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Experimental observation of lasing shutdown via asymmetric gain
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Using a pair of coupled RLC cavities we experimentally demonstrate that amplification action can be tamed
by a spatially inhomogeneous gain. Under specific conditions we observe the counterintuitive phenomenon of
stabilization of the system even when the overall gain provided is increased. This behavior is directly related to
lasing shutdown via asymmetric pumping, recently proposed in M. Liertzer et al. [Phys. Rev. Lett. 108, 173901
(2012)]. The analysis of other simple systems reveals the universal nature of the lasing shutdown phenomenon
as having its roots in managing impedance matching.
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I. INTRODUCTION

A laser oscillator consists of a gain medium embedded
in an optical cavity. When the pumping level exceeds a
threshold value that balances light leakage out of the cavity
and other losses, the system self-organizes to emit a narrow-
band coherent electromagnetic radiation [1]. Depending on
the various geometric characteristics of the confined cavity
(chaotic or integrable) [2] and the properties of the index
of refraction (uniform, periodic, aperiodic, or random) [3,4]
etc., various types of lasing modes have been identified and
thoroughly analyzed during the past years. There are also
laser systems in which the spatial distribution of the gain
medium plays a significant role in determining the properties
of the lasing mode [5,6]. Within this framework of spatially
inhomogeneous gain, the counterintuitive phenomenon of
lasing death, i.e., the possibility to shutdown a laser while
the overall pump power provided to the system is increased,
has been predicted in Ref. [7] based on simulations that make
use of a steady-state ab initio laser theory [8].

In this paper we establish the applicability of the lasing
death (LD) phenomenon beyond the framework of laser
physics. We show how it arises in a simple cavity with
spatially distributed gain and experimentally demonstrate the
lasing death counterpart in its most distilled form consisting
of a coupled pair of RLC circuits. A qualitative explanation
of lasing death emerges based on fundamental principles of
impedance matching within the context of a linear stability
analysis of the system.

We remark that LD phenomena have already been reported
in the past (see for example [9]); however the underlying
mechanism is different. Here, we are concerned with the most
fundamental of processes where the LD is not complicated by
mode competition. In fact, this is one of the main merits of
our RLC analogy as it allows us to experimentally isolate only
two lasing modes and investigate, under controlled conditions,
their parametric evolution as the overall gain distribution in the
setup changes.

The structure of the paper is as follows. In Sec. II we
consider the linear lasing behavior of an optical cavity with
a simple spatially inhomogeneous gain profile. Using this
example, we review the lasing death phenomenon and analyze
it using semiclassical laser theory. In the next section, Sec. III,
we present our experimental system of two coupled RLC

circuits with active nonlinear conductances that determine

gain parameters γ1 and γ2 and show that for specific pumping
paths, the system experiences two threshold transitions from
nonoscillatory (stable) to self-oscillatory (unstable) dynamics
(associated with “lasing action” in the optics framework)
despite the fact that the total gain γ = γ1 + γ2 continually
increases along the path [10]. Comparing the two systems, we
see that they follow the same passage through lasing death and
understand the phenomenon in terms of impedance matching.
In Sec. IV we present a universal model which relies on the
effective (non-Hermitian) Hamiltonian formalism of scattering
that allows us to generalize the LD phenomenon to any system
with inhomogeneous gain profile. The formalism explains why
a linear stability analysis of an effective non-Hermitian matrix
that describes the internal dynamics of an amplifying cavity
can be used to successfully predict the occurrences of lasing
death. Finally our conclusions are given in Sec. V.

II. INHOMOGENEOUS DISTRIBUTION OF GAIN
IN A LASING MICROCAVITY

In order to move consideration of the lasing death phe-
nomenon toward its conceptually simplest manifestation, we
first consider a one-dimensional (1D) photonic Fabry-Perot
cavity of length 2L comprised of two active regions with
spatially inhomogeneous gain, shown in Fig. 1(a). In the
left region −L � z < 0 the index of refraction is given by
n1 = nc − iγ1 while in the right region 0 < z � L the index
profile is given by n2 = nc − iγ2. The real index of refraction
associated with the cavity is nc, while n0 [see Fig. 1(a)] is
the background index of refraction within which the cavity is
embedded. The parameters γ1, and γ2 respectively introduce
the net gain in the left and right regions via the imaginary
part of the index of refraction. Negative values correspond
to loss, for example, γ1 = γ2 = γ0 with γ0 < 0 represents an
intrinsic loss common to both cavities. Note that a somewhat
different photonic setup was investigated in Ref. [7], using
a very sophisticated steady-state ab initio laser theory [8].
Here instead we want to show that a simple semiclassical laser
theory based on the parametric evolution of the S-matrix poles
can be useful in predicting pumping strategies for which lasing
death can appear.

We start our analysis by recalling that above the lasing
threshold, the system in general has to be treated as nonlinear
[8]. At the threshold, however, as long as the field amplitude
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FIG. 1. (Color online) (a) A 1D laser cavity with spatially inho-
mogeneous gain profile. The cavity occupies the region −L � z � L.
The gain profile is defined by the imaginary part of the index of
refraction which take the values Im[n1(−L � z � 0)] = −γ1 and
Im[n2(0 � z � L)] = −γ2 where γ1 �= γ2. (b) Parametric evolution
of the dominant pole [12] of the scattering matrix S as the gains γ1,2

change.

is small, it still satisfies the linear Maxwell equations with a
negative (amplifying) imaginary part of the refractive index
generated by the population inversion associated with a
pumping mechanism [1]. Furthermore, it can be rigorously
shown within semiclassical laser theory that the first lasing
mode in any cavity is an eigenvector of the electromagnetic
scattering matrix (S matrix) with an infinite eigenvalue; i.e.,
lasing occurs when a pole of the S matrix is pulled “up” to the
real axis by including gain as a negative imaginary part of the
refractive index [11]. We therefore proceed to evaluate the S

matrix associated with the structure of Fig. 1(a).
With this configuration, a time-harmonic electric field of

frequency ω obeys the Helmholtz equation:

∂2E(z)

∂z2
+ ω2

c2
n2(z)E(z) = 0. (1)

Equation (1) admits the solution E−
0 (z) = E−

f exp(ikz) +
E−

b exp(−ikz) for z < −L and E+
0 (z) = E+

f exp(ikz) +
E+

b exp(−ikz) for z > L where the wave number k = n0ω/c.
The amplitudes of the forward and backward propagating
waves outside of the cavity domain are related through the
transfer matrix M:(

E+
f

E+
b

)
=

(
M11 M12

M21 M22

) (
E−

f

E−
b

)
. (2)

The transfer matrix is evaluated through matrix factors
associated with each boundary,

M = B

(
n2

n0
,1,eikL

)
B

(
n1

n0
,
n2

n0
,1

)
B

(
1,

n1

n0
,e−ikL

)
, (3)

where n1 = nc − iγ1, n2 = nc − iγ2, and the algebraic matrix
function B(α,β,u) is defined as

B(α,β,u) =
(

uβ u−β

βuβ −βu−β

)−1 (
uα u−α

αuα −αu−α

)
. (4)

In this function, α and β are the relative index of refraction
steps on the left and right side of a boundary at a position
defined by u, and, due to the complex nature of α and β, a
numerical evaluation of M requires the algebraic substitution
of the parameters of Eq. (3) into Eq. (4) to assure evaluation
of the appropriate Riemann sheet.

The transmission and reflection amplitudes for left (L) and
right (R) incidence waves are obtained from the boundary
conditions Eb

+ = 0, and Ef
− = 0 respectively, and are

defined as tL ≡ Ef
+

Ef
− , rL ≡ Eb

−
Ef

− ; and tR ≡ Eb
−

Eb
+ , and rR ≡ Ef

+

Eb
+ .

These are expressed in terms of the M-matrix elements:

tL = tR = t = 1

M22
; rL = −M21

M22
; rR = M12

M22
. (5)

From these relations we evaluate the S matrix as(
E+

f

E−
b

)
= S

(
E+

b

E−
f

)
; S =

(
rL t

t rR

)
, (6)

which below the first lasing threshold, connects the outgoing
wave amplitudes to their incoming counterparts.

Scattering resonances correspond to purely outgoing
boundary conditions on the S matrix, i.e., (Ef

+,Eb
−)T �= 0

while (Eb
+,Ef

−)T = 0, and occur when the S matrix has a
pole in the complex plane. It follows from Eqs. (5) and (6) that
the poles ωp = ωR − iωI of the S matrix can be identified with
the complex zeros of the characteristic equation M22 = 0. As
pointed out in Ref. [13], the poles of the S matrix that lay on
the real axis are associated with physically meaningful states
which are termed “threshold lasing modes.”

In Fig. 1(b) we report the evolution of Im(ω) for the
dominant pole of the S matrix for a specific path of the
gain parameters γ1,γ2 associated with the left and right
portions of the cavity. The dominant pole is the only one
to experience the stability-instability transitions within the
frequency range assumed for the γ1 and γ2 gain curves [12].
Initially, we assume that both the left and right regions of
the optical cavity have the same intrinsic loss γ0 < 0 as
described earlier. The left part of the cavity is then pumped
with increasing gain, γ0 < γ1 < γ max

1 , until the dominant
pole crosses the real axis [Im(ω) = 0] at some critical gain
γ ∗

1 < γ max
1 . At this point, a lasing state in the cavity is created.

For γ ∗
1 < γ1 < γ max

1 the pole continues to travel upwards in the
positive [Im(ω) > 0] plane indicating unstable dynamics. In
this regime, any physical system ultimately becomes nonlinear
and the scattering approach fails. However, we may infer from
our low amplitude linear analysis the presence or absence
of the lasing instability. The pumping on the left partition is
now kept constant at γ1 = γ max

1 , while additional pumping,
via increasing γ2, is applied to the right partition of the cavity.
Surprisingly, this results in reversing the evolution of the pole
back towards Im(ω) = 0. At some critical value γ2 = γ ∗

2 , the
pole recrosses the real axis returning to Im(ω) < 0. Such
transitions indicate that the system returns to stability, i.e.,
the laser shuts off despite the fact that the overall pump power
provided to the system has been increased. Further increase of
γ2 once again reverses the direction of the motion of the pole
which moves upwards and crosses into Im(ω) > 0. At this new
critical value, γ = γ ∗∗

2 , the mode once again becomes unstable
signifying a second turn-on of the laser.
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Finally, it is instructive to point out that it is possible to
express the S matrix at an arbitrary wave number k in terms of
all eigenvalues and eigenfunctions of the corresponding closed
cavity. This is achieved by employing the so-called reaction
matrix formalism which has been developed in the frame of
nuclear physics by Wigner and Eisenbud [14]. Specifically we
have that

S = 1̂ − iK

1̂ + iK
; K = πW †GinW, (7)

where K is the so-called reaction matrix and (Gin)n,n′ =
[k2(δn,n′ − i	̂n,n′ ) − k2

nδn,n′ ]−1 is the Green’s function of the
closed active cavity. The gain matrix 	̂ denotes the gain
distribution inside the cavity and the matrix Ŵ (k) denotes
the coupling of the internal level n to the scattering channel
j . Equation (7) can be further expressed [15] in terms of
an effective non-Hermitian Hamiltonian Heff which contains
the dynamics of the closed system and the coupling to the
scattering channels:

S = 1̂ − 2iπW †GeffW ; Geff = [E − Heff]
−1 , (8)

where (Heff)n,n′ = k2
nδn,n′ − iπ (WW †)n,n′ and E = k2(1̂ − 	̂).

We see therefore that the poles of the scattering matrix are the
complex eigenvalues of an effective Hamiltonian. Although we
will make use of the effective Hamiltonian formalism only in
Sec. IV, it is useful at this point to keep in mind the equivalence
between the various forms of the scattering matrix.

III. LASING DEATH FOR COUPLED RLC CIRCUITS

We now simplify the previous concept to its essence and
experimentally demonstrate the universality of the lasing death
phenomenon. To this end we have distilled the trade-off of gain
and loss responsible for lasing into its fundamental form, gain
(or loss) in a simple oscillator. We further include the spatially
distributed gain required for lasing death by considering a
coupled pair of oscillators, each with their own gain (or loss).
Figure 2 schematically illustrates the experimental circuit.
Conductances of either sign placed in parallel with each

FIG. 2. (Color online) A pair of coupled LC resonators with
parallel conductances (shaded) and coupling capacitance Cc. The
conductance of each LC unit is equivalent to resistances R1 and
R2 which can be of either sign, providing gain if negative, or
loss if positive. The back-to-back diodes impose a lossy nonlinear
contribution to conductance to assure a well-behaved limit cycle in the
self-oscillatory (unstable) regime. An initial current can be injected
using the bias circuit at the top.

LC resonator provide the gain parameters γ1 = − 1
R1

√
L
C

and

γ2 = − 1
R2

√
L
C

. The coupled resonator circuit is similar to that
used previously [16] where the active conductance of each
LC unit is implemented with a parallel combination of a
positive resistance with a variable negative resistance provided
by a negative impedance converter. This combination allows
control of the total conductance over both positive and negative
values, and thus exploration of the gain parameter space (γ1,γ2)
in all quadrants. We consider only capacitive coupling between
the oscillator pair, and restrict the discussion to matched LC

resonators.
In order to make contact with saturable laser dynamics and

ensure graceful behavior above threshold, a simple conduc-
tance nonlinearity is included by the addition of back-to-back
1N914 diodes, also in parallel with the LC resonators, as
shown. This forces a dominant positive conductance (loss) at
high voltage amplitudes, and assures a well behaved limit cycle
when the system is unstable, above any oscillation threshold.
The linear regime is below approximately 150 mV, where the
diodes have negligible conductance.

Application of the first and second Kirchhoffs laws [17]
leads to the following set of equations for the LC node voltages
Vn and inductor currents In, shown in the schematic of Fig. 2:

Vn = Lİn

Vn

Rn

+ Isat sinh

(
Vn

Vt

)
+ CV̇n + In + Cc(V̇n − V̇3−n) = 0.

(9)

In our experimental circuit, L = 10 μH and C = 328 pF as
measured by the uncoupled frequencies ω/2π = 2.78 MHz
after trimming the LC resonators to within 1% of each
other. The coupling capacitance is Cc = 56 pF. The parameters
Isat = 4.0 nA and Vt = 47 mV are the reverse bias saturation
current and the thermal voltage in the Shockley ideal diode
equation [18]. We note that the RLC pair can alternatively
be considered as coupled to output leads connected to the
LC nodes if the resistances R1 and R2 are re-interpreted
as including the parallel characteristic impedance Z0 of
TEM transmission line leads. With Z0 real and frequency
independent, as is the case for TEM transmission lines,
nonzero voltage V1 or V2 are then interpreted as coupling
power into the corresponding transmission line—the analog
of radiated optical power in a laser.

A. Dynamics and stability analysis of the RLC circuit

The LD behavior for our electronic circuit can be ex-
perimentally confirmed via steady-state measurements of the
RMS voltage Vrms of either node as we increase the overall
gain of the system. In a close analog to a laser [7], our
system is considered stable when Vrms = 0. In contrast when
the system is unstable, a nonzero value of Vrms is measured
that is dictated by the circuit saturation dynamics, in this case
the back-to-back signal diodes. Mathematically, the saturation
dynamics is determined by the nonlinear sinh(· · · ) term in the
second Eq. (9).

The data in Fig. 3 correspond to several paths of increasing
γ2, along the vertical lines shown in the inset, with γ1 = const.
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FIG. 3. (Color online) Experimental steady-state voltage for
paths of increasing γ2 at fixed γ1 shown in the inset. The voltage
was measured on the side-1 LC node. Note that the width of the
“lasing death” response diminishes as the overall gain increases.

In all cases the total gain γ1 + γ2 provided to the system is
increased. We find that depending on the value of γ1 the system
either undergoes a transition from instability to stability or it
remains unstable all the time. The former case corresponds to
the phenomenon of lasing death found numerically in Ref. [7]
or in the simplified model of Sec. II and is achieved only for
the leftmost three pumping paths shown in the inset of Fig. 3.

Next we want to understand which pumping paths can result
in lasing death. As in the last section, we argue that these
paths are associated with the existence of reentrant stability
domains in the (γ1,γ2) plane which are traversed by the specific
pumping schemes. In this respect, every time that a path crosses
a boundary between an unstable to stable domain we have a
suppression of lasing action and thus the emergence of lasing
death.

To substantiate this assertion, we again analyze the lin-
earized equations associated with our system Eq. (9). Note that
the linear equations of motion, with the sinh term omitted [19],
will describe the dynamics of our system provided all voltages
and currents remain below any nonlinearities of the actual
circuit—approximately 150 mV in the case of our circuit.

Substituting the optical convention time periodic solution
(Vn,In)T = exp(−iω′t)(V 0

n ,I 0
n )T and eliminating the I 0

n we get
the following homogeneous equation:(

1
ω

− ω(1 + c) − iγ1 ωc

ωc 1
ω

− ω(1 + c) − iγ2

)(
V1

V2

)
= 0,

(10)

where the parameters ω = ω′√LC and c = Cc/C are a scaled
frequency and coupling strength, and the γ1 and γ2 are the gain
parameters previously defined. The eigenfrequencies are found
by setting the determinant of the coefficient matrix in Eq. (10)
equal to zero, and solving the characteristic polynomial.

The imaginary part of the eigenfrequencies ω of the system
Eq. (10) dictate the stability of the system: the circuit is
unstable if any of the modes have a positive imaginary part,
otherwise it is stable. For a stable circuit all transient solutions
are decaying, while for the unstable circuit, there is at least one

FIG. 4. (Color online) The theoretical and experimental maxi-
mum imaginary part of all eigenfrequencies is shown as total gain
(horizontal axis) is increased. The pumping path is illustrated by
the stability diagram (inset). The “lasing death” phenomenon occurs
when the path traverses a protrusion in the stability map—the most
positive imaginary part momentarily dips back into the negative
region. The vertical path in the inset corresponds to the black curve
of Fig. 3 where the steady-state saturation amplitude was presented.

exponentially growing solution corresponding to the electronic
analog of “lasing” into the effective transmission lines.

The shaded domains in the inset of Fig. 3 map the
system stability in the gain parameter space with the unstable
domain extending into the regions of large positive γn. The
pumping path associated with the top data set corresponds
to large enough γ1 to completely miss the stable region as
γ2 is increased. Subsequent paths along increasing γ2 with
smaller values of γ1 pass progressively deeper through the
reentrant stability region, resulting in complete extinction of
the oscillation followed by a new threshold. The data sets
illustrate how the linear stability map is directly related to
the observed reentrant stability response of the nonlinear
system. In a real laser system with a more complex saturation
dynamics, hysteresis will likely distort this correspondence,
but the position of a second threshold in a restabilized state
will always be determined by the linearized behavior.

Figure 4 shows the evolution of experimental values for
Im(ω) as a function of total gain, defined as γ1 + γ2 obtained
along the path in the (γ1,γ2) stability map shown in the
inset. The color scheme used is the same as that of Fig. 3.
Experimental frequencies are obtained by imposing an initial
dc current in side n = 1 through a forward biased 1N914 signal
diode. The bias voltage of the optional injection circuit of
Fig. 2 is then rapidly switched to a reverse-biased state, where
the contribution to the circuit is the small ≈0.3 pF junction
capacitance of the reverse biased diode. The subsequent
voltage evolution on node n = 1 is recorded and fit to a
generic double-resonance transient to obtain the complex
eigenfrequencies, from which the mode with the most positive
imaginary part is identified.

Let us now compare the experimental stability diagram of
Fig. 4 with the experimental measured temporal dynamics of
the RLC circuit shown in Fig. 3. Starting along the horizontal
path of Fig. 4 (inset), the “lasing action” of our electronic
system turns on at a first threshold of stability as γ1 is increased
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for fixed γ2 (correlate this path with the data shown with a black
line in Fig. 3) rising up through Im(ω) = 0. Continuing along
the vertical path in the inset, as γ2 is increased with γ1 fixed,
the lasing death (amplification death) is realized as the path
cuts through the protruding section of the stability map. Along
this path, the imaginary part of the eigenfrequency drops back
into the stable regime with Im(ω) < 0, then turns around and
finally becomes permanently positive (unstable). Note that the
complete path follows one of monotonically increasing total
gain and experiences both turn-on thresholds.

Finally we have confirmed that, in the scattering con-
figuration with TEM transmission lines of impedance Z0

attached to the LC nodes, the eigenfrequencies of the linear
Eq. (10) are identical to the poles of the circuit Smatrix with

the gain parameters γ1 and γ2 reduced by 
γ = 1
Z0

√
L
C

, the
transmission line contact loss. We used the mathematical
framework of scattering in Sec. II and will make use of
this formulation in Sec. IV where we discuss a universal
description of the LD phenomenon in terms of the movement
of the poles of the scattering matrix associated with the system
in question.

B. Normal-mode analysis and impedance mismatching
as the origin of Lasing death

Although Eqs. (9) that describe the dynamics of the two
coupled RLC oscillators are intrinsically nonlinear it is
nevertheless instructive to analyze the structure of the normal
modes (V (i)

1 ,V
(i)

2 )T of the linearized relations Eq. (10) of the
RLC circuit pair along a pumping path exhibiting the LD
phenomenon. Our investigation will focus on the most unstable
normal mode, calculated via Eq. (10) after substituting for
ω the frequency which corresponds to the Max[Im(ω)]. We
will indicate this frequency below with the superindex 1,
e.g., ω(1) and the corresponding normal-mode components as
(V (1)

1 ,V
(1)

2 )T .
It is at this juncture that the simplicity of the electronic

circuit proves insightful. If the RLC nodes are considered
as connected to transmission lines—with appropriate re-
interpretation of the gain or loss parameters γ1 and γ2 to
including the corresponding output-coupling loss—the voltage
amplitudes V1 and V2 serve as direct indicators of all of the
quantities of interest: (1) the character of the normal mode
through the relative amplitudes of the left and right RLC

oscillations; (2) the output power 1
2 |Vn|2/Z0 coupled into the

transmission lines; and (3) the input power 1
2 |Vn|2(γn − 1/Z0)

supplied by the pumping sources associated with each node.
The details of the lasing death are then revealed through

Fig. 5 where we show ω(1) as well as the ratio R = |V (1)
1 /V

(1)
2 |

along the reentrant portion of Fig. 4, as a function of γ2 with
γ1 = 0.0967 fixed. Starting from the left with large negative
values of γ2, we find the system in the unstable regime. How
is this possible with negative total gain γ1 + γ2? The value of
R indicates that the normal mode is dominated by oscillations
of the node with the positive gain. The mode configuration
thus “spatially overlaps” the gain. Why then does the lasing
death happen in spite of the total gain being increased? As γ2

increases, the mode shifts toward a balanced configuration with
R ∼ 1, exposing the system to a total accepted input power

FIG. 5. (Color online) The parametric evolution of the ratio R
between the two components of the most unstable linear mode (red
line). For comparison we also report the Max Im(ω). Three domains
are identified: The most left and the right domains are associated to
R > 1 and R = 1 and correspond to unstable dynamics. The middle
domain is associated with the LD phenomenon and it indicates stable
dynamics.

more closely reflecting the still negative total gain γ1 + γ2.
Finally, as γ2 continues to increase, with R ∼ 1 confirming
that the balanced mode configuration persists, the total input
power once again overcomes the losses (including the output
coupling) and the system crosses back above threshold.

Within the context of resonant structure electronics, the
alignment of the normal modes relative to a particular circuit
node defines that node’s impedance. We can thus interpret the
lasing death phenomenon as an impedance matching transition
mediated by the gain dependent reconfiguration of the normal
modes. This type of dramatic reconfiguration can only occur
concurrent with spatially distributed gain, and is associated
with, though not necessarily close to, exceptional points of the
system [16].

The similarities of “stabilization induced via gain” between
the electronics and optics systems indicate that the underlying
physical mechanism in these seemingly unrelated systems is
the same. The following heuristic argument provides some
qualitative understanding of the LD phenomenon in the frame
of optical cavities. Referring back to the 1D laser cavity of
Fig. 1, when the pumping on the left partition has reached
its maximum value the impedance mismatch between the two
partitions is maximal. As a result the two parts of the photonic
cavity are effectively decoupled and the photons are trapped
only on the left partition where they experience maximal
gain. At this point the outgoing field intensity reaches its
maximum value and is associated with emission from the left
(gain) partition (see the numerical simulations of Ref. [7]).
An increase of the gain in the right partition of the cavity,
while keeping a constant pumping rate on the left, leads
to “softening” of the impedance mismatch between the two
domains. As a result, photons start exploiting the right domain.
However, as they dwell in the right portion of the cavity,
they are experiencing less gain (with respect to the previous
case when they were confined to the high-gain side due to
impedance mismatch). As a result the outgoing field intensity
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is weakened and becomes more uniform (still though, it is
dominated by an outgoing field coming from the left side). At
this point, depending on the pumping path, two scenarios can
be found: (a) If the maximum gain of the left partition is well
above the lasing threshold, the cavity will remain unstable and
the impedance matching process will result only in decreasing
the outgoing intensity. The second scenario corresponds to a
“marginal” lasing threshold due to the pumping of the left
partition. In this case, a reduction of the impedance mismatch
will lead to further suppression of the total gain that a photon
will accumulate as it explores the total cavity. Such a process
leads to stabilization of the laser cavity and the appearance
of the lasing death phenomenon. When the gain in the right
partition exceeds a critical value the photons experience strong
amplification irrespective of their position inside the cavity. At
this point the cavity again reaches a lasing threshold with a
symmetric outgoing field intensity.

IV. EFFECTIVE NON-HERMITIAN HAMILTONIAN
FORMALISM

The universality of lasing death via asymmetric pumping
can also be illustrated within a simple two-level model (dimer)
coupled to two leads. The system is shown in the inset of Fig. 6.
The Hamiltonians of the dimer Hd and of the leads Hleads read

Hd =
∑

nN =1,2

εnN
|nN 〉〈nN | + (|nN 〉〈nN + 1| + c.c.),

(11)
H

L,R
leads =

∑
n=nL,nR

εn|n〉〈n| + (|n〉〈n + 1| + c.c.),

FIG. 6. (Color online) Right inset: A simple tight-binding model
consisting of two active discrete elements coupled to two semi-infinite
left and right leads. Left inset: The stability phase diagram of the
TB system. Red areas indicate unstable γ1 − γ2 domains while blue
areas indicate stable domains. The arrows indicate the direction of
the pumping path. Main panel: Parametric evolution of one of the two
resonances as the pumping γ1 at site nN = 1 and γ2 at site nN = 2
changes. The arrows indicate the evolution of resonances as γ1,γ2

increases. The parametric evolution of the second resonance is not
shown since its motion is symmetric to the one reported here with
respect to the origin of the axis Re(E).

where nL = 0, . . . , − ∞, nR = 3, . . . ,∞, and {|n〉} is the
Wannier basis of the tight-binding Hamiltonian. The on-site
potentials are εn = Vn + iγn with γn = 0, for n �= 1,2 [20].
Furthermore, without loss of generality we will assume that
Vn = 0 for all n. The complex zeros E of the secular equation
det[M22(E)] = 0 can be calculated analytically:

E = i[γ1γ2(γ1 + γ2) ± (2 + γ1γ2)
√

(γ1 − γ2)2 − 4]

2(1 + γ1γ2)
. (12)

In Fig. 6 we present a parametric evolution of the poles E
for a pumping path (see left inset) analogous to the previous
discussion: an initial increase of γ1 until the lasing threshold
is reached, followed by an increase of γ2. As before, during
the second section of the path the system is first driven back
towards stability (lasing death) while later on it returns to
instability at a second lasing threshold. We note that the
pumping path within the shaded region of Fig. 6 has to be
excluded from our analysis. Here, the poles have Re(E) > 2
and the scattering modes fall outside of the propagation band
E(k) = 2 cos(k) of the leads.

The generality of the lasing death phenomenon calls for
a universal formulation for its explanation. Using standard
methods [21] we write the scattering matrix elements in the
form [22,23]

Sα,β (E) = δα,β − i
√

4 − E2 W T
α (E − Heff)

−1Wβ, (13)

where α,β = 1,2 and Heff is a 2 × 2 effective non-Hermitian
Hamiltonian given by

Heff(E) = Hd + �(E)
∑

α

Wα

⊗
W T

α . (14)

The two-dimensional vectors W1 = δα,1 and W2 = δα,2 de-
scribe at which site we couple the leads with our sample while
�(E) = E−i

√
4−E2

2 is the so-called self-energy.
The poles of the S matrix are equal to the complex zeros E

of the following secular equation:

det [E − Heff(E)] = 0. (15)

Solving Eq. (15) is (in general) a difficult task. However,
there are circumstances such as the RLC circuit previously
discussed, for which one can neglect the dependence of Heff

on energy. In such cases the second term in Eq. (14) results
in a simple constant shift of the on-site potential of the
Hamiltonian Hd .

From the above discussion we conclude that the stability
of our system and the lasing death phenomenon are directly
linked with the stability diagram and the parametric evolution
of the complex eigenvalues E of Heff . Specifically the sign of
their imaginary part Im(E) defines the stability [Im(E) < 0]
or instability [Im(E) > 0] of the associated modes and there-
fore of the system itself. For example for the system of Eq. (11)
we find that the corresponding eigenvalues of Heff are given
by Eq. (12). We include the associated stability diagram in the
left inset of Fig. 6. As before, unstable domains are indicated
with red and are associated with an imaginary part of one of
the eigenvalues being larger than zero. The stable domains are
indicated with blue and they correspond to gain parameters
γ1,γ2 for which Im(E) < 0. It is therefore obvious that one
can select pumping paths in the (γ1,γ2) plane which lead to
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transitions from stability to instability and back to stability
while γ1 + γ2 is continuously increasing through the pumping
process.

V. CONCLUSIONS

To summarize, we have identified a generic link between
spatially distributed gain and the phenomenon of lasing
death, and experimentally demonstrated the phenomenon in
a simple coupled LC oscillator system. We have analyzed the
phenomenon in several model systems, including the coupled
RLC pair. We have shown how and why the output can be
extinguished over an interval of increasing system gain. This
unorthodox and robust effect of restabilization via gain is

universal with roots in a gain-induced change in impedance
matching which can lead to a reentrant structure in the stability
phase diagram. Only nonuniformly active systems can exhibit
this behavior.

Note added in proof. Recently, we became aware of
a photonics experimental realization of the lasing death
phenomenon [24].
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