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Cavity-aided nondemolition measurements for atom counting and spin squeezing
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Probing the collective spin state of an ensemble of atoms may provide a means to reduce heating via the photon
recoil associated with the measurement and provide a robust, scalable route for preparing highly entangled states
with spectroscopic sensitivity below the standard quantum limit for coherent spin states. The collective probing
relies on obtaining a very large optical depth that can be effectively increased by placing the ensemble within an
optical cavity such that the probe light passes many times through the ensemble. Here we provide expressions
for measurement resolution and spectroscopic enhancement in such cavity-aided nondemolition measurements
as a function of the cavity detuning. In particular, fundamental limits on spectroscopic enhancements in 87Rb
are considered.
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I. INTRODUCTION

High-resolution measurements of the populations of two-
level systems are key for realizing high-precision atomic
sensors such as atomic clocks, magnetometers, and atom-
based electric field, rotation, and inertial sensors [1]. Further,
developing nondemolition, high-resolution measurement tech-
niques to create and/or detect entangled states is a promising
route to enhanced sensors with improved accuracy, precision,
and/or bandwidth [2–13].

In trapped neutral atom ensembles, nondemolition mea-
surements that do not cause atom loss from the trap could
also lead to significant advances in the repetition rates of
sensors [14], allowing them to operate more closely to the
regime of ion-based sensors in which the ions can be stored
over many repeated measurement cycles [15]. Furthermore,
a nondemolition measurement that also preserves quantum
coherence (a quantum nondemolition measurement) can pre-
pare conditionally spin-squeezed states with spectroscopic
sensitivity below the standard quantum limit (SQL) �θSQL =
1/

√
N that arises from the quantum projection noise of N

independent atoms [16].
Recently, cavity-aided, nondemolition measurements were

used to generate and observe the largest entanglement en-
hancement to date in an ensemble of spin-squeezed 87Rb
atoms, improving the sensitivity of the ensemble by an order
of magnitude [13]. Cavity-aided nondemolition measurement
techniques are compatible with accurate precision measure-
ments and, in particular, optical lattice clocks. Therefore, es-
tablishing a firm understanding of the fundamental limitations
to cavity-based collective measurements is going to be crucial
for advancing quantum metrology beyond proof-of-principle
experiments.

The results described in this work are relevant to recent
approaches for generating entangled states in large ensembles
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using many diverse approaches, including quantum nonde-
molition measurements [5,6,9,13], one-axis twisting arising
from probe-mediated atom-atom interactions [17–22], and
direct collisional interactions that generate one-axis squeez-
ing [4,7,8] or parametric pair generation [10,12]. In all of these
cases, a low-noise readout such as the approach described in
this paper is always required to actually exploit the enhanced
phase-sensing properties of these states.

In particular, there has been substantial recent interest in
developing nondemolition readout schemes for large laser-
cooled and quantum-degenerate neutral atomic ensembles
consisting of roughly 103 to 107 atoms [5,6,9,11,14,24–26].
It is well known that significant improvements in readout
sensitivity can be achieved by optically probing ensembles in
free space along directions of large resonant optical depth.
This approach has been extensively analyzed theoretically
[21,27–38] and studied experimentally [5,24,39–46].

More recently, the technique of free-space probing of
large-optical-depth samples has been extended to using optical
cavities to effectively increase the optical depth of the atomic
ensemble (Fig. 1) [6,9,47–52]. While free-space ensembles
of large optical depth have been realized, a cavity can
enhance the already-large optical depth to a regime difficult
to achieve using free-space techniques alone. It is crucial
to develop techniques that are compatible with current cold-
atom technology to go beyond proof-of-principle experiments.
For reference, cold-atom precision measurement experiments,
including optical lattice clocks, microwave fountain clocks,
and matter-wave interferometers, operate with ensemble sizes
of order 103 to 107 atoms. Optical cavities are amenable to
the geometry in these kinds of experiments, and in fact, some
optical lattice clocks are already incorporating optical cavities
to build up power in the lattice trap.

From a metrology perspective, cavity probing achieves the
same optical depth as free-space probing using atomic densi-
ties lower by an order of magnitude than the cavity finesse,
reducing atomic-density-dependent atom loss, dephasing, and
systematic errors. In most of these experiments and proposals,
the cavity is far detuned from the optical transition that was
probed. Probing in the resonant regime [9] is an exception
rather than the norm. In principle, the cavity detuning δc can
be chosen almost arbitrarily. Therefore, a natural question to
ask is: How does cavity detuning affect both the fundamental
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FIG. 1. (Color online) (a) Relevant energy levels. The pseudo-
spin-1/2 system typically comprises two metastable states, |↑〉 and
|↓〉, which are utilized in atomic sensors and clocks. The number of
atoms N↑ in |↑〉 modifies the cavity resonance frequency. Initially,
we assume that the optically excited state |e〉 does not couple to
|↓〉 because of dipole selection rules or because the coupling is
highly nonresonant, δc � ωhf , where ωhf is the frequency separation
between |↑〉 and |↓〉. (b) A transmitted and/or reflected probe field is
monitored to determine the cavity resonance frequencies and hence
the number of atoms in |↑〉. An applied NMR-like microwave rotation
can swap the populations between ground states so that a subsequent
measurement can also determine the |↓〉 population N↓. The ensemble
of atoms is trapped in an intracavity optical lattice (blue-green). The
total cavity power decay rate is κ . Single-atom spontaneous decay
from |e〉 at rate � leads to photon recoil heating and single-atom wave
function collapse. The goal then is to extract collective information
from the probe mode more rapidly than the undesired single-atom
photon scattering into free space.

and technical atomic population measurement resolution and
the degree of spin squeezing for a given cavity geometry and
cavity finesse?

To answer this question, we provide detailed expressions
of the fundamental scalings for probing an atomic ensemble
using an optical cavity that smoothly connects the resonant to
the far-detuned probing regime. We apply our results first to
estimate the amount of photon-recoil heating of the ensemble
when the cavity-aided measurement has an imprecision at the
quantum projection noise level. The average number of photon
recoils per atom sets the degree to which the measurement can
be considered nondemolition. This analysis is then extended
to estimate bounds on the degree of conditional spin squeezing
(see Fig. 2 for details) that can be obtained using 87Rb atoms
in a cavity [see Fig. 1(a)] [6,9]. We show that the fundamental
limitations are set by the collective cooperativity parameter
NC, the probe detection quantum efficiency q, and the atomic
properties alone. The collective cooperativity parameter NC

plays a similar role to the resonant optical depth of atoms
in free space, where N is the number of atoms in the probe
volume and C is the single-atom cooperativity parameter [53].

This paper is organized as follows. In Sec. II, we begin
with a review of the properties of the coupled atoms-cavity
system including dissipation. This review also provides precise
definitions and notation used throughout the paper.

In Sec. III, we derive the quantum-limited signal-to-noise
ratio for nondemolition measurements of atomic populations
considered as a function of the cavity detuning from atomic
resonance [δc in Fig. 1(a)]. We identify three probing regimes:
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Spin Squeezed State
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ND

QND
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y

z

FIG. 2. (Color online) Visualization of a nondemolition (ND)
(upper right) and a quantum nondemolition (QND) (lower right)
measurement. A coherent spin state (CSS) for an ensemble of N

spin-1/2 atoms prior to measurement is represented as a Bloch vector
(red arrow) of length N/2. The quantum noise in the orientation
of the Bloch vector is shown as a quasiprobability distribution
(red-yellow region) perpendicular to the Bloch vector, with an rms
opening angle at the standard quantum limit, �θSQL = 1/

√
N . An

ND measurement in this paper refers to a measurement of the state’s
ẑ spin projection Jz = (N↑ − N↓)/2 with an rms imprecision, �Jz <

�Jz,CSS = √
N/2, and with the majority of the atoms remaining

trapped after the measurement. For example, in the ND measurement
shown at the right, the measurement imprecision is �Jz = 0, but after
the measurement the atoms are described by a product state of atoms
in spin-up and spin-down due to single-atom state information gained
by the environment via free-space scattering of light. We define a
QND measurement via the additional requirement that a sufficiently
large number of atoms remains in a coherent superposition of spin-up
and spin-down such that the resulting state, conditioned on the
measurement outcome, has a polar angle uncertainty �θ < �θSQL.
The definition of QND employed here is related to, but less restrictive
than, that in Ref. [23]. The lower-right QND example shows the
conditional state as a product state of a squeezed state and the atoms
that have been collapsed into spin-up and spin-down.

a resonant regime and two detuned regimes separated by a
critical detuning δ◦

c .
In Sec. IV, we address quantum backaction effects due to

probe-induced spin flips on estimates of atomic populations
in a simple three-level model. We show how the optimal
measurement resolution can be achieved by balancing between
noise added by spin flips and averaging down the probe’s
vacuum or photon shot noise.

In Sec. V, we consider the limits set on coherence
preservation. Coherence is lost due to wave-function collapse
into spin-up or spin-down driven by the same probe-induced
free-space scattering that also causes photon recoil heating.
We then obtain the optimal spectroscopic enhancement, the
figure of merit for a quantum nondemolition measurement, as
a function of the spin-flip probability p.

In Sec. VI, we apply the results in Sec. V to two concrete
examples in 87Rb: generating conditional spin squeezing using,
first, a noncycling optical transition and, then, a cycling optical
transition. Here, we demonstrate the key role of the ratio of
the ground-state hyperfine splitting ωhf to the optical transition
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width � for determining scalings and fundamental limits on
conditional spin squeezing.

II. COUPLED ATOM-CAVITY MODES

To begin, we provide a brief review of the open coupled
atoms-cavity system with the goal of providing a framework
for understanding the experimental work and to explicitly
enumerate the assumptions made to reduce this system to
a classical two-mode system [54–56]. The dynamics of the
system under a classical drive and dissipation are then studied,
with the goal of obtaining the full complex response of the
reflected and transmitted cavity field. Finally, a discussion
of the probe signal-to-noise ratio sets the stage for addressing
measurement resolution at the projection noise level in Sec. III.

A. System Hamiltonian

We consider an ensemble of N atoms with two ground states
|↑〉 and |↓〉 whose populations we wish to estimate precisely.
The ensemble is confined and collectively coupled to a cavity
mode [see Fig. 1(b)]. Atoms in |↑〉 interact with the cavity
mode by absorbing a cavity photon and being promoted to
an optically excited state |e〉. On the other hand, atoms in
|↓〉 are assumed not to interact with the cavity mode because
of dipole selection rules, a large energy splitting between the
ground states, or otherwise. A quantum phase may be encoded
in the coherence between |↑〉 and |↓〉 but is otherwise not
important in this section.

The Tavis-Cummings Hamiltonian that describes the cou-
pled atoms-cavity system is

H = �δcĉ
†ĉ + �g(Ĵ−ĉ† + Ĵ+ĉ). (1)

The Hamiltonian is written in a frame rotating at the |↑〉 → |e〉
atomic transition angular frequency ω↑e. In this paper, we
assume that every atom couples to the cavity mode with
the same coupling strength parametrized by the coupling
angular frequency g. Uniform coupling can be implemented
with ring cavities, for example. In the case of nonuniform
coupling, an effective g and N may be defined [9]. The
cavity field is described by the photon annihilation operator ĉ,
with cavity photon number M̂c = ĉ†ĉ. The cavity detuning is
δc = ωc − ω↑e, where ωc is the empty-cavity frequency. The
collective raising and lowering operators Ĵ± = �iσ̂i± are writ-
ten in terms of the single-atom raising and lowering operators
σ̂i+ = |ei〉〈↑i | and σ̂i− = |↑i〉〈ei |. The atomic populations are
given by the collective projection operators N̂↑ = �i |↑i〉〈↑i |,
N̂↓ = �i |↓i〉〈↓i |, and N̂e = �i |ei〉〈ei |. For brevity, we use
the following abbreviations throughout this paper: N↑ ≡ 〈N̂↑〉,
N↓ ≡ 〈N̂↓〉, and Ne ≡ 〈N̂e〉.

Although the atoms may in general exist in a superposition
of |↑〉 and |↓〉, in the following analysis we consider the atoms
to be in a definite eigenstate N↑ of the N̂↑ operator. We then
reintroduce the fluctuations in the operator N̂↑ for atoms in
a superposition of |↑〉 and |↓〉 using the rms projection noise
about the mean value �N↑ =

√
〈(N̂↑ − 〈N̂↑〉)2〉.

To gain information about the atoms, the effect of the
atoms on an incident cavity probe field is measured in
transmission and/or reflection. We assume that the system is
driven weakly by the probe such that the mean number of
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FIG. 3. (Color online) (a) Graphical representation of the lin-
earization achieved via the Holstein-Primakoff approximation. The
atomic subsystem |↑〉 and |e〉 is described by a Bloch vector of
length (N↑ + Ne)/2. In the regime in which the probe light only
weakly excites the atoms such that Ne � N↑, the two-level system
can be described by its projection onto a 2D plane equivalent to that
describing a light field. (b) With this approximation, the collective
atomic mode may be treated as an equivalent cavity mode (lower,
purple mode) whose coupling to the actual cavity (upper, red mode)
is governed by a partially reflecting mirror (center) described by a
field coupling rate constant (

√
N↑g) that depends on the number of

atoms in state |↑〉. The physical mirrors have transmission coefficients
described by the field coupling rates

√
κ1 and

√
κ2, and internal cavity

losses are described by
√

κL, such that the total power decay rate is
κ = κ1 + κ2 + κL. Decay of the atoms by emission of a photon into
free space is described by the field transmission coefficient

√
�, which

is the sum of the field scattering into free-space modes by the atoms in
|↑〉. Because the scattered modes are distinguishable (expanded view
of free-space scattering port), it is possible to tell which atoms are in
|↑〉 from the free-space-scattered photons, destroying any coherent
superposition between |↑〉 and another state |↓〉 (not shown) that may
have been prepared for sensing a quantum phase.

atoms in the optically excited state |e〉 is a small fraction of
the total number of atoms in |↑〉; i.e., Ne/N↑ � 1. In the weak
excitation limit, the Holstein-Primakoff approximation [57]
may be employed, replacing the atomic raising and lowering
operators with effective creation and annihilation operators
as â† ≈ Ĵ+/

√
N↑ and â ≈ Ĵ−/

√
N↑, which satisfy the usual

commutation relation [â,â†] = 1. The resulting Hamiltonian
in the Holstein-Primakoff approximation can be described by
two coupled cavities, shown in Fig. 3(b):

H = �δcĉ
†ĉ + �

√
N↑g(âĉ† + â†ĉ). (2)

B. Driven and damped dynamics

Using input-output theory [58], the Heisenberg-Langevin
equations of motion for the cavity and atomic operators that
include driving and damping are as follows:

d〈ĉ〉
dt

= −
(

ıδc + κ

2

)
〈ĉ〉 − ı

√
N↑g〈â〉 + √

κ1ci,

(3)
d〈â〉
dt

= −�

2
〈â〉 − ı

√
N↑g〈ĉ〉.
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The complex amplitude ci , with units of
√

photons/s,
describes the incident cavity driving field at frequency ωp

in the laboratory frame. As the above equation is written in a
rotating frame at the atomic frequency ω↑e, the incident cavity
field ci in Eq. (3) is ci = |ci |e−iδpet , where δpe = ωp − ω↑e

is the drive detuning from the optically excited state |e〉. The
nonunitary damping and drive terms are shown schematically
in Fig. 3(b). The eigenfrequencies ω± and linewidths κ ′

± of the
normal modes described by the coupled equations are given by

ω± =
δc ±

√
δ2
c + 
2

↑
2

, (4)

κ ′
± =

κ + ( 
↑
2ω±

)2
�

1 + ( 
↑
2ω±

)2 , (5)

where


↑ ≡ √
N↑2g (6)

is the collective vacuum Rabi frequency, and 
2
↑  �κ is

assumed. The collective vacuum Rabi splitting 
↑ sets the dif-
ference in the normal mode frequencies ω+ − ω− at zero cavity
detuning, δc = 0. For atom number counting via cavity prob-
ing, the normal mode that is farthest from atomic resonance is
most useful because this normal mode is predominantly cavity-
like in character. For brevity, we refer to this mode’s linewidth
and frequency as simply κ ′ and ω such that κ ′ = κ ′

± and
ω = ω± when |ω±| � |ω∓|. At zero cavity detuning δc = 0,
both normal modes have the same amount of cavity and atomic
contributions and therefore, are equally useful for atom number
counting. The experiment in Ref. [9] operated in this regime
and probed both normal modes to determine collective atomic
populations for the generation of atomic spin-squeezed states.

1. Cavity damping and input-output fields

As shown in Fig. 3(b), the damping of the cavity field
at rate κ/2 = (κ1 + κ2 + κL)/2 is set by the mirror power
transmission coefficients T1,2 such that κ1,2 = T1,2 × fFSR. The
cavity free spectral range is fFSR = c/2l, with 2l being the
round-trip cavity length and c the speed of light. The total
round-trip scattering and absorption fractional power losses at
the mirrors L can be modeled by an additional beam splitter
with field decay rate κL = L × fFSR.

The reflected and transmitted complex field amplitudes,
cr and ct , respectively, will be detected to infer the number of
atoms in |↑〉. The external field normalizations are chosen such
that |ci,r,t |2 is the flux of incident, reflected, and transmitted
probe photons (in photons/s). The average number of incident,
reflected, and transmitted photons Mi,r,t in a measurement time
interval Tm is then

Mi,r,t =
∫ Tm

0
|ci,r,t (t

′)|2dt ′. (7)

In our experiments [9], it is convenient to express the number
of probe photons coupled into the atoms-cavity system in
terms of the measured “missing” photons in the reflected mode
compared to the incident beam Mm ≡ Mi − Mr .

The reflected and transmitted fields can be found by first
solving the coupled-driven Eq. (3) for 〈ĉ〉 and then using the

results in the approximate relationships

cr = √
κ1〈ĉ〉 − ci, ct = √

κ2〈ĉ〉, (8)

which hold in the limit of a high-finesse cavity T1,2,L � 1.

2. Atomic damping via free-space decay

The atomic damping via scattering of light into free space
(i.e., not into the cavity mode) is described by an effective
amplitude damping rate �/2. To good approximation, the
probability decay rate � is simply the single-particle excited-
state |e〉 decay rate in free space [59]. The rate of scattering
into free space is described by the field amplitude as = √

�〈â〉,
normalized such that the rate of photons scattered into free
space is simply Ṁs = |as |2.

The above picture of atomic damping can be further refined
as shown in Fig. 3(b). While the decay of excitation from
the cavity mirrors is single-mode in nature, the atoms scatter
light into many free-space modes. This multimode scattering
can be envisioned by replacing the single decay process via a
single mirror with a weak beam splitter for each atom in |↑〉.
If the ensemble is optically thin along all directions except
the cavity mode, then one can approximate that each atom
decays into its own bath of states with an amplitude as,i =√

�(〈â〉/√N↑). The total scattering rate is the incoherent sum
of the decay rates, reproducing the previous decay rate, Ṁs =
�|〈â〉|2. However, this refinement importantly emphasizes
that the multimode free-space scattering leads to in-principle
information gain as to which particular atoms are in |↑〉,
causing single-particle collapse of the atomic wave function
from a coherent superposition into an energy eigenstate, for
example, (|↑〉 + |↓〉)/√2 → |↑〉, thus destroying coherence.
In contrast, the decay of light through the cavity mirrors
leads to only collective information as to how many atoms
total are in spin-up and therefore preserves coherence. Thus
information gained through the cavity will be useful for
preparing conditionally spin-squeezed states, while the free-
space scattering is a competing decoherence mechanism that
serves to reduce the attainable degree of spin squeezing.

C. Full complex field response to probing

The reflected and transmitted fields relative to the incident
field cr,t /ci = Ir,t + ıQr,t can be described in the complex
plane by the real amplitudes Ir,t and Qr,t . The incident probe
frequency ωp is detuned by δp = (ωp − ω↑e − ω) from the
normal mode most useful for atom number counting. We
assume that the probe is near the normal mode frequency
ω such that |δp| � ω+ − ω− and the modes are well resolved
ω+ − ω−  κ ′

± so that interference effects between normal
modes can be ignored. The normalized transmitted electric
field through the cavity is then, to a good approximation, given
by

It = β

1 + (2δp/κ ′)2
, (9)

Qt = β(2δp/κ ′)
1 + (2δp/κ ′)2

, (10)

where the dimensionless amplitude β is given by

β = 2
√

κ1κ2

κ + �
(
↑

2ω

)2 . (11)
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FIG. 4. (Color online) Transmitted and reflected probe electric fields from driving the atoms-cavity system through the cavity mode. (a)
The electric field phasors trace out circles in the I,Q-quadrature plane as the probe detuning δp from the dressed-cavity resonance varies
from far below to far above resonance. The normalization is chosen such that the reflected electric field goes to 1 when far off resonance. The
quantum noise of the probe normalized to the incident electric field is represented as a fuzzy blob with rms diameter 1/|ci |. In this illustration,
a symmetric cavity κ1 = κ2 is assumed, so that the circles have the same diameter β. (b) Corresponding power transmission and reflection
signals. (c, d) Typical experimental data (points) and least-squares fits to the I,Q-quadrature data (solid and dashed circles) from Ref. [9].

From Eq. (8), the reflected field cr is just the sum of the trans-
mitted field (rescaled for relative transmission coefficients)
and the largely reflected field such that Ir = 1 − √

κ1/κ2It ,
and Qr = √

κ1/κ2Qt .
As shown in Fig. 4(a), the phasor ct traces out a circle of

radius β/2 in the complex plane as δp varies from �κ ′/2
to κ ′/2. The translation I ′

t = It − β/2 centers the circle
traced out by the phasor I ′

t + ıQt at the origin. One then
sees that the angle with respect to the real axis is given by
ψt = arctan(Qt/I

′
t ) = arctan(2δp/κ ′). Similarly, the transla-

tion I ′
r = Ir − (1 − √

κ1/κ2β/2) centers the circle traced out
by the phasor I ′

r + ıQr at the origin with the angle ψr defined
with respect to the real axis such that ψr = arctan(−Qr/I

′
r ).

The angles ψr and ψt are the same, but the quantum-limited
estimation of the phases may be different if κ1 �= κ2.

D. Probe vacuum noise and measurement resolution

The size of the quantum vacuum noise that contributes un-
certainty to measuring the position of the phasor is not changed
by a linear transformation of coordinates in the complex plane.
For our purposes, the noise can be described as a Gaussian
probability distribution with equal and uncorrelated real and
imaginary rms fluctuations of magnitude σv = 1/2. The rms
quantum vacuum uncertainty �ψt on the angle ψt is then inde-
pendent of the average value ψt and is set only by the average
number of detected photons in transmission Md = qdMt as

�ψt = 1

2
√

Md

. (12)

The detection quantum efficiency qd includes any light loss
and any excess technical or thermal noise of the detector
relative to vacuum noise. The uncertainty �ψt maps onto
an uncertainty on the estimation of δp through �δp =
|dδp/dψt |�ψt = κ ′�ψt/2ηd . The detection sensitivity ηd is

given by

ηd = 1

1 + (2δp/κ ′)2
. (13)

Probing near resonance δp = 0, one finds ηd = 1. For side-
of-fringe probing δp = κ ′/2, one finds ηd = 1/2. If the probe
frequency is linearly and adiabatically scanned from δp � κ ′
to δp  κ ′ such that the total number of detected photons is
fixed to the same Md as in the two previous scenarios, one finds
ηd = 1/2. The optimal readout assumes that as δp is changed,
an adaptive homodyne readout is employed to maximize the
measurement sensitivity to small changes in ψt . In Ref. [9],
heterodyne detection is employed so that adaptive detection
is not required. However, the effective quantum efficiency qd

was reduced by 1/2 as a result of the heterodyne detection.
It is straightforward to extend the analysis to a probe signal

detected in reflection. However, one must parametrize in terms
of the measurable average number of missing photons in
the reflection port Mm and the average number of incident
photons Mi such that in Eq. (12), one substitutes Md →
(κ2/κ1)Miqd (1 ∓ √

1 − Mm/Mi)2 when β
√

κ1/κ2 ≶ 1.

III. QUANTUM-LIMITED SIGNAL-TO-NOISE
AND FREE-SPACE SCATTERING

The measurement of the atomic population N↑ in |↑〉 can be
achieved by precisely measuring the normal mode frequency
ω+ or ω− or some combination of the two. In essence, the
approach used here converts the problem of measuring an
atomic population into a frequency measurement. For atoms
in a coherent superposition of |↑〉 and |↓〉, quantum projection
noise in the atomic population N↑ causes the dressed mode
frequency to fluctuate from one trial to the next.

In this section, we first derive the trial-to-trial fluctuations
on the dressed mode frequency due to quantum projection
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noise as a function of cavity detuning δc. We then use the results
of Sec. II to obtain the average number of free-space-scattered
photons per atom m

proj
s , when the measurement imprecision

on the probe field is sufficient to resolve the projection noise
fluctuations of the mode frequency �ωproj. The quantity m

proj
s

is the key figure of merit that characterizes the degree to
which a measurement is nondemolition. Three limits of cavity
probing are identified, and a summary table of various key
quantities in different regimes is presented.

A. Projection-noise-driven fluctuations of mode frequencies

As stated earlier, the atom number N↑ can be determined
by precisely measuring one or both of the normal mode
frequencies ω+ and ω− with a cavity probe. The collective
enhancement of the Rabi splitting by

√
N↑ produces an

important enhancement of the measurement sensitivity that
is key to resolving projection noise. To concretely analyze
the signal-to-noise ratio of the probing, we consider a
measurement procedure most relevant to spectroscopy: we
assume that for each experimental trial, all of the N  1
total atoms are initially prepared in spin-down via optical
pumping or otherwise. Each atom is then rotated into an
equal superposition of spin-up and spin-down, preparing the
ensemble in a coherent spin state (CSS). The populations
in spin-up and -down fluctuate about the average N↑ =
N↓ = N/2 with equal magnitude but perfectly anticorrelated
projection noise fluctuations �N↑ = �N↓ = √

N/2.
The rms fluctuation �ωproj of the individual mode frequen-

cies ω± caused by the projection-noise-driven fluctuations in
N↑ is found by linear expansion as �ωproj = |dω±/dN↑|�N↑
evaluated at N↑ = N/2. Making use of Eq. (4), one finds

�ωproj = g

2
√

2


↑√

2

↑ + δ2
c

. (14)

Note that �ωproj carries an N dependence from the Rabi
splitting 
↑. The fluctuations of the two mode frequencies
are equal in magnitude but opposite in sign such that the rms
differential fluctuation is �(ω+ − ω−)proj = 2�ωproj.

The projection noise variance (�ωproj)2 decreases as a
Lorentzian versus the bare-cavity detuning δc with half-width
at half-maximum (HWHM) 
↑. Figure 5(b) shows this scaling
with detuning (left: black curve). The technical requirements
on the experiment for resolving �ωproj are increased with
detuning. Other experimental imprecision and inaccuracies
scale relative to the mode linewidth κ ′ that one must split
to the level of �ωproj, therefore the ratio �ωproj/κ ′ is shown in
Fig. 5(b) (left) for three bare-cavity linewidths, κ/� = 0.01,
1, 100 (blue, red, green). Note that in the good-cavity limit
κ/� � 1 (blue), the experimental requirement on splitting
the mode line can be somewhat reduced at larger detuning
owing to the rapid falloff of κ ′ as 1/δ2

c in the approximate
region δc/
↑ ∈ {1,10}.
B. Fundamental measurement noise and free-space scattering

at arbitrary detuning δc

The resonance frequency of the farther detuned of the two
dressed modes ω+ or ω− is measured relative to the known
frequency of a coherent laser probe. The rms uncertainty on the
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FIG. 5. (Color online) Theoretical scaling of key quantities with
cavity detuning δc expressed in units of the the collective vacuum
Rabi frequency 
↑. (a) The dressed-cavity linewidth κ ′ in units
of the atomic excited state linewidth �. In (a) and (b), the scaling
for different cavity finesses is shown for κ/� = 0.01, 1, and 100
(blue, red, and green, respectively). (b) Right (black curve): The rms
fluctuation of the dressed-cavity-mode frequency due to projection
noise fluctuations �ω

proj
+ decreases as 1/δc above δc/
↑ = 1. The

normalization is chosen such that one should multiply by g/2
√

2.
Left (red, blue, and green curves): The ratio of the projection
noise fluctuation of the cavity mode to the dressed-cavity linewidth
�ωproj/κ ′ is shown normalized such that the plotted values should be
multiplied by g/(2

√
2�). A high ratio is desirable because technical

noise may limit the ability to split the probed resonance by more than
a fractional amount.

probe detuning �δp is equal to the projection noise fluctuation
level �ωproj at an average detected photon number of

M
proj
d = 1

2ηd

(
κ ′

g

)2
(

1 + δ2
c


2
↑

)
. (15)

See Fig. 6(a) for plots of M
proj
d versus cavity detuning δc.

The passage of light through the cavity also leads to the
scattering of Ms = |as |2Tm probe photons into free-space
modes by the atoms in spin-up. The ratio of free-space-
scattered to detected photons Rs = Ms/Md is given by the
weighted ratio of the two damping rates as

Rs = 1

qdηs

�

κ


2
↑

4ω2
. (16)

See Fig. 6(a) for plots of Rs versus cavity detuning δc. The
factor ηs plays an equivalent role to a quantum efficiency
and separately accounts for photons exiting the cavity via an
undetected port. In the symmetric-cavity example we consider
here, only transmission port 2 is measured, and ηs = κ2/κ [see
Fig. 3(b) for an illustration].
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FIG. 6. (Color online) Theoretical scaling of key quantities with
cavity detuning δc expressed in units of the the collective vacuum
Rabi frequency 
↑. In (a) and (b), the scaling for different cavity
finesses is shown, giving κ/� = 0.01, 1, and 100 (blue, red, and
green, respectively). (a) Left (blue, red, green): The average number
of detected photons needed to resolve the projection noise fluctuations
M

proj
d normalized such that the plotted values should be multiplied

by �2/(ηdg
2). Right (black): The ratio of the number of free-space-

scattered photons for every detected photon Rs , normalized such
that the plotted values should be multiplied by �/(qdκ). (b) The
crucial average number of photons scattered into free space per atom
m

proj
s when the atomic population measurement precision is equal

to the projection noise fluctuations. The normalization is such that
the plotted values should be multiplied by �2/(16qN↑g2). In the
bad-cavity limit of κ  � (green curves), there is little fundamental
advantage to operating away from resonance δc = 0. The technical
requirements are simply increased as a result of detuning. As the
finesse of the cavity F is increased, the amount of free-space
scattering falls roughly as 1/F until the good-cavity regime is reached
when κ � � (blue curves). Here, one must detune by roughly the
critical detuning δ◦

c in order to realize the full advantage of having
increased the cavity finesse. Importantly, note that m

proj
s does not

significantly decrease above δ◦
c owing to cancellation in this regime

of the scaling of Rs ∼ 1/δ2
c with the scaling of M

proj
d ∼ δ2

c .

The key number of photons scattered into free space
normalized to the total number of atoms N , denoted m

proj
s ,

may then be found from Eqs. (16) and (15) as

mproj
s = RsM

proj
d

N
(17)

= 1

4qN↑C

(
κ ′

κ

)2
(

1 + δ2
c


2
↑

)

2

↑
ω2

, (18)

where C is the single-atom cooperativity parameter

C = (2g)2

κ�
, (19)

and the total effective quantum efficiency is

q = qdηdηs. (20)

See Fig. 6(b) for plots of m
proj
s versus cavity detuning δc.

For any arbitrary measurement imprecision �δp = α�ωproj

relative to the projection noise level, the required average
number of detected photons is simply Md = M

proj
d /α2, and

the average number of scattered photons normalized to the
total atom number N is ms = m

proj
s /α2.

A key result is that m
proj
s saturates to a finite value in the

far-detuned limit

mproj
s → 1

4qN↑C
as |δc| → ∞. (21)

The reason for this saturation is because in Eq. (18), the ratio
of free-space to detected photons asymptotically decreases as
1/δ2

c , but the required number of detected photons increases
asymptotically as δ2

c . The nondemolition character of the
measurement is ultimately set by the collective cooperativity
parameter and quantum efficiency qN↑C. This quantity
physically sets the maximum rate at which collective
information can be extracted from the ensemble compared to
the rate at which single-particle information is gained by the
environment via multimode scattering of light into the many
modes of free space.

In the good-cavity limit κ � �, the frequency dependence
δc of Eq. (18) can be understood in three regimes: the
far-detuned dispersive regime |δc| > δ◦

c , the near-detuned
dispersive regime |δc| < δ◦

c , and the resonant regime δc = 0.
The critical cavity detuning δ◦

c is given by

δ◦
c =

√
�

κ


↑
2

1√
q

= �

2

√
N↑C

q
. (22)

The critical detuning is the cavity detuning at which the
dressed-cavity linewidth is κ ′ = 2κ , possible only in the good-
cavity limit κ � �. Expressions for the number of photons
scattered into free space per atom m

proj
s , the absolute size of

the projection noise fluctuations of the mode frequency �ωproj,
and the dressed-cavity linewidth κ ′ are summarized in these
different regimes in Table I. Again, the quantity m

proj
s is critical

for understanding the fundamental limits on both probe-
induced heating of the sample and potential improvements
in the measurement sensitivity beyond the SQL. Collective
information gained from the cavity results from a forward
scattering process that leaves the momentum state of the
atom unmodified and therefore does not cause recoil heating.
In contrast, the probing-induced free-space scattering always
causes recoil heating on average, even if the atoms are tightly
confined in the Lamb-Dicke regime in all three dimensions.

C. Minimizing mproj
s at a fixed maximum detuning

In some experimental situations, the maximum probe
detuning |δc| � δmax is set by the energy structure of the
atom. For instance, the ground-state hyperfine splitting in
87Rb imposes δmax ≈ 6.8/2 GHz [6]. An optimum value of
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TABLE I. Regimes of cavity probing. The regime name and assumptions used to define the regime are listed in the first and last columns.
The quantity m

proj
s is the average number of photons scattered into free space normalized to the total atom number N , required to resolve an rms

fluctuation
√

N/2 in the spin-up population equal to the projection noise level. The quantity �ωproj is the rms angular frequency fluctuation of a
single normal mode frequency ω± due to projection noise. The quantity κ ′ is the dressed-cavity power decay linewidth, here taken for the mode
detuned farthest from atomic resonance. The single-particle cooperativity C, the number of atoms in spin-up N↑ = N/2, the single-particle
cavity coupling g, the empty-cavity power and atomic population decay rates κ and �, respectively, and the collective vacuum Rabi frequency

↑ are related by 
↑ = √

N↑2g, N↑C = N↑(2g)2/κ�. The detuning of the empty-cavity resonance frequency from the atomic transition
frequency is δc, and the critical detuning at which κ ′ = 2κ is (δ◦

c )2 = 
2
↑�/4κ , assuming the good-cavity limit κ � �. The maximally detuned

regime assumes that the quantity N↑C is chosen to minimize m
proj
s in the presence of the constraint that the cavity detuning cannot be made

larger than some maximum value δmax set by technical constraints on resolving the projection noise fluctuations or fundamental constraints set
by the internal energy level structure of the atoms being probed (for instance, the ground-state hyperfine splitting in 87Rb).

Regime name m
proj
s �ωproj κ ′/κ Assumption(s)

Resonant 1
4qN↑C

(
1 + �

κ

)2 g

2
√

2
1
2

(
1 + �

κ

)
δc = 0

Detuned 1
4qN↑C

(
κ ′
κ

)2
√

N↑
2

g2

|δc | 1 + N↑g2

δ2
c

(
�

κ
− 1

)
δc  
↑

Near detuned, good cavity N↑C

4q

(
�

2δc

)4
√

N↑
2

g2

|δc |
N↑g2

δ2
c

�

κ
δ◦
c  δc  
↑; κ � �

Critically detuned, good cavity 1
qN↑C

g√
2

√
κ

�
2 δc = δ◦

c  
↑; κ � �

Far detuned, good cavity 1
4qN↑C

√
N↑
2

g2

|δc | 1 + N↑g2

δ2
c

�

κ
δc  δ◦

c ,
↑; κ � �

Maximally detuned, good cavity, optimized 1
4q

(
�

2δmax

)2 g√
2

√
κ

�
2 δc = δmax  
↑; κ � �;

N↑C = (
2δmax

�

)2

N↑C can be found that minimizes m
proj
s when |δc| = δmax.

The scaling for this case is shown in the last row in Table I.
Physically, the optimum value of N↑C is reached (at a fixed
detuning) when the dressed-cavity linewidth is related to the
bare-cavity and atomic linewidths by κ ′/κ = 2�/(� + κ). In
the resonant limit, δc = 0, one finds an optimum κ ′/κ =
1, while in the detuned limit one finds κ ′ ≈ 2κ , i.e., the
detuned-cavity resonance is broadened by a factor of 2 at
optimum. In this same limit, the ratio of rms fluctuation size
to dressed-cavity HWHM is given by 2�ωproj/κ ′/2 = √

C/8.
A larger single-atom cooperativity C reduces the technical
requirements for resolving the projection noise fluctuations of
the cavity mode.

D. Probing dressed modes in the resonant cavity limit, δc = 0

Here we consider the special case of probing in the resonant
cavity limit, δc = 0, utilized in the experiment in Ref. [9]. On
resonance δc = 0, the absolute size of the projection noise
fluctuations is maximized; i.e.,

�ω
proj
± = g

2
√

2
. (23)

Note that the rms fluctuation is independent of N . The same
is true for the FWHM linewidth, which is simply equal to the
average linewidth [60] due to the equal photonic and atomic
contributions to the normal modes:

κ ′ = (κ + �)/2 . (24)

To be able to resolve projection noise, one must detect, on
average, a number of probe photons in transmission given by

M
proj
d = 1

2ηd

(
κ ′

g

)2

. (25)

The ratio of free-space-scattered photons to detected probe
photons in transmission is

Rs = 1

qdηs

�

κ
. (26)

Finally, the number of photons scattered into free space (Fig. 7)
for measurement uncertainty at the projection noise level
normalized to the total number of atoms N is

mproj
s = 1

2qNC

(
1 + �

κ

)2

. (27)

If the cavity length and mode volume are fixed by experi-
mental constraints, then one is, in principle, free to minimize
Eq. (27) by varying the finesse of the cavity mirrors, until a
minimum value of m

proj
s = 2/qNC is reached when κ = �.

The minimization with respect to cavity finesse accounts for
the fact that the cooperativity C scales as 1/(T1 + T2 + L).

IV. QUANTUM BACKACTION LIMITS
ON DETERMINING Jz

In this section, we study the limitations on measurement
resolution of the spin projection Jz arising from Raman spin
flips caused by free-space scattering. We begin by considering
a simple three-level model that is used in Sec. V to calculate
spectroscopic enhancements relative to the SQL. The simple
model is extended in Sec. VI to describe probing of the clock
and cycling transitions in 87Rb.

A. Definitions

This section defines symbols that are relevant to the
later discussion of measurement resolution and spectroscopic
enhancement. We define collective spin operators Ĵx,y,z =
�N

i=1Ĵ
i
x,y,z, where Ĵ i

x,y,z is the single-atom spin operator for
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FIG. 7. (Color online) The crucial average number of photons
scattered into free space per atom such that the detected probe light
allows resolution of projection noise fluctuations m

proj
s versus the

ratio of the cavity power to atomic population decay rates κ/�.
The normalization is chosen such that the plotted values should be
multiplied by �2/(16qN↑g2). Here, we assume that κ is varied by
changing the cavity finesse while holding the cavity length fixed
(such that g is constant). Each trace represents a fixed ratio of the
bare-cavity detuning to the collective vacuum Rabi frequency δc/
↑,
with values labeled on the traces and blue curves denoting δc/
↑ > 0,
green curves δc/
↑ = 0, and dashed yellow curves δc/
↑ < 0.
Here we consider probing the dressed mode at frequency ω+. At a
fixed detuning (and therefore fixed projection-noise-driven frequency
fluctuation size) a minimum is reached below which a better cavity is
detrimental due to the dressed-cavity linewidth κ ′ becoming clamped
while the ratio of free-space scattering to detected photon number Rs

continues to rise. In the units above, the locus of the minimum is just
4κ/� [diagonal (red) line]. Including the normalization, the locus
of the minimum reduces to m

proj
s = 1/(qN↑C). When including the

dependence of g2 and κ ∼ 1/l on the cavity length l, the minimum
value of m

proj
s is not changed by just shortening the cavity at a

fixed finesse. Only shortening the cavity length while simultaneously
increasing the cavity finesse (such that κ is constant) leads to a
net fundamental reduction in m

proj
s . Finally, the vertical black line

indicates the cavity linewidth for a finesse F = 106 cavity, near the
highest currently achievable, for 87Rb and l = 2 cm.

the ith atom such that Ĵ i
z |↑i〉 = 1

2 |↑i〉, Ĵ i
z |↓i〉 = − 1

2 |↓i〉, etc.
The collective spin operator is Ĵz = (N̂↑ − N̂↓)/2, where
N̂↑ and N̂↓ are the atomic population operators defined in
Sec. II A. Expectation values of the collective spin operators
are denoted Jx,y,z ≡ 〈Ĵx,y,z〉. The collective Bloch vector is
Ĵ ≡ (Ĵx, Ĵy, Ĵz). The radius of the collective Bloch sphere is

R ≡
√

〈Ĵ2〉.
B. Simple model for Jz diffusion

In this subsection, we consider how the free-space scat-
tering changes the atomic population in the spin-up and
spin-down two-level manifold through Raman or spin-flip
events. To arrive at the results presented in this section, only
the atomic populations matter, and coherences are irrelevant.

We consider here the simplest model that captures the
essential physics. In this toy model, the only states in the
problem are the two-level system |↑〉, |↓〉 and the optically
excited state |e〉, as described in Fig. 1(b). We assume that a

free-space scattering event causes an atom to spin flip from |↑〉
to |↓〉 via the intermediate state |e〉 with probability p. This
simple model may be straightforwardly extended to provide
accurate predictions for a multilevel atom by accounting for
all possible Raman scattering processes.

Freespace scattering causes Jz to change on average by
a certain amount, while the random nature of the spin-flip
process leads to a random walk or diffusion of the collective
Bloch vector’s spin projection Jz. Provided that multiple
scattering can be neglected, i.e., pms � 1, the diffusion
process can be described by the relation

〈(Jz(ms) − Jz(0))2〉
(�Jz,CSS)2

= 4 p ms, (28)

with the spin-flip probability setting the diffusion constant 4p

and the random variable Jz(ms) describing the z component
of the Bloch vector after ms scattering events per atom. The
diffusion is normalized to the projection noise level for a CSS
(�Jz,CSS)2 = N/4.

C. Measurement imprecision due to photon shot noise

The measurement imprecision �J meas
z due to probe vacuum

noise alone is (
�J meas

z

�Jz,CSS

)2

= m
proj
s

ms

. (29)

D. Balancing measurement imprecision against Jz diffusion

Given the diffusion in Jz, and the photon shot noise in
the probe, we must ask: How well can one determine the
value of Jz or, equivalently, the atomic population N↑ prior to
the measurement (which disturbs Jz through spin flips)? As
a first pass, the total variance (�J ′

z)2 in the estimate of Jz is
found by adding the measurement imprecision [Eq. (29)] and
spin-flip-induced diffusion of Jz [Eq. (28)]:(

�J ′
z

�Jz,CSS

)2

= m
proj
s

ms

+ 4 p ms. (30)

Averaging down photon shot noise determines the z projec-
tion of the Bloch vector more and more precisely. Eventually,
however, scattering-induced diffusion of Jz causes the value of
Jz measured at earlier times to become less correlated with the
value of Jz measured at later times, adding noise to the estimate
of Jz, as shown in Fig. 8. The optimal resolution �J

opt
z occurs

at an optimal scattering m
opt
s where the noise contributions

from measurement imprecision and diffusion due to Raman
spin flips are equal:

mopt
s = 1√

8pqNCh(δc)
, (31)

(
�J

opt
z

�Jz,CSS

)2

=
√

8p

qNCh(δc)
. (32)

The detuning dependence has been lumped into the factor
h(δc)

h(δc) =
⎛⎝ κ

κ ′(δc)

ω(δc)√
δ2
c + 
2

↑

⎞⎠2

, (33)
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FIG. 8. (Color online) Normalized spin noise variance versus
fractional free-space scattering ms/m

proj
s . The curves assume no

prior knowledge, i.e., ζprep → ∞, and NC = 103. The measurement
variance decreases as 1/ms from averaging down photon shot noise
(dotted black line) until noise due to random spin flips (dashed red
and black lines) takes over at large ms . The minimum noise variance
is 4

√
pm

proj
s → √

8p/NC assuming perfect quantum efficiency and
probing in the far-detuned limit. This minimum is reached when two
noise contributions are equal at mopt

s =
√

m
proj
s /4p → 1/

√
8pNC

assuming perfect quantum efficiency and probing in the far-detuned
limit. A larger collective cooperativity NC or lower spin-flip
probability p allows photon shot noise to be averaged down more
before spin-flip noise takes over, as illustrated by the two curves for
p/NC = 10−5 (solid black) and p/NC = 10−3 (solid red). The locus
of the minimum variance is 2ms/m

proj
s (solid green line).

where κ ′(δc) is the dressed-cavity-mode linewidth introduced
in Eq. (5), ω(δc) is the dressed-cavity-mode frequency intro-
duced in Eq. (4), and 
↑ = √

N↑2g is the collective vacuum
Rabi splitting. The parameter h(δ◦

c ) = 1/4 at the critical
detuning, and h(δc) → 1 as |δc| → ∞. In the far-detuned limit,
Raman spin-flip diffusion limits the achievable resolution to

( �J
opt
z

�Jz,CSS
)2 = √

8p/qNC.

E. Single-spin measurement resolution

Single-spin resolution �J
opt
z � 1/2 is required for condi-

tionally preparing states with spectroscopic sensitivity at the
Heisenberg limit as well as the parity measurements needed
for reading out NOON states or Dicke states [61]. Single-spin
resolution in ensembles of ∼100 87Rb atoms has recently
been demonstrated using cavity-aided nondemolition mea-
surements [52]. We find that in the far-detuned limit, single-
spin resolution is reached for p � qC

8N
, quantifying how ideal a

cycling probe transition needs to be in order to resolve single
spins. For qC ∼ 1 and N ∼ 106, one would need p � 10−7,
which is highly unrealistic for real multilevel alkali atoms
due to off-resonant scattering from other hyperfine states,
as discussed in Sec. VI for the case of 87Rb. Alternatively,
with high single-atom cooperativity, qC � 8Np, single-spin

resolution could be attained without a cycling transition. For
example, with qC ∼ 100 and a worst-case open transition with
p = 1/2, single-spin resolution would be reached for N � 25
atoms.

V. SPECTROSCOPIC ENHANCEMENT

Spectroscopic sensitivity refers to the ability to resolve
the angle through which a Bloch vector or a Dicke state is
rotated. To first approximation, the polar angular resolution
is set by the conditional spin noise, discussed in Sec. IV,
and the radius R of the collective Bloch sphere on which
the Bloch vector or Dicke state lives. In this section, we
discuss how the radius R of the collective Bloch sphere is
reduced by the measurement due to free-space scattering and
derive the fundamental limits to the spectroscopic sensitivity.
The radius R is proportional to the Ramsey contrast C
for a CSS or a slightly spin-squeezed state. The radius is
used here because it is possible to consider a conditional
measurement with imprecision below a single spin. If all atoms
remain in a superposition, the resulting state would be a fully
symmetric Dicke state or eigenstate of the operator Ĵz, with
R = N/2 but with 〈Ĵ〉, C = 0. Nonetheless, Dicke states have
near-Heisenberg limited spectroscopic sensitivities [62].

Enhanced sensitivity in one degree of angular resolution,
say the polar angle θ , can be gained at the expense of enhanced
uncertainty in an orthogonal degree of freedom, namely, the
azimuthal angle φ. For concreteness, the Bloch vector is
initially prepared in a CSS along x̂ with 〈Ĵ〉 = x̂N/2. The
angular resolution of the polar angle for the CSS defines
the SQL �θSQL = �Jz,CSS/R = 1/

√
N . If the actual angular

resolution is �θ , then the metrologically relevant squeezing
parameter is ξm ≡ (�θSQL/�θ )2, with ξm � 1 representing a
spectroscopic enhancement in sensitivity that must arise from
entanglement.

The angular resolution is reduced if the radius R of the
collective Bloch sphere is reduced below its initial value
without a corresponding decrease in the spin noise. In the
simplest model, each free-space-scattered photon from an
atom in a superposition state leads to the collapse of its spin
into spin-up or spin-down, leading to an average reduction
in R by 1/2. If the free-space scattering rate for each spin
is unchanged by the scattering process, then the collective
Bloch sphere radius normalized to its initial value R̃ as a
function of the number of scattered photons per atom ms is
given by

R̃ = e−ms . (34)

Note that both Rayleigh and Raman scattering lead to a
reduction in the collective Bloch sphere radius. In certain cases,
free-space Rayleigh scattering does not create wave-function
collapse [63], but this requires indistinguishability in the
scattering process, which reduces the information that can be
extracted from the probe mode.

Putting Eqs. (30) and (34) together, the spectroscopic
enhancement is given by

ξm =
(

�J ′
z

�Jz,CSS

)−2

e−2ms . (35)
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If Raman spin flips dominate over Rayleigh scattering events,
the optimal spectroscopic enhancement ξ

opt
m ∼ √

qNC/p is
limited by spin-flip diffusion noise as considered in Sec. V A. If
Rayleigh scattering dominates, then the optimal spectroscopic
enhancement ξ

opt
m ∼ qNC is limited by shrinkage of the

collective Bloch sphere radius R, discussed in Sec. V B.
The change in the scaling of ξ

opt
m from

√
NC in the Raman

spin-flip limit to NC in the cycling transition limit allows
far greater amounts of squeezing on a cycling transition.
However, the loss of quantum efficiency q degrades squeezing
as ξ

opt
m ∼ q on a cycling transition, compared to the more

favorable scaling ξ
opt
m ∼ √

q in the Raman spin-flip-limited
regime.

A. Small decoherence or spin-flip limit

Here we consider the case where the reduction in the
radius R of the collective Bloch sphere may be ignored. This
is justified if the optimal scattering m

opt
s that optimizes the

measurement resolution of Jz is small, mopt
s � 1; equivalently,

pqNC(κ/�)2  1 for probing in the far-detuned limit. In this
regime, the radius R̃ remains approximately 1, so that the
spectroscopic enhancement is primarily set by the reduction
in the spin noise, discussed in Sec. IV,

ξ opt
m ≈

(
�J

opt
z

�Jz,CSS

)−2

, (36)

where ( �J
opt
z

�Jz,CSS
)2 has been introduced in Eq. (32). In the

far-detuned limit, Raman spin-flip noise limits the achievable
squeezing to ξ

opt
m = √

qNC/8p.

B. Large decoherence or cycling transition limit

Here we consider the case where the reduction in the
radius R of the collective Bloch sphere plays an important
role in determining the angular resolution. If the probing is
performed on a nominally closed transition where Raman
scattering spin flips due to probe polarization imperfections
and off-resonant scattering are very improbable, spin-flip
diffusion noise is negligible and the only limit to spectroscopic
enhancement is the shrinking of the radius R due to free-space
(Rayleigh) scattering. The probing is performed in the large-
decoherence or cycling transition regime when the optimal
scattering m

opt
s that optimizes the measurement resolution of

Jz is not small. Formally, this regime occurs when the opti-
mum spectroscopic enhancement calculated from Eq. (36) is
ξ

opt
m � 0.193/p.

In the large-decoherence regime, the spectroscopic en-
hancement is given by ξm = ms

m
proj
s

e−2ms , ignoring the small

improvement that may result from prior knowledge. An
optimum is reached when the radius R̃ = e−1/2 or, equiva-
lently, m

opt
s = 1/2, yielding an optimum ξ

opt
m = 1/(2e m

proj
s ).

In the far-detuned limit, the optimal squeezing ξ
opt
m → qNC/e

(see Fig. 9). We caution that the simple model presented
here is not valid for spectroscopic sensitivities near the
Heisenberg limit. The reason for this is because the effective
spin noise variance cannot go below 1/4, despite having
measurement resolution below a single-spin. This would
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FIG. 9. (Color online) Optimal squeezing ξ opt
m versus spin-flip

probability p for NC = 1000 (solid black curve) and NC = 10
(solid red curve) for probing in the far-detuned limit. Both curves
take into account spin-flip diffusion noise and decoherence. The
curves assume a perfect quantum efficiency q = 1. The decoherence-
limited squeezing ξ opt

m = NC/e (dotted lines) is approached for
p � e2/8NC, and the spin-flip-limited squeezing ξ opt

m = √
NC/8p

(dashed lines) is approached for p  e2/8NC. The locus of optimal
squeezing at the crossover point p = e2/8NC is 0.193/p (solid green
line).

ensure the fundamental Heisenberg limit on spectroscopic
sensitivity is not exceeded.

VI. OPTIMAL SQUEEZING FOR 87Rb

Using the framework above, we now analyze the limits of
two separate probing schemes. From Sec. III, we have shown
that the measurement resolution at a fixed free-space scattering
improves with cavity detuning δc but ultimately saturates to a
value set by the collective cooperativity parameter NC. For
squeezing on a clock transition comprised of two hyperfine
ground states, the maximal detuning is approximately half the
ground-state hyperfine splitting δc = ωhf/2. We are interested
in the ultimate limits of squeezing in such a system, taking
into account Raman spin flips and decoherence. Motivated by
the fact that Raman spin flips limit the achievable squeezing
on a hyperfine clock transition, we then analyze squeezing
via probing on a cycling transition, where Raman spin flips
are greatly reduced, but introduce an additional scaling with
δc, resulting in a region of saturation of the spectroscopic
enhancement as NC is increased. In both scenarios, the ratio
ωhf/� of the hyperfine splitting to the excited-state decay
linewidth plays a critical role.

A. Optimal squeezing via differential measurement
of 87Rb clock transition

We now consider the measurement scheme demonstrated
by the MIT group [6] in which the pseudospin states were as
in Ref. [9], namely, the clock states of 87Rb |↑〉 ≡ |52S1/2,
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F = 2,mF = 0〉 and |↓〉 ≡ |52S1/2,F = 1,mF = 0〉. The
bare-cavity frequency is tuned to the average of the two ground
states to optically excited-state transitions near 780 nm. This
tuning ensures that an atom in |↓〉 shifts the dressed-cavity
resonance frequency by an equal but opposite amount as an
atom in |↑〉. The excited-state hyperfine splitting of ∼500 MHz
is much less than the ground-state hyperfine splitting and is
taken to be 0 for the following analysis.

The problem is analyzed by extending the linearized two-
mode model of Eq. (3) to a linearized three-mode model in
which the atomic operator â is generalized to operators â↓ and
â↑ to yield three coupled differential equations, along with the
same input-output relations given by Eq. (8):

d〈ĉ〉
dt

= −1

2
κ〈ĉ〉 − ıg(

√
N↑〈â↑〉 − √

N↓〈â↓〉) + √
κ1ci,

d〈â↑〉
dt

= −1

2
(� + ı ωhf)〈â↑〉 − ı

√
N↑g〈ĉ〉, (37)

d〈â↓〉
dt

= −1

2
(� − ı ωhf)〈â↓〉 − ı

√
N↓g〈ĉ〉.

The equations are now written in a rotating frame at the
bare-cavity resonance frequency, which is chosen such that
the two optical atomic transitions are detuned by ±ωhf/2.
The rate of scattering into free space is described by the
two field amplitudes as,↑,↓ = √

�〈â↑,↓〉 and normalized such
that the rate of photons scattered into free space is simply
Ṁs = |as,↑|2 + |as,↓|2.

From the coupled set of Eq. (37), we find that the rms phase
shift of the transmitted light field caused by the rms projection
noise level fluctuation in the population difference is

�φproj =
√

NC

(
�

ωhf

) (
1

1 + NC�2/ω2
hf

)
. (38)

This expression assumes that the damping rates are low:
κ,� � ωhf,2g

√
N/2. The phase shift initially climbs with

increasing atom number as
√

N but saturates to a maximum
value �φproj = √

C/2 at a critical atom number given by
NC = (ωhf/�)2, after which the phase shift decreases as
1/

√
N . The physical interpretation of this decrease is that

above the critical atom number, the dressed-cavity-mode
linewidth κ ′ rapidly starts to broaden with increasing atom
number. The number of free-space-scattered photons required
to resolve the projection noise level phase shift of the
probe is

mproj
s = 1

4qNC

[
1 + NC

(
�

ωhf

)2
]

. (39)

The diffusion of the difference between the estimate of Jz

and the actual value of Jz is driven by Raman transitions that
move atoms from |↑〉 to |F = 1〉 or |↓〉 to |F = 2〉. Raman
transitions between states of the same F (i.e., �F = 0) lead to
loss of coherence but do not change the coupling of the atom to
the cavity mode in the limit where the excited-state hyperfine
splitting is neglected, as we do here. Hyperfine chang-
ing transitions �F �= 0 cause the detuning to change sign
but not magnitude, making such a process equivalent to a
spin flip. Accounting for transition branching ratios, we find
that, to a good approximation, we can apply Eq. (30), with

an effective spin-flip probability p = 1/6. Assuming that the
loss of coherence is small, then the optimal spectroscopic
enhancement with respect to the average probe photon
number is

ξ opt
m =

√
6qNC

1 + 4NC�2/ω2
hf

. (40)

At small N , the spectroscopic enhancement scales as
√

6qNC,
reaching a peak value of ξ

opt
m = √

3q/8 ωhf /� at a value
NC = 1

4 (ωhf/�)2, slightly before the maximum phase shift
is reached. At a larger NC, the spectroscopic enhancement
scales as ξ

opt
m = √

3q/8NC(ωhf/�)2.
Taking the quantum efficiency to be q = 1, the maximum

spectroscopic enhancement for 87Rb is quite large at 28 dB.
The exact details of the full measurement sequence (i.e.,
whether rotations such as π pulses are used to cancel sources
of technical noise as done in Refs. [6] and [9]) are needed to
construct an optimal estimator of Jz, but, at best, a 3-dB further
improvement may result.

Because C does not depend on the cavity length, the
optimum N for peak spectroscopic enhancement scales as
(w2

0/F )(ωhf/�)2, where w0 is the cavity-mode waist and F

is the cavity finesse. More fundamentally, no change in the
cavity geometry (w0 and l) or finesse F changes the maximum
obtainable enhancement in spectroscopic sensitivity. This
enhancement is determined solely by the atomic properties.
Figure 10 shows the spectroscopic enhancement versus the
atom number for a range of technologically feasible cavity
finesses.

Resolving very small phase deviations or small frequency
shifts imposes technical challenges that are modified by cavity
geometry or finesse, as shown by the probe frequency (Fig. 11)
and probe phase shift (Fig. 12) resolutions required to obtain
the spectroscopic sensitivities shown in Fig. 10. All three

FIG. 10. (Color online) The fundamental optimum spectroscopic
enhancement for differential probing of the 87Rb clock transition,
as performed in Ref. [6]. The calculations assume a net quantum
efficiency of q = 1, a cavity-mode waist w0 = 71 μm, and a cavity
length l = 1.91 cm used for our experiments [9]. Purple, light-blue,
green, orange, and red curves correspond to cavity finesses of
F = 102, 103, 104, 105, and 106, respectively. All these finesses
are experimentally feasible. The atom number N at which the
spectroscopic enhancement is maximized scales with the cavity-mode
waist w0 and cavity finesse F as w2

0/F .
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FIG. 11. (Color online) Frequency resolution with which the
relative frequency of the probe and dressed cavity mode must
be measured to obtain the spectroscopic enhancements shown in
(and under the same conditions as in) Fig. 10. Purple, light-blue,
green, orange, and red curves correspond to cavity finesses of
F = 102, 103, 104, 105, and 106, respectively.

figures assume the cavity geometry of Ref. [9], l = 1.91 cm,
and w0 = 71 μm. Finally, we note that Fig. 11 shows that
the technical requirement for probe frequency resolution is
more relaxed above the optimum N compared to achieving
the same spectroscopic enhancement at a value below the
optimum N .

B. Optimal squeezing via probing on the 87Rb cycling transition

Having seen that the optimal squeezing on a clock transition
is fundamentally limited by Raman spin flips, we consider
a situation in which Raman spin flips are reduced, namely,
probing on a cycling transition, and show that larger amounts
of squeezing are possible in this configuration than on the
clock transition [52,64].

As a concrete example of how a cycling transition can be
used to enhance probing, we consider the cycling transition
in 87Rb, |↑〉 ≡ |F = 2,mF = 2〉 to |e〉 ≡ |F = 3′,mF = 3〉 at
wavelength 780 nm. The spin-down state is chosen as |↓〉 ≡

FIG. 12. (Color online) Phase resolution with which the trans-
mitted probe light must be measured to obtain the spectroscopic
enhancements shown in (and under the same conditions as in) Fig. 10.
Purple, light-blue, green, orange, and red curves correspond to cavity
finesses of F = 102, 103, 104, 105, and 106, respectively.

mF = 0 +1 +2 +3

F’ = 3

F’ = 2

F = 2

F = 1

FIG. 13. (Color online) Probing scheme for the cycling transition
in 87Rb. The ground hyperfine states F = 2 and F = 1 are split by
ωhf = 2π × (6834 MHz). The values of mF are labeled across the top.
The relevant F ′ = 3 and F ′ = 2 excited D2 transitions at wavelength
780 nm are also shown with the excited-state splitting ωehf =
2π × (267 MHz). The pseudo-spin-1/2 system is here composed
of |↑〉 = |F = 2,mF = 2〉 and |↓〉 = |F = 1,mF = 1〉. Ideally, the
σ+-polarized probing laser couples only |↑〉 to the optically excited
state |e〉 with dipole matrix element M↑e at a frequency detuning δe

that is approximately equal to the dressed-cavity-mode frequency ω−.
In this illustration, δe is negative. By dipole selection rules, |e〉 can
only decay back to |↑〉. However, the same probe laser also couples
|↓〉 to the single excited state |e′〉 with dipole matrix element M↓e′

and larger detuning from resonance δe′ = δe − ωhf + ωehf . The ratio
of matrix elements is M↓e′/M↑e = 1/

√
2. Finally, state |e′〉 decays to

states |↓〉, |↑〉, and |3〉 with fractional branching ratios B↓e′ = 1/2,
B↑e′ = 1/3, and B3e′ = 1/6, respectively.

|F = 1,mF = 1〉. For the following, the probing scheme,
with relevant energy levels, dipole matrix elements, decay
branching ratios, dressed mode frequencies, and probe laser
detunings, is shown and defined in Fig. 13. Here we extend the
previous models of the precision of the estimation of Jz and
the loss of signal due to wave-function collapse to capture
the essential physics for this system. Key results are that
there exists a region of saturation, or universal spectroscopic
enhancement, set only by atomic properties and in which
varying atom number and cavity finesse can have little impact.
However, unlike in the previous section, the asymmetry in the
cavity coupling to |↑〉 and |↓〉 allows this saturation region to
be surpassed at large values of NC.

We must first consider what limits the rate of Raman
scattering processes that can lead to diffusion of the spin
projection Jz. The probe polarization can be set to pure
σ+ to better than 10−4, so that Raman scattering from |↑〉
is suppressed to at least this level or greater. The more
fundamental Raman scattering limitation arises from the fi-
nite hyperfine splitting ωhf = 2π × (6834 MHz). Specifically,
atoms in |↓〉 can non-resonantly Raman scatter probe photons
from |e′〉 ≡ |F = 2′,mF = 2〉.

In the following discussion, the quantity ms is importantly
defined as the average number of probe photons (normalized
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to the total atom number) Rayleigh scattered into free space
by atoms in |↑〉. All other scattering processes are scaled
from this quantity using the quantities defined in Fig. 13.
The key parameters for rescaling are the ratio of the dipole
matrix elements r = M↓e′/M↑e = 1

√
2, the decay branching

ratio B3e′ = 1/6 from |e′〉 to |3〉 ≡ |F = 2,mF = 1〉, and the
detunings of the probe light δe and δe′ = δe − ωhf + ωehf

from resonance with the transitions |↑〉 → |e〉 and |↓〉 → |e′〉,
respectively. As in the previous section, we neglect the excited-
state hyperfine splittings so that δe′ ≈ δe − ωhf .

The rms imprecision in the estimate of Jz relative to the
projection noise level can be approximately modeled as(

�J ′
z

�Jz,CSS

)2

= 4p↑ms + p3ms + m̃
proj
s

ms

. (41)

Starting in order of physical significance, the first and
second terms arise from diffusion of Jz caused by Raman
transitions from |↓〉|↑〉 and |3〉, with effective probabilities p↑
and p3 given approximately by

p↑,3 = B↑,3 e′r2

(
δe

δe′

)2

. (42)

In this simple treatment, Raman decays to |3〉 are treated as
loss, as reflected in the smaller numerical prefactor in front of
the second term in Eq. (41).

The third term in Eq. (41) is modified to reflect that both
states can interact with the probe at large detunings such that
the dressed-cavity-mode frequency is less sensitive to quantum
projection noise in Jz, and thus more probe photons must be
used to resolve Jz at the projection noise level; i.e.,

m̃proj
s = m

proj
s

Rray
. (43)

Here, mproj
s is defined by Eqs. (18), (5), and (4). Indistinguisha-

bility is accounted for by

Rray =
(

1 − r

∣∣∣∣ δe

δe′

∣∣∣∣)2

. (44)

Note that Rray � 1, with an asymptotic value of Rray → 1 at
large detunings.

There are two effects that are neglected in Eq. (43) by first
assuming that they are small and then verifying this to be the
case after the calculations. First, in applying the dressed-cavity
linewidth result for κ ′ from Eq. (5), we assume that the cavity
mode is negligibly further broadened by atoms in state |↓〉. By
estimating the additional broadening evaluated at the optimal
cavity detuning and average number of scattered photons, we
find that the optimal spectroscopic enhancements calculated
in Fig. 14 are reduced by <0.3 dB due to the neglected
mode broadening. Second, we assume that the dressed mode
frequency ω− calculated from Eq. (4) is modified by only a
small fraction by atoms in state |↓〉. Again, this assumption is
verified to be the case at the optimal cavity detuning and the
average number of scattered photons, with the exception of the
case where N > 108 and cavity finesse F = 100, as shown in

F

~ qNC

~ (qNC)1/2

N

FIG. 14. (Color online) Theoretical optimal spectroscopic en-
hancement ξ opt

m (in dB; solid curves) relative to the SQL versus
effective 87Rb atom number N when probing near the D2 cycling
transition as shown in Fig. 13. Calculations are for the cavity geometry
in Ref. [9] (waist w0 = 71 μm and cavity length l = 1.91 cm) and
assuming a net probe quantum efficiency q = 1. The optimization of
the spectroscopic enhancement is performed for a range of technically
realizable cavity finesses, F = 102, 103, 104, 105, and 106 (blue, cyan,
green, yellow, and red curves respectively). Note that spectroscopic
enhancements below the Heisenberg limit is unphysical (disallowed
gray region). A region of saturation of ξ opt

m versus N occurs near ξ sat
m ≈

ωhf/� = 30.5 dB, shown by the horizontal dashed line. The physical
origin of the saturation region arises from competition between the
scaling of the off-resonance Raman scattering probabilities and the
dressed-cavity-mode broadening, as described in the text. Points of
3-dB deviation from qNC ∝ qNF/w2

0 scaling at low effective atom
numbers (filled circles) and

√
qNC ∝ √

qNF/w0 scaling at large
effective atom numbers (open circles) occur when the solid curves
cross ξ opt

m = 27 and 33 dB, respectively. For different cavity waist
sizes w′

0 and finite quantum efficiencies q, the saturation level is given
by ξ sat

m ≈ √
qωhf/�. The lower saturation atom number Nlower (value

of N at filled circles) scales as Nlower ∝ q−1/2 × (w′
0/w0)−2 × F −1,

and the upper saturation atom number Nupper (value of N at open
circles) scales as Nupper ∝ q0 × (w′

0/w0)−2 × F −1. Note that the
cavity length l is largely irrelevant here (although important for
technical reasons) as long as one operates in the good-cavity limit
κ � �. This is the case for all curves except for the finesse F = 102

curve, where κ � �.

Fig. 14, where several decibels of deviations is possible due to
this effect.

Next, we consider how collapse due to free-space scattering
reduces the radius of the collective Bloch sphere; specifically,

R̃ = e−ms (Rray+Rram), (45)

where the partial cancellation of wave-function collapse due
to indistinguishable Rayleigh scattering off of both |↑〉 and |↓〉
(see [63]) is accounted for by Rray.

The term Rram accounts for Raman scattering from |↓〉
to |3〉:

Rram = B3e′r2

(
δe

δe′

)2

. (46)

As before, we assume that Raman scattering to state |3〉 is
equivalent to atom loss. Note also that Rram � B3e′r2.
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FIG. 15. (Color online) The dressed mode frequency ω− that
optimizes the spectroscopic enhancement ξm for the conditions
described in the caption to Fig. 14, where, again, the cavity finesses
F = 102, 103, 104, 105, and 106 correspond to the blue, cyan, green,
yellow, and red curves, respectively. Open and filled circles indicate
the locations of the 3-dB points in Fig. 14. The mode frequency
is normalized to the hyperfine splitting ωhf/2π = 6.834 GHz. Note
that ω− ≈ � at ω−/ωhf ≈ 10−3. Comparing to Fig. 14, one finds
that the transition to spectroscopic enhancement scaling as ξ opt

m ∝√
qNC occurs near ω− ∼ 1.8 × ωhf . Above this point, the spin-flip

probabilities p↑,3 change little with ω−.

Equations (47)–(52) are used to numerically estimate the
optimal spectroscopic enhancement ξ

opt
m shown versus the

atom number N in Fig. 14 for a range of technologically
reasonable cavity finesses and assuming the cavity geometry
in Ref. [9] (cavity length l = 1.91 cm, mode waist size
w0 = 71 μm) and a perfect quantum efficiency q = 1. The
optimization is done with respect to both ms and the dressed-
cavity-mode frequency ω− (tuned by changing the bare-cavity
frequency). The mode frequency ω− at the optimum is shown
in Fig. 15. The loss of signal due to wave-function collapse
and scattering to |3〉 at the optimum is shown in Fig. 16.

At a low atom number, the spectroscopic enhancement
scales as ξ

opt
m ∼ qNC. At a high atom number, the spec-

troscopic enhancement scales as ξ
opt
m ∼ √

qNC. There is
an intermediate region of atom numbers for which the
spectroscopic enhancement is relatively flat versus the atom
number with ξ

opt
m ∼ ωhf/�.

The physical origin of this plateau arises from the form of
the critical detuning of Eq. (22). In the good-cavity limit, the
scattering necessary to reach projection noise level sensitivity
m

proj
s falls as 1/δ4

c for δc < δ◦
c , making it beneficial to operate

with |ω−| ∼ δc � �
√

NC/q. However, the Raman transition
probabilities p↑,3 continue to grow quadratically with the de-
tuning, while detuning farther no longer rapidly reduces m

proj
s .

Assuming that the critical detuning δ◦
c is optimal for the

reasons above, and in the limit of |ω−| < ωhf , the Raman tran-
sition probabilities scale as p↑,3 ∼ (NC/q)(�/ωhf)2, while
m

proj
s ∼ 1/(qNC). Optimizing the total noise in our estimate

of Jz using Eq. (41) with respect to ms reproduces the observed
plateau value ξ

opt
m ∼ ωhf/� ∼ 103. The plateau region is exited

at a low atom number when loss of signal [described by
Eq. (45)] dominates the reduction in spectroscopic enhance-
ment, as illustrated by the loss of signal due to wave-function

FIG. 16. (Color online) The scattering ms that optimizes the
spectroscopic enhancement ξm shown in Fig. 14. Again, the cavity
finesses F = 102, 103, 104, 105, and 106 correspond to the solid blue,
cyan, green, yellow, and red curves, respectively. Open and filled
circles indicate the locations of the 3-dB points in Fig. 14. Comparing
to Fig. 14, one finds that the transition to spectroscopic enhancement
scaling as ξ opt

m ∝ qNC occurs when ms ≈ 0.25, indicating that
at larger N , far-off-resonance Raman scattering begins to create
significant diffusion of Jz, which limits the precision of the estimation
of Jz as discussed in the text.

collapse shown in Fig. 15. At a high atom number, the plateau
region is exited when the optimum mode frequency becomes
large compared to the hyperfine splitting |ω−| > ωhf , as shown
in Fig. 16.

Importantly, this analysis shows that there is a range in
which increasing either the finesse or the atom number can
have little effect on the optimal spectroscopic enhancement
achieved. Also, note that the value of the plateau does not
depend on the cavity geometry and, therefore, represents a
universal value that depends only on the atomic properties
and the quantum efficiency. See the caption to Fig. 16 for
various scalings with physical parameters. Finally, for atom
numbers below 103, it appears possible both to prepare and to
read out states near the Heisenberg limit using this approach
and technologically feasible cavity finesses. Indeed, Ref. [52]
recently demonstrated single-atom measurement resolution for
N ∼ 100 using the approach described here.

VII. CONCLUSIONS

In conclusion, we have presented detailed expressions for
how cavity-aided, nondemolition measurements of atomic
populations scale with key experimental parameters: cavity
linewidth, cavity geometry, collective cooperativity, and Ra-
man transition probabilities. We have analyzed two probing
schemes in 87Rb and estimated fundamental limits on condi-
tional spin squeezing in ensembles of 87Rb atoms.

This in-depth look at the fundamental limits for cavity-aided
measurements will be an important part of moving beyond
proof-of-principle experiments to achieve large amounts of ob-
served squeezing for advancing precision measurements with
cold atoms. The present analysis was particularly important
for guiding recent work in 87Rb, where we have observed
10.2(6) dB of spectroscopic enhancement [13]. To the best
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of our knowledge, this represents the largest entanglement
enhancement ever observed in matter systems and is ideal
for implementation in state-of-the-art precision measurement
experiments such as optical lattice clocks [65,66]. The analysis
in this paper has enabled our cavity-aided nondemolition
measurement to greatly improve upon the previous best
observation of �1.5 dB of spectroscopic enhancement using
quantum nondemolition techniques [42]. Our analysis can be
adapted to other atoms with a ground-state hyperfine structure
such as Cs and other alkali elements used in spectroscopy and
quantum information experiments and further points the way

to implementing the techniques presented here in alkali-earth
elements in optical lattice clocks.
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