whether
the Airy wave function is broader or narrower than the
Gaussian wave function depends on the size of v when
t0 = v/a is kept constant.

V. CONCLUSIONS

As an exact solution of one of the fundamental equations
of physics, the free-particle Schrödinger equation, the wave
function of Eq. (2) is of great interest from a mathematical
perspective. Furthermore the fact that it exhibits some unusual
properties such as the apparent acceleration of the probability
densities while remaining normalizable means that it provides
profound insight into the meaning of the single-particle wave
function. However, practical applications of this work are not
immediately clear. We note however that the Schrödinger
equation has an identical mathematical form to the paraxial
wave equation, and so such solutions have been employed
as the basis of solutions of Maxwell’s equations to describe
electromagnetic radiation that can change direction as it
propagates through interference effects [12–14]. We hope
this work will provoke similar experiments. In fact, if light
is set up with the profile shown at negative times in Fig. 1
it will focus down to the profile shown at t = 0 in that
figure, a property that may well have significant applications.

The wave function described here illustrates a number
of quantum phenomena very clearly. At the undergraduate
level wave functions are normally interpreted in terms of
time independent probability densities. Along with the Airy
wave packets derived by Berry and Balazs [2] and Lekner [3]
the present wave function provides a very different perspective
where the wave function is a description of the family of
allowed paths of the particle it describes. The Berry-Balazs
wave function has a second remarkable property that it does not
spread out with time. However, it has the drawbacks that it is
not square integrable, is infinite in extent, and as a result of this
has undefined energy. Along with the Lekner wave function
the current wave function does broaden with increasing (and
decreasing) time, but is square integrable and has a well-
defined energy, thus making it easier to think about and more
straightforward for interpretation purposes. This analysis also
illustrates the fact that accelerating wave functions do not
necessarily correspond to accelerating particles as many might
think. Indeed, the expectation values of momentum and energy
are constant with respect to time. This wave function does
have the unusual property that it consists of more than one
peak that separate as time proceeds, despite the fact that it
represents a single particle. However, this can be understood if
we think about the wave function in the semiclassical way
discussed here. Moreover, the analysis introduces caustics
into quantum theory in an interesting and mathematically
simple way.
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