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By examination of the exerted electromagnetic (EM) force on boundary of an object in a few examples, we
look into the compatibility of the stress tensors corresponding to different formulas of the EM force density
with special relativity. Ampere-Lorentz’s formula of the EM force density is physically justifiable in that the
electric field and the magnetic flux density act on the densities of the total charges and the total currents,
unlike Minkowski’s formula which completely excludes the densities of the bounded charges and the bounded
currents inside homogeneous media. Abraham’s formula is fanciful and devoid of physical meaning. Einstein-
Laub’s formula seems to include the densities of the total charges and the total currents at first sight, but
grouping the bounded charges and the bounded currents into pointlike dipoles erroneously results in the hidden
momentum being omitted, hence the error in [Phys. Rev. Lett. 108, 193901 (2012)]. Naturally, the Ampere-
Lorentz stress tensor accords with special relativity. The Minkowski sress tensor is also consistent with special
relativity. It is worth noting that the mathematical expression of the Minkowski stress tensor can be quite
different from the well-known form of this stress tensor in the literature. We show that the Einstein-Laub stress
tensor is incompatible with special relativity, and therefore we rebut the Einstein-Laub force density. Since the
Abraham momentum density of the EM fields is inherently corresponding to the Einstein-Laub force density
[Phys. Rev. Lett. 111, 043602 (2013)], our rebuttal may also shed light on the controversy over the momentum
of light.
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I. INTRODUCTION

The exerted electromagnetic (EM) force on a point charge
is given by the Lorentz force law which, together with
Maxwell’s equations, constitutes one of the five independent
principles of EM theory. No matter how Maxwell’s equations
are mathematically formulated [1], they always express the
same notion and yield the same results. In contrast, different
mathematical expressions that have been hitherto reported for
the EM force density within a material medium could yield
different results even when they are applied to one particular
problem [2,3].

A survey of the literature shows that the most famous
expressions of the EM force density are Ampere-Lorentz’s,
Einstein-Laub’s, Minkowski’s, and Abraham’s formulas
[2–10]. The most physically appealing formula is Ampere-
Lorentz’s. Still, Einstein has been quoted to disapprove
his own formula and endorse Minkowski’s [8,11]. More
recently, particular attention has been directed toward Ampere-
Lorentz’s and Einstein-Laub’s formulas [4,5,8–10]. It was
mistakenly asserted that the former is inconsistent with special
relativity [7]. This wrong assertion was soon rectified in scores
of publications [12–16].

The Ampere-Lorentz expression of the EM force density
is the only one physically justifiable because the electric field
( �E) and the magnetic flux density ( �B) act on the densities
of the total charges and the total currents. Einstein-Laub’s
formula seems to have such property, but grouping pairs of
charges into pointlike dipoles results in the hidden momentum
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being omitted. The lack of the hidden momentum is exactly the
same error recently made in [7]. Minkowski’s and Abraham’s
formulas are physically unjustifiable in that they completely
exclude the densities of the bounded charges and the bounded
currents inside homogeneous media. Moreover, Abraham’s
formula is based on an esthetic consideration which is devoid
of physical meaning.

Once either one of the aforementioned formulas is adopted
for the EM force density within a material medium, the overall
EM force exerted upon the entire volume of the material can
be easily obtained by volume integration of the EM force
density. This integral is usually written as a summation of two
integrals; first, surface integral of the stress tensor, and second,
time rate of decrease of the volume integral representing the
momentum of the EM fields inside the volume [2,3]. Obviously
different formulations result in different stress tensors and
momentum densities. Ampere-Lorentz’s force density leads to
the Ampere-Lorentz stress tensor and the Livens momentum
density. Einstein-Laub’s force density leads to the Einstein-
Laub stress tensor and the Abraham momentum density.
Minkowski’s force density leads to the Minkowski stress
tensor and the Minkowski momentum density. Abraham’s
force density leads to the Abraham stress tensor and the
Abraham momentum density.

Naturally the debate on the correct form of the EM force
density within a material body goes in tandem with the
debate on the correct form of the EM stress tensor and the
EM momentum density within a material body. Nevertheless,
finding the correct form of the EM stress tensor in a material
medium has not been a widely studied subject in the literature.
Rather, the Minkowski stress tensor, being referred to as the
Maxwell stress tensor in Jackson’s book [17], other texts [18],
and research papers [19–23], has been the most common stress
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tensor in the literature. The correct form of the momentum
density in a material medium, on the contrary, has been the
subject of controversy in the past [24–28].

In this paper we theoretically assess different formulations
of the EM stress tensor and thereby evaluate different for-
mulations of the EM force density. To this end, the EM force
exerted upon the boundary of material objects is first calculated
by using different stress tensors. In view of the fact that the
method of virtual work cannot be accounted a solid criterion
for the correct EM force, the compatibility of the obtained
results with special relativity is used as the theoretical criterion.
Ironically, it is shown that the Einstein-Laub formulation is
not necessarily consistent with Einstein’s special relativity.
This observation is in stark contrast to the assertion that the
Einstein-Laub formulation is in perfect harmony with special
relativity [7].

The organization of this paper is as follows. First, different
formulations of the EM stress tensor are reviewed in Sec. II.
Since the mathematical expressions of the stress tensors of
Minkowski and Abraham inside a material depend on the
constitutive relations that govern the displacement field ( �D)
and the magnetic flux density ( �B), we specifically derive
these tensors for three categories of homogeneous materials:
linear isotropic dispersive and nondispersive materials, linear
reciprocal nondispersive materials with permittivity and/or
permeability tensors, and nonlinear materials with permanent
electric and/or magnetic dipoles. Peculiarly, the forms of the
stress tensors in the latter category of materials are quite
different from the well-known forms of the stress tensors used
in the literature. This is also in contrast to the assertion of some
authors that the applicability of the Minkowski force density
is limited to linear materials [8]. In Sec. III, from a viewpoint
based on the law of conservation of momentum in EM
interactions, the generic problem of the EM force experienced
by an object is addressed. Thereby, the total EM force exerted
on the object is found together with the distribution of the
exerted EM force on the object boundary. Despite the opinion
of some authors [22], we argue that finding the exact amount
of the total EM force exerted on the object in a nonfree
space host medium requires more than a macroscopic study
of the interface. Besides, all the aforementioned formulations
of the EM force density render the same total EM force (or
time-averaged EM force) exerted on the object in free space
only when the EM fields are static (or time harmonic). It should
be noted that even though the contribution of the Helmholtz
term in the Minkowski (or Abraham) force density [2,3,29]
is no longer zero because there is a discontinuity on the
object boundary, finding and integrating the contribution of
the Helmholtz term in the exerted Minkowski (or Abraham)
force is sidestepped by following the approach of this section.
Section IV is devoted to a theoretical assessment of the
different formulations of the EM stress tensor. Although
the difference among the results obtained by using different
formulations for the EM force density is an already known
fact [8,30], no conclusive experiment has been carried out
to decide on the correct formulation. Regretfully, the result
of the method of virtual work cannot be accounted a solid
criterion for the correct EM force because the resulting EM
force depends on the constitutive relations within the material
object in its virtually expanded or contracted state. Therefore,

the compatibility of the obtained results with special relativity
is exploited as a solid theoretical criterion. Finally, concluding
remarks are provided in Sec. V.

II. DIFFERENT FORMULATIONS OF
EM FORCE DISTRIBUTION

A. The formulations of Ampere-Lorentz and Einstein-Laub

Ampere and Lorentz naturally, and obviously from the
physical point of view, considered that �E and �B act on the
densities of the total charges and the total currents, i.e., not
only the density of the free charges (ρ) and the density of
the free currents ( �J ), but also the densities of the bounded
charges (− ∇ · �P ) and the bounded currents ( ∂ �P

∂t
+ ∇ × �M).

Therefore, the Ampere-Lorentz force density reads as

�fAm = (ρ − ∇ · �P ) �E +
(

�J + ∂ �P
∂t

+ ∇ × �M
)

× �B. (1)

The Einstein-Laub force density, on the other hand, is as
follows:

�fE = (ρ + �P · ∇) �E + μ0

(
�J + ∂ �P

∂t

)
× �H

+μ0( �M · ∇) �H − ε0μ0
∂ �M
∂t

× �E. (2)

According to [4], the difference between the Ampere-
Lorentz and the Einstein-Laub force densities in a nonmagnetic
medium ( �M = 0) is that the macroscopic electric polarization
( �P ) is modeled as an aggregate of microscopic charges
and microscopic dipoles for the former and latter cases,
respectively. It was just the grouping of pairs of separated
charges into pointlike dipoles that led Einstein and Laub to an
error, because separated charges considered at the same time
in their rest frame are subject to forces at different times in a
moving frame. The grouping of the bounded charges and the
bounded currents into pointlike dipoles erroneously results in
the hidden momentum, which is the necessary quantity arising
from nonconservation of simultaneity of separate events, being
omitted. This is exactly the error made in [7]. Although the
error had not been discovered at the Einstein-Laub times, there
are papers published decades ago on the subject of relativistic
treatment of extended bodies in general [31–33], and magnetic
dipoles in particular [34,35].

It can be seen that both of the formulas lead to ( �p0 · ∇) �E +
μ0(∂ �p0/∂t) × �H as the exerted force on a pointlike electric
dipole with the electric polarization �P = �p0δ(�r). The exerted
force on a pointlike magnetic dipole with the magnetic po-
larization �M = �m0δ(�r) is μ0( �m0 · ∇) �H + μ0ε0 �m0 × (∂ �E/∂t),
when Ampere-Lorentz’s formula is applied, and μ0( �m0 ·
∇) �H − μ0ε0(∂ �m0/∂t) × �E, when Einstein-Laub’s formula is
applied. The difference between the obtained forces equals
time rate of change of the hidden momentum, i.e., ∂( �m0 ×
�E)/(c2∂t).

Integrations of the Ampere-Lorentz and the Einstein–Laub
force densities over an arbitrary volume υ, which is not
necessarily homogenous, result in a summation of a volume
integral of time rate of decrease of the momentum density �G,
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and a surface integral of the stress tensor
↔
T :

∫
υ

�f dυ =
∫

υ

−∂ �G
∂t

dυ +
∮

∂υ

n̂ · ↔
T dS, (3)

where ∂υ is the boundary of υ, and n̂ is the unit vector normal
to the boundary element dS toward the outside of υ. For the
Ampere-Lorentz force density, we have the Livens momentum
density �GL = ε0 �E × �B, and the Ampere-Lorentz stress tensor
↔
T Am [2,3]:

↔
T Am = ε0 �E �E + 1

μ0

�B �B − 1

2

↔
I

(
ε0 �E · �E + 1

μ0

�B · �B
)

. (4)

For the Einstein-Laub force density, we have the Abraham
momentum density �GAb = ε0μ0 �E × �H, and the Einstein-

Laub stress tensor
↔
T E [2,3]:

↔
T E = �D �E + �B �H − 1

2

↔
I (ε0 �E · �E + μ0 �H · �H ). (5)

It is worth noting that, unlike the stress tensors of Minkowski
and Abraham, the forms of the stress tensors of Ampere-
Lorentz and Einstein-Laub in Eqs. (4) and (5) are independent
of the constitutive relations of �D and �B.

B. The formulations of Minkowski and Abraham

The Minkowski force density seems to be physically
unjustifiable in that it completely excludes the densities
of the bounded charges and the bounded currents inside
homogeneous media. The Abraham force density is fanciful
because it is based on the Minkowski force density together
with a merely esthetic consideration which is devoid of
physical meaning.

In this subsection the Minkowski stress tensor is derived by
integration of the Minkowski force density over an arbitrary
volume within homogeneous media. The importance of this
derivation lies in the fact that the Minkowski formulation is
not limited to linear materials. This is in contrast to what is
explicitly stated in some papers [8].

The Minkowski force density, inside a homogeneous
medium, is written as

�fM = ρ �E + �J × �B, (6)

where ρ and �J are the densities of the free charges and
the free currents, respectively. In inhomogeneous media, a
Helmholtz term has to be included in the Minkowski force
density, which for linear and isotropic media appears as
−( �E · �E/2)∇ε − ( �H · �H/2)∇μ [2,3,29]. Despite the opinion
of some authors [8], the Minkowski formulation is not limited
to linear materials.

As already mentioned, every formula of the EM force
density can be integrated over an arbitrary volume υ to obtain
the associated EM force exerted on the volume υ. It is shown
in Appendix A that the integration of Eq. (6) over the volume υ

within a homogeneous medium is analogous to the expression
in Eq. (3) and therefore includes a momentum density and
a stress tensor. �GM = �D × �B is the Minkowski momentum

density of the EM fields inside the medium, and
↔
T M is the

Minkowski stress tensor which reads as
↔
T M = �D �E + �B �H − 1

2

↔
I ( �D · �E + �B · �H ), (7)

for a linear reciprocal medium and
↔
T M = �D �E + �B �H − 1

2

↔
I (ε0 �E · �E + 2 �P0 · �E + �B · �H ), (8)

for a nonlinear medium with a permanent electric polarization
�P0 and a linear reciprocal magnetic response. In the same

manner, the Minkowski stress tensor for other types of homo-
geneous media, e.g., a nonlinear medium with a permanent
magnetization �M0, can be derived.

The Minkowski stress tensor is not symmetric. The
Abraham force density is obtained in such a manner that
its corresponding stress tensor becomes symmetric, and its
corresponding momentum density becomes the Abraham
momentum density �GAb = ε0μ0 �E × �H . It can be shown that
the Abraham force density inside a homogeneous medium is
as follows:

�fAb = �fM + ∂( �GM − �GAb)

∂t
− 1

2

∑
i=x,y,z

∂( �EDi)

∂i

+ 1

2

∑
i=x,y,z

∂( �DEi)

∂i
. (9)

The previous remark about the absence of the Helmholtz term
for homogeneous media remains true for the Abraham force
density as well. The Abraham counterparts of the Minkowski
stress tensors in Eq. (7), i.e., for a linear reciprocal medium, and
Eq. (8), i.e., for a nonlinear medium with a permanent electric
polarization �P0 and a linear reciprocal magnetic response, can
be obtained by following the same steps. It can be shown that
these counterparts are

↔
T Ab = 1

2 ( �D �E + �E �D + �B �H + �H �B) − 1
2

↔
I ( �D · �E + �B · �H )

(10)

and
↔
T Ab = 1

2 ( �D �E + �E �D + �B �H + �H �B)

− 1
2

↔
I (ε0 �E · �E + 2 �P0 · �E + �B · �H ), (11)

respectively. It is worth noting that, for a linear isotropic
material, the stress tensors of Minkowski and Abraham are
the same.

III. EM FORCE EXPERIENCED BY AN OBJECT

In this section we investigate how the EM force exerted
on an object is distributed over its boundary. Figure 1
schematically shows a typical situation when the object is
placed within a host medium. In this figure, υI , υO , and
SB denote the region inside the object, the region outside
the object, and the object boundary, respectively. It is worth
noting that the object boundary belongs to both the object and
the host medium. Obviously the exact treatment of the
interface requires a microscopic study of the interface between
inside and outside the object. However, the macroscopic
constitutive relations, e.g., electric permittivity or magnetic
permeability, become meaningless in the microscopic study of

043845-3



AMIR M. JAZAYERI AND KHASHAYAR MEHRANY PHYSICAL REVIEW A 89, 043845 (2014)

FIG. 1. Schematic of a homogeneous object placed within a
homogeneous host medium.

the interface. In the macroscopic point of view adopted here,
the necessity of going through a rather meticulous microscopic
study of the interface is sidestepped by approaching the
interface region once from within the object and once from
without the object. Therefore, we consider SI and SO , which
are imaginary surfaces that approach the object boundary from
υI and υO , respectively.

A. The Ampere-Lorentz force and the Einstein-Laub force

The Ampere-Lorentz (or Einstein-Laub) force experienced
by an object inside a host medium is easy to obtain be-
cause the Ampere-Lorentz (or Einstein-Laub) stress tensor
in Eq. (4) [or Eq. (5)], which is resulting from integration
of the Ampere-Lorentz (or Einstein-Laub) force density, is
general and independent of whether the integration volume
is homogeneous. Therefore, the followings are the exerted
Ampere-Lorentz force and the Einstein-Laub force on the
object boundary SB , respectively:∮

SB

n̂ · (↔
T AmO

− ↔
T AmI

)
dS, (12)

∮
SB

n̂ · (↔
T EO

− ↔
T EI

)
dS, (13)

where
↔
T AmI

(or
↔
T EI

) and
↔
T AmO

(or
↔
T EO

) are the Ampere-
Lorentz (or Einstein-Laub) stress tensors inside υI and
υO , respectively, and n̂ is the unit vector normal to the
surface element dS toward the outside of υI . Since the total
Ampere-Lorentz (or Einstein-Laub) force exerted on the object
boundary SB is written as a surface integral, its integrand is the
distribution of the Ampere-Lorentz (or Einstein-Laub) force
exerted on the object boundary SB .

It is worth noting that the object boundary SB in our
treatment is in fact the macroscopic representation of the
microscopic volume in between the object and the host
medium. Since the microscopic volume has a nonzero mass,
attributing a nonzero force to the two-dimensional object
boundary SB is not paradoxical.

The total Ampere-Lorentz force and the total Einstein-Laub
force exerted on υI and SB can be written as

∫
υI

−∂ �GL

∂t
dυ +

∮
SB

n̂ · ↔
T AmO

dS, (14)

∫
υI

−∂ �GAb

∂t
dυ +

∮
SB

n̂ · ↔
T EO

dS, (15)

respectively, where n̂ is the unit vector normal to the surface
element dS toward the outside of υI . Regretfully, the macro-
scopic point of view does not clarify how much of Eq. (14)

[or Eq. (15)] contributes to acceleration of the object center of
mass because the object boundary SB in principle belongs to
both the object and the host medium. Nevertheless, there is no
ambiguity about the total Ampere-Lorentz (or Einstein-Laub)
force that accelerates the object center of mass when the host
medium is devoid of matter, i.e., free space. In such a case,
the object boundary SB is not shared between two media (the
object and its host medium) but belongs to the object totally.
Therefore, Eq. (14) [or Eq. (15)] becomes the overall Ampere-
Lorentz (or Einstein-Laub) force exerted on the object.

B. The Minkowski force and the Abraham force

Finding the Minkowski (or Abraham) force experienced
by an object inside a host medium is a more delicate process
because the form of the Minkowski (or Abraham) stress tensor
depends on the constitutive relations. Our derivation of the
Minkowski (or Abraham) force experienced by the object is
based on the assumption that the object and its host medium
are both made of homogeneous materials. The distributions of
the free charges and the free currents are arbitrary.

Now, according to the results of Sec. II B the Minkowski
force exerted on υI , as a homogenous medium, is written as

∫
υI

−∂ �GM

∂t
dυ +

∮
SI

n̂ · ↔
T MdS, (16)

where n̂ is the unit vector normal to the surface element dS

toward the outside of υI . In a similar fashion, the Minkowski
force exerted on υO , as the other homogeneous medium, is
written as

∫
υO

−∂ �GM

∂t
dυ +

∮
SO

n̂ · ↔
T MdS, (17)

where n̂ is the unit vector normal to the surface element dS

toward the outside of υO . On the other hand, according to
the law of conservation of momentum in EM interactions, the
total Minkowski force exerted on the whole system, which
comprises υI , υO , and SB , should equal time rate of decrease
of the total momentum of the EM fields. Comparing the
summation of the Minkowski forces exerted on υI , and υO ,
i.e., the summation of Eqs. (16) and (17) when the imaginary
surfaces SI and SO approach the real interface SB , against time
rate of decrease of the total Minkowski momentum of the EM
fields reveals that there should be a Minkowski force exerted
on the object boundary SB :∮

SB

n̂ · (↔
T MO

− ↔
T MI

)
dS, (18)

where
↔
T MI

and
↔
T MO

are the Minkowski stress tensors inside
υI and υO , respectively, and n̂ is the unit vector normal
to the surface element dS toward the outside of υI . The
integrand in Eq. (18) is the distribution of the Minkowski
force exerted on the object boundary SB . This treatment of
the object boundary is clearly distinct from the approach
based on the inclusion of the Helmholtz term, which usually
appears as −( �E · �E/2)∇ε − ( �H · �H/2)∇μ in the Minkowski
force density [2,3,29]. Interestingly, the line integral of the
Helmholtz term over an infinitesimal path normal to SB is
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equivalent to n̂ · (
↔
T MO

− ↔
T MI

), where n̂ is the local unit vector
normal to SB toward the outside of υI .

Now, the total Minkowski force exerted on υI and SB can
be written as summation of Eqs. (16) and (18), which is

∫
υI

−∂ �GM

∂t
dυ +

∮
SB

n̂ · ↔
T MO

dS, (19)

where n̂ is the unit vector normal to the surface element dS to-
ward the outside of υI . Since the object boundary SB is shared
between the object and its host medium, finding the overall
Minkowski force exerted on the object—much like finding the
overall Ampere-Lorentz and Einstein-Laub forces—requires
more than a macroscopic study of the interface unless the
host medium is free space. In such a case, Eq. (19) becomes
the overall Minkowski force exerted on the object. Therefore,
despite the opinion of some authors [22], neither Eq. (19)
nor its equivalent forms for static and time-harmonic EM
fields [36] can express the overall Minkowski force exerted
on the object when the host medium is not free space.

In a similar fashion, the exerted Abraham forces on υI ,
υO , and SB can be obtained. It can be easily shown that the
Abraham counterpart of Eq. (18) reads as∮

SB

n̂ · (↔
T AbO

− ↔
T AbI

)
dS. (20)

If the object and the host medium are both linear and isotropic,
Eqs. (20) and (18) become equivalent to each other and
therefore the formulations of Abraham and Minkowski render
the same distribution for the exerted EM force on the object
boundary.

Along the same line, the overall Abraham force exerted on
the object in free space is obtained by replacing �GM and

↔
T MO

with �GAb and
↔
T AbO

, respectively, in Eq. (19).
Interestingly, the overall Ampere-Lorentz, Einstein-Laub,

Minkowski, and Abraham forces exerted on the object in free
space when the EM fields are static (or their time averages
when the EM fields are time harmonic) become equal to each
other.

IV. ASSESSMENT OF FORMULATIONS
OF EM FORCE DISTRIBUTION

Compatibility with special relativity is a solid theoretical
criterion for correct formulation of the EM stress tensor and
its corresponding force density. Some tried to show that the
Ampere-Lorentz force density is inconsistent with special
relativity [7]. But this assertion was incorrect because the
Ampere-Lorentz force density as a generalization of the
Lorentz force law has a covariant four vector [12,13,37],
and the Ampere-Lorentz stress tensor has a covariant four
tensor [37]. From another point of view adopted by some
other authors [14,15], the omission of the hidden momentum
[38–40] leads to the wrong result reported in [7].

It is worth noting that one can discard the hidden momentum
by employing the asynchronous formulation instead of the syn-
chronous formulation [31–33]. According to the synchronous
formulation, the condition of equilibrium in an inertial frame
is met when the sum of the forces (and torques) exerted on the
constituent parts of the extended body under investigation is

synchronously zero. In the asynchronous treatment; however,
the forces (and torques) exerted on the constituent parts are to
be considered asynchronously, i.e., at different times. In this
latter approach, there is only one inertial frame in which the
forces (and torques) are summed at the same time.

If the EM fields are static (or time harmonic) in both the
rest frame and a moving inertial frame, we do not have to
be worried about the hidden momentum insofar as the EM
force (or the time-averaged EM force) is considered. In such a
case, there is no need to resort to the asynchronous formulation,
and the results of the previous sections for static (or time-
harmonic) EM fields are applicable not only in the rest frame
but also in the moving frame. In contrast, insofar as torque
is considered, even if the forces are static in both the rest
and the moving frames, either the hidden entities should be
included, or the asynchronous formulation is to be adopted.
This is due to the fact that torque is the cross product of the
position vector and force, and the positions of the constituent
parts vary with time in the moving frame. One famous example
is the right-angled lever problem [33].

Here, two examples, named example A and example B, are
devised specifically to rebut the assertion that the Einstein-
Laub formulation is in harmony with special relativity [7].
The examples are static in not only the rest frame but also in
a moving frame. It is worth noting that if the EM fields are
time harmonic in the rest frame, they are time harmonic in any
other inertial frame. This is not necessarily the case for static
EM fields. That is why we emphasize that our examples are
static in both frames.

In each of the examples we examine the EM force
experienced by a linear isotropic homogeneous object with
a permittivity ε and a permeability μ inside free space in
the presence of the free charges. For the sake of brevity, the
counterparts of the examples in the presence of the free currents
are only mentioned in passing. From the remarks made in the
previous section it is evident that first, all the formulations of
the EM force density agree on the total EM force exerted on the
object in each of the examples, and therefore, the discussion
focuses on the distribution of the exerted EM force on the
object boundary; and second, the results of the formulations of
Minkowski and Abraham are identical in each of the examples.

Due to the static nature of our examples, one might be
tempted to call upon the method of virtual work rather than
special relativity to find the correct force distribution. The
method of virtual work, however, is not as straightforward as
it seems to be, because the correct form of the constitutive
relations after virtual deformation of objects is open to discus-
sion. This point is discussed for each example in Appendix B.
The mainstream literature is devoted to real deformation of
objects, e.g., elastomers, exposed to electrostatic fields [41].
Such study does not necessitate distinction between the shares
of mechanical and EM forces. This is fortunate because making
such a distinction is a heavy burden [42].

A. Example A

As shown in Fig. 2, the empty space between two parallel
metallic planes is partly filled with the object. The lower and
the upper metallic planes have predetermined charges Q0 > 0
and −Q0 per unit length of the z axis, respectively. Assuming
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FIG. 2. Two parallel metallic planes partly filled with a linear
isotropic homogeneous object with a permittivity ε and a permeability
μ. The structure is uniform along the z axis.

that the electric field is uniform within the space enclosed by
the metallic planes, it can be analytically calculated and written
as �E = ŷ Q0

aε+(b−a)ε0
. The uniformity of the electric field is valid

insofar as b is much larger than d.
The total EM force exerted on the object is zero, but the

distribution of the exerted EM force on the object boundary
hinges upon the choice of the formulation of the EM stress
tensor. Both the Ampere-Lorentz force and the Einstein-Laub
force exerted on the rightward boundary are zero according to
Eqs. (12) and (13), whereas use of Eq. (18) [or Eq. (20)] yields

x̂
Q2

0(ε−ε0)
2[aε+(b−a)ε0]2 for the exerted Minkowski (or Abraham) force

per unit area of the rightward boundary of the object. Below,
their compatibility with special relativity is examined to find
the correct result from the theoretical point of view.

1. Compatibility with special relativity

To provide a relativistic interpretation of example A, which
has been hitherto discussed in the rest frame, we consider
a new inertial frame moving at a constant velocity ẑV with
respect to the rest frame. In this new frame, the electric field
and the magnetic flux density are �E′ = ŷ

γQ0

aε+(b−a)ε0
, and �B ′ =

x̂
γ V Q0

c2[aε+(b−a)ε0] , respectively, where c denotes the speed of light

in free space and γ = 1√
1−V 2/c2

. Similarly, the displacement

and the magnetic fields outside the object (and inside the ob-
ject) are �D′

O = ŷ
γQ0ε0

aε+(b−a)ε0
[and �D′

I = ŷ
γQ0ε

aε+(b−a)ε0
] and �H ′

O =
x̂

γ V Q0ε0

aε+(b−a)ε0
[and �H ′

I = x̂
γ V Q0ε

aε+(b−a)ε0
], respectively. Therefore,

the stress tensors of Ampere-Lorentz, Einstein-Laub, and
Minkowski (or Abraham) which appeared in Eqs. (4), (5),
and (7) [or (10)], respectively, can now be calculated outside
and inside the object in the new inertial frame.

It is worth noting that, generally speaking, in a moving
frame, each of the displacement field and the magnetic flux
density inside a medium other than free space is intricately
dependent on both the electric and the magnetic fields, even
if the medium is linear and isotropic in the rest frame [43].
However, in this specific example, it turns out that �D′

I = ε �E′

and �B ′ = 1
c2ε

�H ′
I inside the object, and therefore the form of the

Minkowski (or Abraham) stress tensor in Eq. (7) [or Eq. (10)]
is still applicable.

The forces of Ampere-Lorentz, Einstein-Laub, and
Minkowski (or Abraham), exerted per unit area of the
rightward boundary of the object in the new inertial frame can
now be obtained by using Eqs. (12), (13), and (18) [or (20)],
respectively. These per unit area forces are expected to be
invariant in the two inertial frames because both the force and
the unit area decrease by a factor of 1/γ in the new inertial

FIG. 3. Two parallel metallic planes with a linear isotropic
homogeneous slab with a permittivity ε and a permeability μ. The
structure is uniform along both the z and the x axes.

frame. Comparison of the results in the new inertial frame and
their counterparts in the rest frame, however, demonstrates
that the Einstein-Laub force per unit area, in contrast to the
others, is not invariant in the two inertial frames. This is
an inconsistency between the Einstein-Laub formulation and
special relativity. The Einstein-Laub force per unit area in the

new inertial frame is x̂
Q2

0(ε−ε0)
2[aε+(b−a)ε0]2

ε−ε0
ε0

( γV

c
)2.

2. Counterpart of example A in the presence of the free currents

In example A, the electric field is parallel to the surface on
which the EM force is exerted. The geometry of the counterpart
of this example in the presence of the free currents is depicted
in Fig. 3. It is assumed that in the rest frame, the metallic
planes in Fig. 3 have no charge, but carry predetermined
surface current densities ẑJs0 and −ẑJs0 . It can be easily shown
that each of the forces of Ampere-Lorentz and Minkowski
(or Abraham) exerted per unit area of the upper boundary is
invariant in the two inertial frames while the Einstein-Laub
force per unit area of the upper boundary depends on the
velocity of the inertial frame.

B. Example B

As another example, the geometrical arrangement in Fig. 3
is considered when the lower and the upper metallic planes
have predetermined surface charge densities ρs0 > 0 and −ρs0 ,
respectively, but carry no current. Therefore, the displacement
field within the space enclosed by the metallic planes is written
as �D = ŷρs0 .

The total EM force exerted on the object is zero, but
different formulations of the EM stress tensor lead to different
distributions of the exerted EM force on the object boundary.

Use of Eqs. (12), (13), and (18) [or (20)] yield ŷ
ρ2

s0
2ε0

ε2−ε2
0

ε2 ,

ŷ
ρ2

s0
2ε0

( ε−ε0
ε

)2, and ŷ
ρ2

s0
2ε0

ε−ε0
ε

for the forces of Ampere-Lorentz,
Einstein-Laub, and Minkowski (or Abraham), exerted per unit
area of the upper boundary of the object, respectively.

1. Compatibility with special relativity

Example B is now reexamined in the new inertial frame
moving at the constant velocity ẑV with respect to the
rest frame. In the new inertial frame, the displacement
and the magnetic fields are �D′ = ŷγρs0 and �H ′ = x̂γ Vρs0 ,
respectively. Similarly, the electric field and the magnetic flux
density outside the object (and inside the object) are �E′

O =
ŷ

γρs0
ε0

(and �E′
I = ŷ

γρs0
ε

) and �B ′
O = x̂

γ Vρs0
c2ε0

(and �B ′
I = x̂

γ Vρs0
c2ε

),
respectively. The stress tensors in Eqs. (4), (5), and (7) [or (10)]
can now be calculated outside and inside the object in the
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new inertial frame. It is worth noting that �D′ = ε �E′
I and

�B ′
I = 1

c2ε
�H ′ inside the object, and therefore, the form of the

Minkowski (or Abraham) stress tensor in Eq. (7) [or Eq. (10)]
is still applicable.

The forces of Ampere-Lorentz, Einstein-Laub, and
Minkowski (or Abraham) exerted per unit area of the upper
boundary of the object in the new inertial frame are obtained
by using Eqs. (12), (13), and (18) [or (20)], respectively.
Once again, only the Einstein-Laub force per unit area is not
invariant in the two inertial frames. It can be shown that the
Einstein-Laub force per unit area in the new inertial frame

is ŷ
ρ2

s0
2ε0

( ε−ε0
ε

)2γ 2. This is incompatible with special relativity
because the force exerted on the upper boundary, and the unit
area of the upper boundary both decrease by a factor of 1/γ

in the new inertial frame, and the force per unit area must be
invariant in the two inertial frames.

2. Counterpart of example B in the presence of the free currents

In example B, the electric field is perpendicular to the
surface on which the EM force is exerted. The geometry of
the counterpart of this example in the presence of the free
currents is depicted in Fig. 2. It is assumed that in the rest
frame, the metallic planes in Fig. 2 have no charge, but carry
predetermined current I0 along the ẑ and −ẑ. Yet again, it can
be easily shown that each of the forces of Ampere-Lorentz
and Minkowski (or Abraham) exerted per unit area of the
rightward boundary is invariant in the two inertial frames while
the Einstein-Laub force per unit area of the rightward boundary
depends on the velocity of the inertial frame.

V. CONCLUSIONS

We studied the different EM stress tensors affiliated with
the different formulations of the EM force density. Since the
mathematical expressions of the stress tensors of Minkowski
and Abraham inside a material depend on the constitutive
relations of the displacement field and the magnetic flux den-
sity, we specifically derived these tensors for three categories
of homogeneous materials, and show that their forms can be
quite different from the well-known forms in the literature.

From a viewpoint based on the law of conservation of
momentum in EM interactions, the total EM force exerted
on an object in a host medium was addressed together with the
distribution of the exerted EM force on the object boundary.
The object boundary is in fact the macroscopic representation
of the microscopic volume in between the object and the
host medium. Since the microscopic volume has a nonzero
mass, attributing a nonzero force to the object boundary is not
paradoxical. We argued that finding the exact amount of the
exerted EM force on the object in a nonfree space host medium
would require a detailed study of the object boundary. Besides,
the overall Ampere-Lorentz, Einstein-Laub, Minkowski, and
Abraham forces exerted on the object in free space when the
EM fields are static (or their time averages when the EM fields
are time harmonic) become equal to each other. It should
be noted that finding and integrating the contribution of the
Helmholtz term in the exerted Minkowski (or Abraham) force
is sidestepped by following the presented approach.

By a few simple examples, it was shown that the Einstein-
Laub formulation is not necessarily consistent with special
relativity. In each of the considered examples, we examined
the EM force experienced by a linear isotropic homogeneous
object inside free space in the presence of the free charges
(or currents). It should be noted that EM fields in each
of the examples are static in both the rest and the moving
frames. Therefore, the issue of the hidden momentum is of no
consequence in our examples. The same holds true when EM
fields are time harmonic. Otherwise, either hidden entities, e.g.,
the hidden momentum, come into the play, or the asynchronous
formulation [31–33] is to be adopted to circumvent being
involved with hidden entities. In the latter approach, the
process of synchronously integrating force densities as carried
out in Sec. II in the rest frame (the privileged frame in the asyn-
chronous formulation) should be repeated in the moving frame,
whereby the stress tensors are obtained. This process is not yet
carried out, and thus, can be a good subject for future studies.
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APPENDIX A

Here the Minkowski stress tensors of a few categories of
homogeneous materials are derived from the Minkowski force
density in Eq. (6). According to Maxwell’s equations, Eq. (6)
can be rewritten as

�fM = (∇ · �D) �E + (∇ × �E) × �D + (∇ · �B) �H
+ (∇ × �H ) × �B − ∂

∂t
( �D × �B). (A1)

To obtain the exerted Minkowski force on a volume υ within
a homogeneous medium, Eq. (A1) has to be integrated over
the volume. Integration of the fifth term on the right-hand
side of Eq. (A1) yields the volume integral in Eq. (3) with
�G = �GM = �D × �B, but integration of the other terms is to
be carried out. It is sufficient to carry out integration of the
first two terms since the next two happen to be their magnetic
counterparts. The first two terms can be written as

(∇ · �D) �E + (∇ × �E) × �D

= (∇ · �D) �E + x̂
∑

i=x,y,z

Di

(
∂Ex

∂i
− ∂Ei

∂x

)

+ ŷ
∑

i=x,y,z

Di

(
∂Ey

∂i
− ∂Ei

∂y

)

+ ẑ
∑

i=x,y,z

Di

(
∂Ez

∂i
− ∂Ei

∂z

)

= ∇ · ( �D �E) − x̂
∑

i=x,y,z

Di

∂Ei

∂x

− ŷ
∑

i=x,y,z

Di

∂Ei

∂y
− ẑ

∑
i=x,y,z

Di

∂Ei

∂z
. (A2)
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The last three terms on the right-hand side of Eq. (A2) are
behind the fact that the form of the Minkowski stress tensor
is influenced by the constitutive relation of �D. Thanks to
the similarity among these three terms, we consider the x̂

component only. As the first category, we assume that the
constitutive relation of �D is linear and reciprocal, i.e., �D = ↔

ε �E
with a symmetric tensor ↔

ε:

x̂
∑

i=x,y,z

Di

∂Ei

∂x
= x̂

2

∂( �D · �E)

∂x
. (A3)

From Eqs. (A2), (A3), and its counterparts along the y and
the z axes, it becomes evident that

(∇ · �D) �E + (∇ × �E) × �D = ∇ · ( �D �E) − 1
2∇ · [

↔
I ( �D · �E)],

(A4)

where
↔
I is the identity tensor. Therefore, if the constitutive

relation of �D is linear and reciprocal, the contribution of
the electric and the displacement fields to the form of

the Minkowski stress tensor is �D �E − 1
2

↔
I ( �D · �E). It can be

easily shown that the same is true if the material is linear,
isotropic, and dispersive, i.e., �D(t) = ε(t) ∗ �E(t) when ∗
denotes convolution.

As another category, we assume that the constitutive rela-
tion of �D is nonlinear with a permanent electric polarization
�P0, i.e., �D = ε0 �E + �P0:

x̂
∑

i=x,y,z

Di

∂Ei

∂x
= x̂

2

∂(ε0 �E · �E + 2 �P0 · �E)

∂x
. (A5)

Now from Eqs. (A2), (A5), and its counterparts along the y

and the z axes, it becomes evident that the contribution of
the electric and the displacement fields to the form of the
Minkowski stress tensor when the constitutive relation of �D is
nonlinear with a permanent electric polarization �P0 is �D �E −
1
2

↔
I (ε0 �E · �E + 2 �P0 · �E).

APPENDIX B

To obtain the exerted EM force on the rightward boundary
of the object in example A by the method of virtual work, the
change in the electric energy has to be calculated when the
rightward boundary is infinitesimally displaced along the x

axis, while the rest of the object boundary remains still. To this
end, it is essential to first specify how the constitutive relation
of �D inside the object varies with infinitesimal expansion or
contraction of the object along the x axis. This dependence
of the result of the method of virtual work on the constitutive
relations inside the virtually expanded or contracted object
renders the resultant EM force debatable, because the EM
force is expected to be influenced only by the constitutive
relations when the object is in its original state.

The exerted EM force per unit area of the rightward
boundary obtained by the method of virtual work is in
agreement with the result of the formulations of Ampere-
Lorentz and Einstein-Laub if ε = ε0(1 + a/L), where L is
the object’s thickness which virtually expands or contracts,
namely the object’s thickness along the x axis in this example,
and a is a constant coefficient whose physical dimension is
length. The result of the method of virtual work is in agreement
with the result of the Minkowski (or Abraham) formulation if
ε is assumed to remain unchanged when the object virtually
expands or contracts.

To apply the method of virtual work to example B, the
change in the electric energy has to be calculated when the
upper boundary is infinitesimally displaced along the y axis,
while the rest of the object boundary remains unchanged.
The exerted EM force per unit area of the upper boundary
obtained by the method of virtual work is in agreement with the
result of the Ampere-Lorentz formulation if ε = ε0(1 + bL),
where L is the object’s thickness which virtually expands or
contracts, namely the object’s thickness along the y axis in
this example, and b is a constant coefficient whose physical
dimension is 1/length. The result of the method of virtual
work is in agreement with the Einstein-Laub formulation if
ε = ε0(1 + a/L), and with the result of the Minkowski (or
Abraham) formulation if ε does not vary with virtual expansion
or contraction of the object.

[1] J. W. Arthur, Antenna Propag. Mag. 55, 3 (2013).
[2] I. Brevik, Phys. Rep. 52, 133 (1979).
[3] B. A. Kemp, J. Appl. Phys. 109, 111101 (2011).
[4] S. M. Barnett and R. Loudon, J. Phys. B 39, S671 (2006).
[5] M. Mansuripur, A. R. Zakharian, and J. V. Moloney, Proc. SPIE

6326, 63260G (2006).
[6] M. Mansuripur, Opt. Exp. 16, 19 (2008).
[7] M. Mansuripur, Phys. Rev. Lett. 108, 193901 (2012).
[8] M. Mansuripur, A. R. Zakharian, and E. M. Wright, Phys. Rev.

A 88, 023826 (2013).
[9] K. J. Webb, Phys. Rev. Lett. 111, 043602 (2013).

[10] I. Liberal, I. Ederra, R. Gonzalo, and R. W. Ziolkowski, Phys.
Rev. A 88, 053808 (2013).

[11] A. Einstein, The Collected Papers of Albert Einstein, Volume
8: The Berlin Years: Correspondence, 1914-1918 (Princeton
University Press, Princeton, NJ, 1998).

[12] D. A. T. Vanzella, Phys. Rev. Lett. 110, 089401 (2013).
[13] S. M. Barnett, Phys. Rev. Lett. 110, 089402 (2013).
[14] P. L. Saldanha, Phys. Rev. Lett. 110, 089403 (2013).
[15] M. Khorrami, Phys. Rev. Lett. 110, 089404 (2013).
[16] M. Mansuripur, Phys. Rev. Lett. 110, 089405 (2013).
[17] J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, New

York, 1999), p. 287.
[18] L. Novotny and B. Hecht, Principles of Nano-Optics

(Cambridge University Press, Cambridge, 2006).
[19] M. I. Antonoyiannakis and J. B. Pendry, Phys. Rev. B 60, 2363

(1999).
[20] K. Okamoto and S. Kawata, Phys. Rev. Lett. 83, 4534

(1999).
[21] D. Van Thourhout and J. Roels, Nat. Photon. 4, 211 (2010).
[22] B. A. Kemp and T. M. Grzegorczyk, Opt. Lett. 36, 4 (2011).
[23] L. Jia and E. L. Thomas, Phys. Rev. B 84, 125128 (2011).

043845-8

http://dx.doi.org/10.1109/MAP.2013.6735547
http://dx.doi.org/10.1109/MAP.2013.6735547
http://dx.doi.org/10.1109/MAP.2013.6735547
http://dx.doi.org/10.1109/MAP.2013.6735547
http://dx.doi.org/10.1016/0370-1573(79)90074-7
http://dx.doi.org/10.1016/0370-1573(79)90074-7
http://dx.doi.org/10.1016/0370-1573(79)90074-7
http://dx.doi.org/10.1016/0370-1573(79)90074-7
http://dx.doi.org/10.1063/1.3582151
http://dx.doi.org/10.1063/1.3582151
http://dx.doi.org/10.1063/1.3582151
http://dx.doi.org/10.1063/1.3582151
http://dx.doi.org/10.1088/0953-4075/39/15/S14
http://dx.doi.org/10.1088/0953-4075/39/15/S14
http://dx.doi.org/10.1088/0953-4075/39/15/S14
http://dx.doi.org/10.1088/0953-4075/39/15/S14
http://dx.doi.org/10.1117/12.680066
http://dx.doi.org/10.1117/12.680066
http://dx.doi.org/10.1117/12.680066
http://dx.doi.org/10.1117/12.680066
http://dx.doi.org/10.1364/OE.16.000019
http://dx.doi.org/10.1364/OE.16.000019
http://dx.doi.org/10.1364/OE.16.000019
http://dx.doi.org/10.1364/OE.16.000019
http://dx.doi.org/10.1103/PhysRevLett.108.193901
http://dx.doi.org/10.1103/PhysRevLett.108.193901
http://dx.doi.org/10.1103/PhysRevLett.108.193901
http://dx.doi.org/10.1103/PhysRevLett.108.193901
http://dx.doi.org/10.1103/PhysRevA.88.023826
http://dx.doi.org/10.1103/PhysRevA.88.023826
http://dx.doi.org/10.1103/PhysRevA.88.023826
http://dx.doi.org/10.1103/PhysRevA.88.023826
http://dx.doi.org/10.1103/PhysRevLett.111.043602
http://dx.doi.org/10.1103/PhysRevLett.111.043602
http://dx.doi.org/10.1103/PhysRevLett.111.043602
http://dx.doi.org/10.1103/PhysRevLett.111.043602
http://dx.doi.org/10.1103/PhysRevA.88.053808
http://dx.doi.org/10.1103/PhysRevA.88.053808
http://dx.doi.org/10.1103/PhysRevA.88.053808
http://dx.doi.org/10.1103/PhysRevA.88.053808
http://dx.doi.org/10.1103/PhysRevLett.110.089401
http://dx.doi.org/10.1103/PhysRevLett.110.089401
http://dx.doi.org/10.1103/PhysRevLett.110.089401
http://dx.doi.org/10.1103/PhysRevLett.110.089401
http://dx.doi.org/10.1103/PhysRevLett.110.089402
http://dx.doi.org/10.1103/PhysRevLett.110.089402
http://dx.doi.org/10.1103/PhysRevLett.110.089402
http://dx.doi.org/10.1103/PhysRevLett.110.089402
http://dx.doi.org/10.1103/PhysRevLett.110.089403
http://dx.doi.org/10.1103/PhysRevLett.110.089403
http://dx.doi.org/10.1103/PhysRevLett.110.089403
http://dx.doi.org/10.1103/PhysRevLett.110.089403
http://dx.doi.org/10.1103/PhysRevLett.110.089404
http://dx.doi.org/10.1103/PhysRevLett.110.089404
http://dx.doi.org/10.1103/PhysRevLett.110.089404
http://dx.doi.org/10.1103/PhysRevLett.110.089404
http://dx.doi.org/10.1103/PhysRevLett.110.089405
http://dx.doi.org/10.1103/PhysRevLett.110.089405
http://dx.doi.org/10.1103/PhysRevLett.110.089405
http://dx.doi.org/10.1103/PhysRevLett.110.089405
http://dx.doi.org/10.1103/PhysRevB.60.2363
http://dx.doi.org/10.1103/PhysRevB.60.2363
http://dx.doi.org/10.1103/PhysRevB.60.2363
http://dx.doi.org/10.1103/PhysRevB.60.2363
http://dx.doi.org/10.1103/PhysRevLett.83.4534
http://dx.doi.org/10.1103/PhysRevLett.83.4534
http://dx.doi.org/10.1103/PhysRevLett.83.4534
http://dx.doi.org/10.1103/PhysRevLett.83.4534
http://dx.doi.org/10.1038/nphoton.2010.72
http://dx.doi.org/10.1038/nphoton.2010.72
http://dx.doi.org/10.1038/nphoton.2010.72
http://dx.doi.org/10.1038/nphoton.2010.72
http://dx.doi.org/10.1364/OL.36.000004
http://dx.doi.org/10.1364/OL.36.000004
http://dx.doi.org/10.1364/OL.36.000004
http://dx.doi.org/10.1364/OL.36.000004
http://dx.doi.org/10.1103/PhysRevB.84.125128
http://dx.doi.org/10.1103/PhysRevB.84.125128
http://dx.doi.org/10.1103/PhysRevB.84.125128
http://dx.doi.org/10.1103/PhysRevB.84.125128


CRITICAL STUDY AND DISCRIMINATION OF . . . PHYSICAL REVIEW A 89, 043845 (2014)

[24] R. N. Pfeifer, T. A. Nieminen, N. R. Heckenberg, and
H. Rubinsztein-Dunlop, Rev. Mod. Phys. 79, 1197 (2007).

[25] S. M. Barnett, Phys. Rev. Lett. 104, 070401 (2010).
[26] S. M. Barnett and R. Loudon, Philos. Trans. R. Soc. London

Sect. A 368, 927 (2010).
[27] C. Baxter and R. Loudon, J. Mod. Opt. 57, 830 (2010).
[28] P. W. Milonni and R. W. Boyd, Adv. Opt. Photon. 2, 519 (2010).
[29] W. Frias and A. I. Smolyakov, Phys. Rev. E 85, 046606 (2012).
[30] N. G. C. Astrath, G. V. B. Lukasievicz, L. C. Malacarne, and

S. E. Bialkowski, Appl. Phys. Lett. 102, 231903 (2013).
[31] G. Cavalleri and G. Salgarelli, Nuovo Cimento A 62, 722 (1969).
[32] G. Cavalleri, G. Spavieri, and G. Spinelli, Nuovo Cimento B 53,

385 (1979).
[33] S. Aranoff, Nuovo Cimento B 10, 155 (1972).
[34] Y. Aharonov, P. Pearle, and L. Vaidman, Phys. Rev. A 37, 4052

(1988).

[35] G. Spavieri, Nuovo Cimento B 109, 1 (1994).
[36] When the EM fields are static (or time harmonic), the first term

in Eq. (19) (or its time average) becomes zero.
[37] S. M. Errede, the material is available at http://web.hep.uiuc.

edu/home/serrede/P436/Lecture_Notes/P436_Lect_18p75.pdf
(2011).

[38] W. Shockley and R. P. James, Phys. Rev. Lett. 18, 876 (1967).
[39] W. Shockley, Phys. Rev. Lett. 20, 343 (1968).
[40] S. Coleman and J. H. Van Vleck, Phys. Rev. 171, 1370 (1968).
[41] X. Zhao and Z. Suo, J. Appl. Phys. 104, 123530 (2008).
[42] R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman

Lectures on Physics (Addison-Wesley, Reading, MA, 1964),
Vol. II.

[43] S. M. Errede, the material is available at http://web.hep.uiuc.
edu/home/serrede/P436/Lecture_Notes/P436_Lect_20.pdf
(2011).

043845-9

http://dx.doi.org/10.1103/RevModPhys.79.1197
http://dx.doi.org/10.1103/RevModPhys.79.1197
http://dx.doi.org/10.1103/RevModPhys.79.1197
http://dx.doi.org/10.1103/RevModPhys.79.1197
http://dx.doi.org/10.1103/PhysRevLett.104.070401
http://dx.doi.org/10.1103/PhysRevLett.104.070401
http://dx.doi.org/10.1103/PhysRevLett.104.070401
http://dx.doi.org/10.1103/PhysRevLett.104.070401
http://dx.doi.org/10.1098/rsta.2009.0207
http://dx.doi.org/10.1098/rsta.2009.0207
http://dx.doi.org/10.1098/rsta.2009.0207
http://dx.doi.org/10.1098/rsta.2009.0207
http://dx.doi.org/10.1080/09500340.2010.487948
http://dx.doi.org/10.1080/09500340.2010.487948
http://dx.doi.org/10.1080/09500340.2010.487948
http://dx.doi.org/10.1080/09500340.2010.487948
http://dx.doi.org/10.1364/AOP.2.000519
http://dx.doi.org/10.1364/AOP.2.000519
http://dx.doi.org/10.1364/AOP.2.000519
http://dx.doi.org/10.1364/AOP.2.000519
http://dx.doi.org/10.1103/PhysRevE.85.046606
http://dx.doi.org/10.1103/PhysRevE.85.046606
http://dx.doi.org/10.1103/PhysRevE.85.046606
http://dx.doi.org/10.1103/PhysRevE.85.046606
http://dx.doi.org/10.1063/1.4809924
http://dx.doi.org/10.1063/1.4809924
http://dx.doi.org/10.1063/1.4809924
http://dx.doi.org/10.1063/1.4809924
http://dx.doi.org/10.1007/BF02819595
http://dx.doi.org/10.1007/BF02819595
http://dx.doi.org/10.1007/BF02819595
http://dx.doi.org/10.1007/BF02819595
http://dx.doi.org/10.1007/BF02739902
http://dx.doi.org/10.1007/BF02739902
http://dx.doi.org/10.1007/BF02739902
http://dx.doi.org/10.1007/BF02739902
http://dx.doi.org/10.1007/BF02911417
http://dx.doi.org/10.1007/BF02911417
http://dx.doi.org/10.1007/BF02911417
http://dx.doi.org/10.1007/BF02911417
http://dx.doi.org/10.1103/PhysRevA.37.4052
http://dx.doi.org/10.1103/PhysRevA.37.4052
http://dx.doi.org/10.1103/PhysRevA.37.4052
http://dx.doi.org/10.1103/PhysRevA.37.4052
http://dx.doi.org/10.1007/BF02723725
http://dx.doi.org/10.1007/BF02723725
http://dx.doi.org/10.1007/BF02723725
http://dx.doi.org/10.1007/BF02723725
http://web.hep.uiuc.edu/home/serrede/P436/Lecture_Notes/P436_Lect_18p75.pdf
http://dx.doi.org/10.1103/PhysRevLett.18.876
http://dx.doi.org/10.1103/PhysRevLett.18.876
http://dx.doi.org/10.1103/PhysRevLett.18.876
http://dx.doi.org/10.1103/PhysRevLett.18.876
http://dx.doi.org/10.1103/PhysRevLett.20.343
http://dx.doi.org/10.1103/PhysRevLett.20.343
http://dx.doi.org/10.1103/PhysRevLett.20.343
http://dx.doi.org/10.1103/PhysRevLett.20.343
http://dx.doi.org/10.1103/PhysRev.171.1370
http://dx.doi.org/10.1103/PhysRev.171.1370
http://dx.doi.org/10.1103/PhysRev.171.1370
http://dx.doi.org/10.1103/PhysRev.171.1370
http://dx.doi.org/10.1063/1.3031483
http://dx.doi.org/10.1063/1.3031483
http://dx.doi.org/10.1063/1.3031483
http://dx.doi.org/10.1063/1.3031483
http://web.hep.uiuc.edu/home/serrede/P436/Lecture_Notes/P436_Lect_20.pdf



