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Effects of dipole-dipole interaction on the transmitted spectrum of two-level
atoms trapped in an optical cavity
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The transmission spectrum of two dipole-coupled atoms interacting with a single-mode optical cavity in
the strong coupling regime is investigated theoretically for the lower and higher excitation cases. The dressed
states containing the dipole-dipole interaction (DDI) are obtained by transforming the two-atom system into an
effective single-atom system. We find that the DDI can enhance the effects resulting from the positive atom-cavity
detunings but weakens them for the negative detuning cases for the lower excitation, which causes the spectrum
to exhibit two asymmetric peaks with shifted heights and positions. For the higher excitation cases, the DDI
augments the atomic saturation and leads to the deforming of the spectrum. Furthermore, the large DDI can cause
the atom and the cavity to decouple, producing a singlet of the normal-mode spectrum.
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I. INTRODUCTION

Realization of the strong coupling regime (SCR) in cavity
quantum electrodynamics has created new fields of exploration
in quantum mechanics [1,2]. SCR is very attractive, because
photons emitted by atoms inside the cavity mode can be
reabsorbed and reemitted and leads to Rabi oscillations [3],
which gives rise to a normal-mode splitting in the eigenvalue
spectrum of the atom-cavity system [4–6]. This normal-mode
splitting has been observed with atomic beams passing through
a cavity in both the microwave regime [7–9] and optical regime
[10], as well as with trapped atoms in optical cavities [11–14].
During an experiment, the normal-mode splitting is detected
by probing the transmitted spectrum at a low excitation. With
increased excitation, the spectrum presents hysteresis, and
subsequently forms a closed structure. When the atoms are
saturated, they decouple from the cavity and only a single
peak appears in the spectrum [15,16].

However, few studies have considered the DDI, even though
several studies have explored atom-cavity systems with DDIs
[17–23] because of their long-range and anisotropic nature.
In fact, the DDI can profoundly affect the light absorption
characteristics and lead to a shift of the atomic energy levels
[24]. The renormalization of the atomic resonance frequency
caused by the DDI can result in the optical bistability of the
atomic system [25,26]. Thus, it is natural to expect that the
transmitted spectrum may present several novel characteristics
caused by the DDI. Fortunately, substantial progress has been
made on solid materials [27,28] and ultracold atoms [29–32]
in recent years, which have proven to be a good platform for
the study of the DDI. In this study we go one step further and
investigate the transmitted spectrum of two two-level atomic
systems with one excited and the other in the ground state
trapped and strongly coupled to an optical resonator. The two
two-level atoms can interact with each other through photon
exchange. A photon emitted by the excited atom could be
absorbed by the other atom in the ground state. This kind of
energy exchange results in an “interaction” between two two-
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level atoms, which is equivalent to the one derived from the
dipole term of the classical electromagnetic interaction, there-
fore named “dipole-dipole” interaction. It is noteworthy that
very similar models were widely used recently to discuss
other physical effects, namely photon entanglement and other
correlation phenomena, because this simplified situation is
sufficient to illustrate the main aspects of the way in which a
cavity environment can modify the nature of collisions. In our
study, the behavior of the spectrum in equilibrium is studied
for a wide range of DDI intensities and atom-cavity detunings.
The relation and distinction of their effects on the spectrum
both in the weak excitation limit and for higher excitations are
both explored.

The paper is organized as follows: Sec. II presents the
theoretical model under consideration and provides the steady-
state solution by solving the main equation. Section III is
devoted to the study of the transmitted spectrum in the
weak excitation limit. Section IV describes the structural
characteristics of the transmitted spectrum for a strong driving
intensity. The effects of both the detuning and the DDI on the
spectrum are discussed. Finally, we present our conclusions in
Sec. V.

II. MODEL

We consider two identical dipole-coupled two-level atoms
interacting with a single-mode high-finesse optical cavity
(Fig. 1). The system is pumped along the cavity axis by a
coherent laser field of frequency ωp and an effective amplitude
η. The Hamiltonian for the system in the rotating wave and
electric dipole approximations is given by [23]

H = −�ca
†a −

2∑
k=1

[�aσ
†
k σk − g(a†σk + aσ

†
k )]

+ J (σ1σ
†
2 + σ

†
2 σ1) + η(a + a†), (2.1)

where �c = ωp − ωc and �a = ωp − ωa . ωc and ωa are
the resonance frequencies of the cavity field and the atoms,
respectively. a† and a are the field creation and annihilation
operators, and σ

†
k and σk represent the raising and lowering
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FIG. 1. (Color online) Schematic representation of two two-level
atoms with dipole-dipole interaction intensity J interacting with a
single-mode high-finesse cavity. The decay rates of atoms and cavity
field are γ and κ , respectively. The cavity is pumped by a coherent
laser field with strength η.

operators of the atom k (k = 1,2). The first term of the
Hamiltonian (2.1) is the free Hamiltonian of the cavity. The
atomic free Hamiltonian and the interaction Hamiltonian of
the atoms and the cavity with coupling strength g are shown
in the second term. The third term describes the DDI between
atoms and the last term is the pump field Hamiltonian. The
DDI is defined in the form [18]

J = 3
4

(
�0c

3/ω3
ar

3
)
(1 − 3 cos2 ϕ), (2.2)

where r is the distance between the atoms and ϕ is the
atomic dipole moments with respect to the interatomic axis.
�0 denotes the atomic spontaneous emission rate in free
space. Here we assume the dipole moments of the two atoms
are parallel to each other and are polarized in the direction
perpendicular to the interatomic axis. Thus, cos ϕ = 0, and
the DDI intensity only depends on the positions of the two
atoms in the cavity. Dissipation results from an excitation’s
spontaneous emission, and cavity photonic leakage can be
taken into account within the master quantum equation of the
density matrix ρ. It is expressed in the usual Lindblad form in
the Born-Markov approximation (� = 1) [33]:

ρ̇ = −i[H,ρ] + Lκρ + Lγ ρ + Lγ ′ρ,

Lκρ = κ[2aρa† − a†aρ − ρa†a],

Lγ ρ =
2∑

k=1

γ (2σkρσ
†
k − σ

†
k σkρ − ρσ

†
k σk), (2.3)

Lγ ′ρ = γ ′(2σ1ρσ
†
2 − σ

†
1 σ2ρ − ρσ

†
1 σ2)

+ γ ′(2σ2ρσ
†
1 − σ

†
2 σ1ρ − ρσ

†
2 σ1).

Here the nonunitary parts Lκρ, Lγ ρ, and Lγ ′ρ describe the
coupling of the field mode and the atoms to the environment.
The coefficients κ and γ are the decay rates of the cavity
field and the atoms, respectively. The atom-atom cooperation
induced by their coupling with a common reservoir is given by
γ ′ [18,21,34] and is important only when the atomic distances
are small relative to the radiation wavelength.

The time evolution of the operator’s expectation values
for the atom-cavity system can be obtained with the master

equation

〈ȧ〉 = i(�̃c〈a〉 − g〈σ1〉 − g〈σ2〉 − η),

〈σ̇1〉 = i(�̃a〈σ1〉 + g〈aσ1z〉 + J̃ 〈σ1〉〈σ2z〉),
〈σ̇2〉 = i(�̃a〈σ2〉 + g〈aσ2z〉 + J̃ 〈σ2〉〈σ1z〉), (2.4)

〈σ̇1z〉 = 2ig(〈a†σ1〉 − 〈aσ
†
1 〉) − 2γ (1 + 〈σ1z〉),

〈σ̇2z〉 = 2ig(〈a†σ2〉 − 〈aσ
†
2 〉) − 2γ (1 + 〈σ2z〉),

where �̃a = �a + iγ , �̃c = �c + iκ , and J̃ = J − iγ ′. Note
that, in the equation of motion (2.4), a decorrelation between
operators of the atoms can be used to explain the splitting
classically, and only mean value correlations of concern, i.e.,
correlations of the operators, are lost in this picture [14,35]. In
addition, the splitting here is different than with linear disper-
sion theory. The normal-mode resonances are a consequence
of the phase shift and depend on both the cavity length and the
refractive index caused by the presence of the atom, i.e., the
interplay between the cavity field and the atom is nonlinear,
which is in contrast to the nonlinear atom-atom interaction.
The steady-state solutions of the nonlinear Eq. (2.4) can be
obtained by setting 〈ȧ〉 = 〈σ̇1〉 = 〈σ̇2〉 = 〈σ̇1z〉 = 〈σ̇1z〉 = 0.

When g � (γ,κ), the atom-cavity system reaches a strong
coupling regime. The new eigenstates of the system are
described by the dressed states, which are linear combinations
of pairs of bare atom states and cavity field states. However, it
is difficult to determine the dressed states of the atom-cavity
system with two dipole-dipole coupled atoms. In fact, when the
excitation of the atoms is very low, we can adopt the methods
in [18] and simplify the two-atom system to an effective
single-atom system. The effective form of Hamiltonian H in
Eq. (2.1) can then be written as

Heff = −�ca
†
1a − (�a − J )σ †

1 σ1

+
√

2g(a†σ1 + aσ
†
1 ) + η(a + a†). (2.5)

In the transformed Hamiltonian, the dipole-coupled atoms are
denoted by two fictitious atoms. Only one of them couples to
the field mode with frequencies ωa + J and an effective cou-
pling strength

√
2g, but the other atom freely evolves decou-

pling from the field. As a result, the dressed states of the trans-
formed system are similar to that of the single-atom system

|0〉 = |g〉|0〉, |n−〉 = sin
θn

2
|e,n − 1〉 − cos

θn

2
|g,n〉,

|n+〉 = cos
θn

2
|e,n − 1〉 + sin

θn

2
|g,n〉, (2.6)

where
√

n is a photon number state, θn =
arctan 2

√
2g

√
n/(� + J ), and � = ωa − ωc is the detuning

between atom and field. The corresponding eigenenergies are

E0 = 0,
(2.7)

En± = ωc + � + J

2
± 1

2

√
(� + J )2 + 8g2n.

The spectrum of the first doublet of these states in a de-
generate system (for ωa = ωc) splits into two new resonances
and is called the normal-mode or vacuum-Rabi splitting. The
observation of the normal-mode splitting, in fact, is also an
indicator that a system has reached the SCR of cavity QED.
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To investigate the steady-state normal-mode spectrum, we
introduce the intracavity photon number [35]

〈a†a〉0 = |〈a〉0|2, (2.8)

which is given by the modulus square of 〈a〉0 and is sufficient
to calculate a spectrum of the coupled atoms-cavity system.

III. NORMAL-MODE SPECTRUM IN THE LOW
EXCITATION LIMIT

By choosing an appropriate pump beam, we can maintain
a weak pump intensity and, thus, a low atomic excitation can
be achieved. In this situation, 〈σ1z〉,〈σ2z〉 → −1, and, thus, we
can set 〈aσ1z〉 = 〈aσ2z〉 = −〈a〉. The steady-state solution of
Eq. (2.4) and the steady-state intracavity photon number can
then be given as

〈a〉0 = η

�̃c

1

1 − v
, (3.1)

〈σ1〉0 = ηv

g

1

1 − v
, (3.2)

〈σ2〉0 = ηv

g

1

1 − v
, (3.3)

〈a†a〉0 = η2

|�̃c|2
1

|1 − v|2 , (3.4)

where

v = 2g2

�̃c[�̃a − J̃ ]
. (3.5)

These results are based on the classical approximation
[35], which converts the fermionic commutation relation to a
bosonic form, treating both atoms and fields as linear harmonic
oscillators and omitting the effects of saturation.

The two normal-mode resonances are characterized by the
eigenfrequencies ω±,

ω± = − 1
2 (�̃a − J̃ + �̃c) ± 1

2

√
8g2 + (�̃a − J̃ − �̃c)2,

(3.6)

which are based on Eq. (2.5). The frequencies ω± have com-
plex values. The real part Re(ω±) determines the position of the
resonances, while the imaginary part describes their widths.
However, in the strong-coupling regime, g � (γ,γ ′,κ), and,
thus, the effects of the decay on the position of the resonances
can be neglected. The resonance frequencies ω±, in this
condition, match the first pair of dressed states in Eq. (2.7).
For � = J = 0, the distance between the two resonances has
a minimum value ω+ − ω− ≈ 2

√
2g. When � and J are

nonzero, their position and distance can be obtained from
Eq. (2.7).

Because the two-atom system, to some extent, is analogous
to the one-atom system, we cite the parameter’s value in
experiments [36], in which a photon blockade for the light
transmitted by an optical cavity containing one trapped atom
is observed. The decay rate γ ′ caused by the DDI is usually
weak; therefore, without a loss of generality, we take it as
0.05g in this section.

FIG. 2. (Color online) The normal-mode spectrums for different
DDI intensities is shown. The parameters are � = 0, (η,κ,γ,γ ′) =
(0.12,0.12,0.0767,0.05)g.

In Fig. 2 the normal-mode spectrums for different DDI
intensities is plotted. From Fig. 2 we see that when J = 0, the
amplitudes of both resonances are equal and their position are
symmetric about �c = 0 with a minimum distance of approx-
imately 2

√
2g. However, when J 	= 0, as the DDI intensity

increases, the left peak becomes higher and approaches �c =
0, while the height of the right peak is greatly reduced and
it departs from �c = 0. Moreover, the distance between the
two peaks tends to increase. This is because for � = 0, J 	= 0,
and the distance between the two peaks is in accord with the
expression

√
J 2 + 8g2, which is a monotonically increasing

function of J . In addition, their heights are determined by the
value of sin θn

2 and cos θn

2 in Eq. (2.6). When � = J = 0 the
contributions from the atoms and the cavity states are equal
in such a way that the normal modes have the same height.
As the DDI intensity increases, the excitation probability of

Δ
a
/g

Δ c/g
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FIG. 3. (Color online) The normal modes form an avoided cross-
ing between the resonances of the bare atoms and the bare cavity.
Three different cases of �/g = 1 (dashed-dotted), � = 0 (solid),
and �/g = −1 (dotted) are shown. The dipole-dipole interaction
strength is taken as J/g = 1. The parameters are (η,κ,γ,γ ′) =
(0.12,0.12,0.0767,0.05)g.
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the bare-cavity field state is enhanced for the lower dressed
state |1−〉, while for the bare atom states it is greatly reduced.
The results are the opposite of what occurs for the higher
state |1+〉. It should be noted that the system is pumped by a
coherent laser shining on one of the cavity mirrors, and, thus,
the bare cavity states are more easily excited, leading to a better
visibility of the “cavitylike” peak. However, when J � g, the
probabilities sin2( θn

2 ) ≈ 0, cos2( θn

2 ) ≈ 1; therefore, the system
is approximately in the state |g,1〉. The atoms are not being
excited in this case, and the spectrum exhibits a single peak.

In Fig. 3 the normal-mode spectra are found to be functions
of �a and �c. The atom-cavity detuning is defined as � =
ωa − ωc. An avoided crossing between the atomic transition
and the resonant frequency of the cavity is shown. With in-
creasing �a and �c, the atom-cavity system decouples, and the
two resonances asymptotically approach the eigenfrequencies
of the atoms and the cavity.

In Fig. 4, when � 	= 0, both the position and height of
the two resonances shift. In contrast, based on Eq. (2.7),
when J = 0, � 	= 0, and it is obvious that the position of
the two peaks are dependent on the value of �, and the
distance between them depends on

√
�2 + 8g2. Moreover, the

excitation of a dressed state is determined by the contribution
of the cavity state to the dressed state. For positive detuning,
based on Eq. (2.6), the excitation probability of the bare cavity
field state of |1−〉 increases with increasing �, but for |1+〉,
it reduces. In contrast, the results are opposite for negative
detuning. Therefore, when � 	= 0, the two resonances more
likely to exhibit the cavitylike form with enlarged separation.

Interestingly, as seen in Figs. 2 and 4, this indicates that
the DDI plays a similar role as does the positive detuning.
The effect of the DDI is equivalent to increasing the positive
detunings and decreasing the negative detunings. To confirm
this conclusion, the cooperative action of � and J on the
two resonances is shown in Fig. 5. This shows that the two
resonances are symmetric with equal heights when � + J =
0. For � > 0, � and J have consistent effects on the two
peaks. However, for � < 0, their influences cancel each other,
and the practical states rely on the larger absolute value of the

FIG. 4. (Color online) The normal-mode spectrums for different
values of � and J are plotted. There is no dipole-dipole interaction
between atoms, that is J = 0, γ ′ = 0.

FIG. 5. (Color online) The normal-mode spectrums for different
values of � and J are plotted. Both the detuning and the dipole-
dipole interaction are considered. The dipole-dipole interaction
intensity is taken as J/g = 1. Other parameters are (η,κ,γ,γ ′) =
(0.12,0.12,0.0767,0.05)g.

two. In fact, these results are clear. Both for the dressed states
in Eq. (2.6) and the corresponding eigenenergies in Eq. (2.7),
� and J are present with the form “� + J .” Therefore, the
position and height of the two peaks, as well as the distance
between them, all depend on the cooperative action of � + J .

IV. TRANSMISSION SPECTRUM FOR HIGHER
PUMP INTENSITY

We have noted that the validity of the above results depends
on the assumption of weak excitation. For higher pump
intensities, the atomic saturation cannot be neglected. We can
define 〈σz〉0 = − 1

1+s0
, and treat the cavity field classically by

replacing a with 〈a〉. Therefore, 〈aσz〉 can be written as a
product form 〈a〉〈σz〉, and the steady state of Eq. (2.4) can be
calculated:

〈a〉0 = η

�̃c

1

1 − μ
, (4.1)

〈σ 〉0 = ηv

g

1

1 − μ
, (4.2)

μ = 2g2

�̃c[�̃a(1 + s0) − J̃ ]
, (4.3)

s0 = 2g2(1 + s0)2〈a†a〉0

|�̃a(1 + s0) − J̃ |2 + 2g2(1 + s0)〈a†a〉0γ
′

|�̃a(1 + s0) − J̃ |2γ , (4.4)

where s0 is the saturation parameter. Notice that s0 → 0
corresponds to the low saturation limit.

In Fig. 6, by using Eqs. (4.1)–(4.4), the spectrum for the DDI
atoms with increased pump intensity is plotted. This shows
similar behavior as the system without the DDI [15]. These
results are not surprising, because the two dipole-coupled
atoms can be treated as an effective atom with a renormalized
atomic frequency and atom-cavity coupling intensity. As the
pump intensity increases, atoms begin to saturate, and the
peaks of the two resonances shift their position and deform,
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FIG. 6. (Color online) The normal-mode structure is revealed for
different pump intensities. With increase of pump intensities, atoms
tend to saturation, and the two peaks bend towards the center. In the
limit of the high excitation, the atoms are saturated and the spectrum
shows a single peak, as is shown in the inset. J = 0.5g, κ = γ =
0.1g, � = 0, γ ′ = 0.01g.

bending towards the center. Finally, they meet and form a
closed structure. It is important to note that there are three
possible expectation values for the operator 〈a†a〉0 when
η2/κ2 � 1. One of them is unstable, but the other two are
stable. The amplitude of the intracavity field can switch
between the two stable values, which is called bistability,
and this predicts a nonlinear relation between the input and
output intensity. The system, in this case, evolves from two
coupled harmonic oscillators to highly deformed anharmonic
oscillators. In the high excitation limit, as is shown in the inset,
the atoms are saturated and do not contribute significantly to
the dynamics of the system. The spectrum resembles that of an
empty cavity, evolving from two peaks to a singlet. However,
the spectrum no longer exhibits the same symmetry as the
system without the DDI. Because we introduce the DDI into
system, the shape of these curves becomes asymmetrical about
�c = 0.

In the weak excitation limit, the DDI influences both
the height and position of the two peaks and produces
effects similar to the positive detunings. Therefore, for higher
excitations, the effects of � and J on the spectrum are also
worth exploring. In the following section we begin from the
spectrum with a closed structure for higher excitations to study
their effects.

In Fig. 7 an interesting phenomenon arises with increased
atom-cavity detuning. The original closed spectrum begins to
separate and splits into two peaks. This can be inferred from
Eqs. (4.1) and (4.4). Based on these two eqnarrays, we can
find

s0 =
2g2η2(1 + s0)2

(
1 + γ ′

γ

)

|�̃c[(�c − � + iγ )(1 + s0) − J̃ ] − 2g2|2 . (4.5)

When J = 0, with increasing �, the atomic saturation pa-
rameter s0 decreases. It is not difficult to understand that
the detuning can cause the atom-cavity coupling to become

FIG. 7. (Color online) The effects of the atom-cavity detuning on
the normal-mode structure of high excitation. The spectrum deformed
and changes to a singlet in the limit of large detuning. η2/κ2 = 4,
J = 0, κ = γ = 0.1g, γ ′ = 0.1g.

weaker and thus reduces the atomic saturation. Therefore,
with increasing �, the spectrum gradually returns to the cases
of weaker excitation. When �/g 
 5 the right peak nearly
vanishes, while the right peak becomes more distinct. The
system, in this case, is mainly dominated by � and shows a
decoupled tendency.

However, as seen in Fig. 8, the spectrum as a function of
J for the higher excitation exhibits a different behavior. The
original closed spectrum only deforms, but it does not separate.
This result maybe explained as follows. As mentioned above,
the DDI can cause the atomic frequency to be renormalized
and changes the atom-cavity coupling intensity from g to

√
2g.

According to Eq. (4.5), s0 increases with increasing J for

FIG. 8. (Color online) The effects of dipole-dipole interaction on
the normal-mode structure of high excitation. The spectrum deformed
and changes to a singlet in the limit of high dipole-dipole interaction
intensity. η2/κ2 = 4, � = 0, κ = γ = 0.1g, γ ′ = 0.1g.
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� = 0. For high excitations, the renormalization of the atomic
frequency resulting from the small DDI does not generate
pronounced influences on the excitation of the system and the
spectrum only deforms in this case. However, for cases where
J � g, a large atom-cavity detuning forms because of the
renormalization of the atomic frequency and plays a dominant
role in the atom-cavity system. Photons coming from a cavity
mirror cannot populate the atomic states, making the spectrum
exhibit a singlet.

V. CONCLUSION

We have characterized the transmission spectrum properties
of two dipole-coupled two-level atoms strongly coupled to a
single-mode optical cavity. In the low excitation limit, the
DDI, acting as an atom-cavity detuning, can modify the
positions and heights of the two peaks. However, the DDI
exhibits effects similar to a positive detuning, and exhibits
the opposite behavior of negative detuning. The dressed states

have also been derived by transforming the two-atom system
to an effective single-atom system. For higher excitation,
the atom-cavity detuning can reduce the atomic saturation,
making the original closed structure separate. The DDI can
increase the atomic saturation, leading to the deforming of the
original closed structure. Interestingly, except for in the high
excitation and large detuning limit, the strong DDI can cause
the decoupling of the atoms and cavity, which leads to the
spectrum exhibiting a singlet. We expect that these results will
be useful in understanding the quantum electrodynamics of
the atom-cavity system with DDI.
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